IDEAS home Printed from https://ideas.repec.org/p/zbw/fhfwps/05.html
   My bibliography  Save this paper

Combination of forecasts across estimation windows: An application to air travel demand

Author

Listed:
  • Jungmittag, Andre

Abstract

This paper applies combining forecasts of air travel demand generated from the same model but over different estimation windows. The combination approach used resorts to Pesaran and Pick (2011), but the empirical application is extended in several ways. The forecasts are based on a seasonal Box-Jenkins model (SARIMA), which is adequate to forecast monthly air travel demand with distinct seasonal patterns at the largest German airport Frankfurt am Main. Furthermore, forecasts with forecast horizons from one to twelve months-ahead, which are based on different average estimation windows, expanding windows and single rolling windows, are compared with baseline forecasts based on an expanding window of the observations after a structural break. The forecast exercise shows that the average window forecasts mostly outperform the alternative single window forecasts.

Suggested Citation

  • Jungmittag, Andre, 2014. "Combination of forecasts across estimation windows: An application to air travel demand," Working Paper Series 05, Frankfurt University of Applied Sciences, Faculty of Business and Law.
  • Handle: RePEc:zbw:fhfwps:05
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/98178/1/789087006.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013. "Adaptive forecasting in the presence of recent and ongoing structural change," Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
    2. Tian, Jing & Anderson, Heather M., 2014. "Forecast combinations under structural break uncertainty," International Journal of Forecasting, Elsevier, vol. 30(1), pages 161-175.
    3. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    4. Todd E. Clark & Michael W. McCracken, 2009. "Improving Forecast Accuracy By Combining Recursive And Rolling Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(2), pages 363-395, May.
    5. Carson, Richard T. & Cenesizoglu, Tolga & Parker, Roger, 2011. "Forecasting (aggregate) demand for US commercial air travel," International Journal of Forecasting, Elsevier, vol. 27(3), pages 923-941, July.
    6. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    7. Peter Schulze & Alexander Prinz, 2009. "Forecasting container transshipment in Germany," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2809-2815.
    8. Pesaran, M. Hashem & Pick, Andreas, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
    9. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    10. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bridgelall, Raj, 2023. "Forecasting market opportunities for urban and regional air mobility," Technological Forecasting and Social Change, Elsevier, vol. 196(C).
    2. Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis, 2019. "Forecasting transportation demand for the U.S. market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 195-214.
    3. Håvard Hungnes, 2020. "Equal predictability test for multi-step-ahead system forecasts invariant to linear transformations," Discussion Papers 931, Statistics Norway, Research Department.
    4. Chengyuan Zhang & Fuxin Jiang & Shouyang Wang & Shaolong Sun, 2020. "A New Decomposition Ensemble Approach for Tourism Demand Forecasting: Evidence from Major Source Countries," Papers 2002.09201, arXiv.org.
    5. Håvard Hungnes, 2020. "Predicting the exchange rate path. The importance of using up-to-date observations in the forecasts," Discussion Papers 934, Statistics Norway, Research Department.
    6. Zhang, Xiaomeng & Zhang, Xinyu, 2023. "Optimal model averaging based on forward-validation," Journal of Econometrics, Elsevier, vol. 237(2).
    7. Gudmundsson, S.V. & Cattaneo, M. & Redondi, R., 2021. "Forecasting temporal world recovery in air transport markets in the presence of large economic shocks: The case of COVID-19," Journal of Air Transport Management, Elsevier, vol. 91(C).
    8. Håvard Hungnes, 2018. "Encompassing tests for evaluating multi-step system forecasts invariant to linear transformations," Discussion Papers 871, Statistics Norway, Research Department.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Davide De Gaetano, 2017. "Forecasting With Garch Models Under Structural Breaks: An Approach Based On Combinations Across Estimation Windows," Departmental Working Papers of Economics - University 'Roma Tre' 0219, Department of Economics - University Roma Tre.
    2. Davide De Gaetano, 2018. "Forecast Combinations in the Presence of Structural Breaks: Evidence from U.S. Equity Markets," Mathematics, MDPI, vol. 6(3), pages 1-19, March.
    3. Davide De Gaetano, 2018. "Forecast Combinations for Structural Breaks in Volatility: Evidence from BRICS Countries," JRFM, MDPI, vol. 11(4), pages 1-13, October.
    4. Yongchen Zhao, 2021. "The robustness of forecast combination in unstable environments: a Monte Carlo study of advanced algorithms," Empirical Economics, Springer, vol. 61(1), pages 173-199, July.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    7. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    10. Raffaella Giacomini & Barbara Rossi, 2015. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
    11. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    12. Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
    13. Jana Eklund & George Kapetanios & Simon Price, 2013. "Robust Forecast Methods and Monitoring during Structural Change," Manchester School, University of Manchester, vol. 81, pages 3-27, October.
    14. M. Hashem Pesaran & Andreas Pick, 2008. "Forecasting Random Walks Under Drift Instability," CESifo Working Paper Series 2293, CESifo.
    15. Joscha Beckmann & Rainer Schüssler, 2014. "Forecasting Exchange Rates under Model and Parameter Uncertainty," CQE Working Papers 3214, Center for Quantitative Economics (CQE), University of Muenster.
    16. Mayr, Johannes, 2010. "Forecasting Macroeconomic Aggregates," Munich Dissertations in Economics 11140, University of Munich, Department of Economics.
    17. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    18. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    19. Wang, Yudong & Hao, Xianfeng, 2023. "Forecasting the real prices of crude oil: What is the role of parameter instability?," Energy Economics, Elsevier, vol. 117(C).
    20. Sun, Yuying & Hong, Yongmiao & Wang, Shouyang & Zhang, Xinyu, 2023. "Penalized time-varying model averaging," Journal of Econometrics, Elsevier, vol. 235(2), pages 1355-1377.

    More about this item

    Keywords

    Air travel demand; Combination of forecasts; Estimation windows; Structural breaks;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • L93 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Air Transportation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:fhfwps:05. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/fwfhfde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.