IDEAS home Printed from https://ideas.repec.org/p/rdg/icmadp/icma-dp2011-03.html
   My bibliography  Save this paper

Does Information Content of Option Prices Add Value for Asset Allocation?

Author

Listed:
  • Vladimir Zdorovenin

    (ICMA Centre, Henley Business School, University of Reading)

  • Jacques Pézier

    (ICMA Centre, Henley Business School, University of Reading)

Abstract

The aim of this paper is to determine whether forward-looking option- implied returns forecasts lead to better out-of-sample portfolio performance than conventional time series models. We consider a simple two-asset setting with a risk-free asset and the S&P 500 index the risky asset with monthly allocation revisions. We carry out a comprehensive analysis with a wide range of time-series models, two risk-neutral density inference methods, two utility functions, and several performance metrics. Portfolios are compared over the period of January 1994 to April 2010. Our main contribution is to compare the merits of implied volatility smoothing and maximum entropy risk-neutral density estimation techniques. By using bid/ask quotes in place of the closing prices, we obtain smooth probability densities using the maximum entropy principle that outperform the probability densities obtained using the implied volatility smoothing method. We also identify which moments of the option-implied probability densities contribute most to portfolio performance.

Suggested Citation

  • Vladimir Zdorovenin & Jacques Pézier, 2011. "Does Information Content of Option Prices Add Value for Asset Allocation?," ICMA Centre Discussion Papers in Finance icma-dp2011-03, Henley Business School, University of Reading.
  • Handle: RePEc:rdg:icmadp:icma-dp2011-03
    as

    Download full text from publisher

    File URL: http://www.icmacentre.ac.uk/files/discussion-papers/DP2011-03.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Park, Sung Y. & Bera, Anil K., 2009. "Maximum entropy autoregressive conditional heteroskedasticity model," Journal of Econometrics, Elsevier, vol. 150(2), pages 219-230, June.
    2. Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
    3. Ait-Sahalia, Yacine & Lo, Andrew W., 2000. "Nonparametric risk management and implied risk aversion," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 9-51.
    4. Berkowitz, Jeremy, 2001. "Testing Density Forecasts, with Applications to Risk Management," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(4), pages 465-474, October.
    5. Buchen, Peter W. & Kelly, Michael, 1996. "The Maximum Entropy Distribution of an Asset Inferred from Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 31(1), pages 143-159, March.
    6. Yacine Aït-Sahalia & Michael W. Brandt, 2008. "Consumption and Portfolio Choice with Option-Implied State Prices," NBER Working Papers 13854, National Bureau of Economic Research, Inc.
    7. Guidolin, Massimo & Hyde, Stuart, 2012. "Can VAR models capture regime shifts in asset returns? A long-horizon strategic asset allocation perspective," Journal of Banking & Finance, Elsevier, vol. 36(3), pages 695-716.
    8. Eric Jondeau & Michael Rockinger, 2006. "Optimal Portfolio Allocation under Higher Moments," European Financial Management, European Financial Management Association, vol. 12(1), pages 29-55, January.
    9. Jackwerth, Jens Carsten, 2000. "Recovering Risk Aversion from Option Prices and Realized Returns," The Review of Financial Studies, Society for Financial Studies, vol. 13(2), pages 433-451.
    10. DeMiguel, Victor & Plyakha, Yuliya & Uppal, Raman & Vilkov, Grigory, 2013. "Improving Portfolio Selection Using Option-Implied Volatility and Skewness," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 48(6), pages 1813-1845, December.
    11. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    12. Monteiro, Ana Margarida & Tutuncu, Reha H. & Vicente, Luis N., 2008. "Recovering risk-neutral probability density functions from options prices using cubic splines and ensuring nonnegativity," European Journal of Operational Research, Elsevier, vol. 187(2), pages 525-542, June.
    13. Rosenberg, Joshua V., 1998. "Pricing multivariate contingent claims using estimated risk-neutral density functions," Journal of International Money and Finance, Elsevier, vol. 17(2), pages 229-247, April.
    14. Rockinger, Michael & Jondeau, Eric, 2002. "Entropy densities with an application to autoregressive conditional skewness and kurtosis," Journal of Econometrics, Elsevier, vol. 106(1), pages 119-142, January.
    15. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    16. Xing, Yuhang & Zhang, Xiaoyan & Zhao, Rui, 2010. "What Does the Individual Option Volatility Smirk Tell Us About Future Equity Returns?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(3), pages 641-662, June.
    17. Campa, Jose M. & Chang, P. H. Kevin & Reider, Robert L., 1998. "Implied exchange rate distributions: evidence from OTC option markets1," Journal of International Money and Finance, Elsevier, vol. 17(1), pages 117-160, February.
    18. Stutzer, Michael, 1996. "A Simple Nonparametric Approach to Derivative Security Valuation," Journal of Finance, American Finance Association, vol. 51(5), pages 1633-1652, December.
    19. Golan, Amos & Judge, George G. & Miller, Douglas, 1996. "Maximum Entropy Econometrics," Staff General Research Papers Archive 1488, Iowa State University, Department of Economics.
    20. Manaster, Steven & Rendleman, Richard J, Jr, 1982. "Option Prices as Predictors of Equilibrium Stock Prices," Journal of Finance, American Finance Association, vol. 37(4), pages 1043-1057, September.
    21. Rama CONT, 1998. "Beyond implied volatility: extracting information from option prices," Finance 9804002, University Library of Munich, Germany.
    22. Bhupinder Bahra, 1997. "Implied risk-neutral probability density functions from option prices: theory and application," Bank of England working papers 66, Bank of England.
    23. Rosenberg, Joshua V. & Engle, Robert F., 2002. "Empirical pricing kernels," Journal of Financial Economics, Elsevier, vol. 64(3), pages 341-372, June.
    24. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    25. Bliss, Robert R. & Panigirtzoglou, Nikolaos, 2002. "Testing the stability of implied probability density functions," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 381-422, March.
    26. Glosten, Lawrence R & Jagannathan, Ravi & Runkle, David E, 1993. "On the Relation between the Expected Value and the Volatility of the Nominal Excess Return on Stocks," Journal of Finance, American Finance Association, vol. 48(5), pages 1779-1801, December.
    27. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    28. Chunhachinda, Pornchai & Dandapani, Krishnan & Hamid, Shahid & Prakash, Arun J., 1997. "Portfolio selection and skewness: Evidence from international stock markets," Journal of Banking & Finance, Elsevier, vol. 21(2), pages 143-167, February.
    29. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    30. Coutant, Sophie & Jondeau, Eric & Rockinger, Michael, 2001. "Reading PIBOR futures options smiles: The 1997 snap election," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 1957-1987, November.
    31. Gurdip Bakshi & Nikunj Kapadia & Dilip Madan, 2003. "Stock Return Characteristics, Skew Laws, and the Differential Pricing of Individual Equity Options," The Review of Financial Studies, Society for Financial Studies, vol. 16(1), pages 101-143.
    32. repec:bla:jfinan:v:43:y:1988:i:1:p:247-58 is not listed on IDEAS
    33. Zellner, Arnold, 1996. "Models, prior information, and Bayesian analysis," Journal of Econometrics, Elsevier, vol. 75(1), pages 51-68, November.
    34. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    35. repec:bla:jfinan:v:59:y:2004:i:1:p:407-446 is not listed on IDEAS
    36. Constantinides, George M, 1982. "Intertemporal Asset Pricing with Heterogeneous Consumers and without Demand Aggregation," The Journal of Business, University of Chicago Press, vol. 55(2), pages 253-267, April.
    37. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christoffersen, Peter & Jacobs, Kris & Chang, Bo Young, 2013. "Forecasting with Option-Implied Information," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 581-656, Elsevier.
    2. Rompolis, Leonidas S., 2010. "Retrieving risk neutral densities from European option prices based on the principle of maximum entropy," Journal of Empirical Finance, Elsevier, vol. 17(5), pages 918-937, December.
    3. Chalamandaris, Georgios & Rompolis, Leonidas S., 2012. "Exploring the role of the realized return distribution in the formation of the implied volatility smile," Journal of Banking & Finance, Elsevier, vol. 36(4), pages 1028-1044.
    4. Fabozzi, Frank J. & Leccadito, Arturo & Tunaru, Radu S., 2014. "Extracting market information from equity options with exponential Lévy processes," Journal of Economic Dynamics and Control, Elsevier, vol. 38(C), pages 125-141.
    5. Maria Kyriacou & Jose Olmo & Marius Strittmatter, 2021. "Optimal portfolio allocation using option‐implied information," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(2), pages 266-285, February.
    6. Bondarenko, Oleg, 2003. "Estimation of risk-neutral densities using positive convolution approximation," Journal of Econometrics, Elsevier, vol. 116(1-2), pages 85-112.
    7. Alexandros Kostakis & Nikolaos Panigirtzoglou & George Skiadopoulos, 2011. "Market Timing with Option-Implied Distributions: A Forward-Looking Approach," Management Science, INFORMS, vol. 57(7), pages 1231-1249, July.
    8. Liao, Wen Ju & Sung, Hao-Chang, 2020. "Implied risk aversion and pricing kernel in the FTSE 100 index," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    9. Francisco Alonso & Roberto Blanco & Gonzalo Rubio, 2009. "Option-implied preferences adjustments, density forecasts, and the equity risk premium," Spanish Economic Review, Springer;Spanish Economic Association, vol. 11(2), pages 141-164, June.
    10. Horatio Cuesdeanu & Jens Carsten Jackwerth, 2018. "The pricing kernel puzzle: survey and outlook," Annals of Finance, Springer, vol. 14(3), pages 289-329, August.
    11. Liu, Xiaoquan & Shackleton, Mark B. & Taylor, Stephen J. & Xu, Xinzhong, 2007. "Closed-form transformations from risk-neutral to real-world distributions," Journal of Banking & Finance, Elsevier, vol. 31(5), pages 1501-1520, May.
    12. Ricardo Crisóstomo, 2021. "Estimating real‐world probabilities: A forward‐looking behavioral framework," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(11), pages 1797-1823, November.
    13. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    14. Shackleton, Mark B. & Taylor, Stephen J. & Yu, Peng, 2010. "A multi-horizon comparison of density forecasts for the S&P 500 using index returns and option prices," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2678-2693, November.
    15. Leonidas S. Rompolis & Elias Tzavalis, 2017. "Retrieving risk neutral moments and expected quadratic variation from option prices," Review of Quantitative Finance and Accounting, Springer, vol. 48(4), pages 955-1002, May.
    16. Wan-Ni Lai, 2014. "Comparison of methods to estimate option implied risk-neutral densities," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1839-1855, October.
    17. Kang, Byung Jin & Kim, Tong Suk, 2006. "Option-implied risk preferences: An extension to wider classes of utility functions," Journal of Financial Markets, Elsevier, vol. 9(2), pages 180-198, May.
    18. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    19. Jurczenko, Emmanuel & Maillet, Bertrand & Negrea, Bogdan, 2002. "Revisited multi-moment approximate option pricing models: a general comparison (Part 1)," LSE Research Online Documents on Economics 24950, London School of Economics and Political Science, LSE Library.
    20. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.

    More about this item

    Keywords

    Risk-neutral density; Real-world density; Index options; Maximum entropy; Implied volatility smoothing; Optimal portfolio;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G13 - Financial Economics - - General Financial Markets - - - Contingent Pricing; Futures Pricing
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rdg:icmadp:icma-dp2011-03. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marie Pearson (email available below). General contact details of provider: https://edirc.repec.org/data/bsrdguk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.