Forecasting in a changing world: from the great recession to the COVID-19 pandemic
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Daniel J. Lewis & Karel Mertens & James H. Stock, 2020. "Monitoring Real Activity in Real Time: The Weekly Economic Index," Liberty Street Economics 20200330b, Federal Reserve Bank of New York.
- West, Kenneth D, 1996.
"Asymptotic Inference about Predictive Ability,"
Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
- West, K.D., 1994. "Asymptotic Inference About Predictive Ability," Working papers 9417, Wisconsin Madison - Social Systems.
- Kenneth D. West, 1994. "Asymptotic Inference About Predictive Ability," Macroeconomics 9410002, University Library of Munich, Germany.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016.
"Measuring Economic Policy Uncertainty,"
The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," Economics Working Papers 15111, Hoover Institution, Stanford University.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," NBER Working Papers 21633, National Bureau of Economic Research, Inc.
- Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2015. "Measuring Economic Policy Uncertainty," CEP Discussion Papers dp1379, Centre for Economic Performance, LSE.
- Baker, Scott R. & Bloom, Nicholas & Davis, Steven J., 2015. "Measuring economic policy uncertainty," LSE Research Online Documents on Economics 64986, London School of Economics and Political Science, LSE Library.
- Davis, Steven & Bloom, Nicholas & Baker, Scott, 2015. "Measuring Economic Policy Uncertainty," CEPR Discussion Papers 10900, C.E.P.R. Discussion Papers.
- Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013.
"Adaptive forecasting in the presence of recent and ongoing structural change,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
- Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change," Working Papers 691, Queen Mary University of London, School of Economics and Finance.
- Giraitis, Liudas & Kapetanios, George & Price, Simon, 2014. "Adaptive forecasting in the presence of recent and ongoing structural change," Bank of England working papers 490, Bank of England.
- Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forcasting in the Presence of Recent and Ongoing Structural Change," CAMA Working Papers 2012-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Raffaella Giacomini & Barbara Rossi, 2009.
"Detecting and Predicting Forecast Breakdowns,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 76(2), pages 669-705.
- Raffella Giacomini & Barbara Rossi, 2005. "Detecting and Predicting Forecast Breakdowns," UCLA Economics Working Papers 845, UCLA Department of Economics.
- Giacomini, Raffaella & Rossi, Barbara, 2006. "Detecting and predicting forecast breakdowns," Working Paper Series 638, European Central Bank.
- Rossi, Barbara & Giacomini, Raffaella, 2006. "Detecting and Predicting Forecast Breakdowns," Working Papers 06-01, Duke University, Department of Economics.
- Amit Goyal & Ivo Welch, 2003.
"Predicting the Equity Premium with Dividend Ratios,"
Management Science, INFORMS, vol. 49(5), pages 639-654, May.
- Amit Goyal & Ivo Welch, 1999. "Predicting the Equity Premium with Dividend Ratios," Yale School of Management Working Papers amz2437, Yale School of Management, revised 01 Nov 2002.
- Amit Goyal & Ivo Welch, 2002. "Predicting the Equity Premium With Dividend Ratios," NBER Working Papers 8788, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- Clements,Michael & Hendry,David, 1998.
"Forecasting Economic Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521634809, January.
- Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, November.
- Wolff, Christian C P, 1987. "Time-Varying Parameters and the Out-of-Sample Forecasting Performance of Structural Exchange Rate Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 5(1), pages 87-97, January.
- Molodtsova, Tanya & Papell, David H., 2009. "Out-of-sample exchange rate predictability with Taylor rule fundamentals," Journal of International Economics, Elsevier, vol. 77(2), pages 167-180, April.
- F. Blasques & S. J. Koopman & A. Lucas, 2015. "Information-theoretic optimality of observation-driven time series models for continuous responses," Biometrika, Biometrika Trust, vol. 102(2), pages 325-343.
- Clark, Todd E. & McCracken, Michael W., 2001.
"Tests of equal forecast accuracy and encompassing for nested models,"
Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
- Todd E. Clark & Michael W. McCracken, 1999. "Tests of equal forecast accuracy and encompassing for nested models," Research Working Paper 99-11, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2000. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Econometric Society World Congress 2000 Contributed Papers 0319, Econometric Society.
- Todd E. Clark & Michael McCracken, 1999. "Tests of Equal Forecast Accuracy and Encompassing for Nested Models," Computing in Economics and Finance 1999 1241, Society for Computational Economics.
- repec:cty:dpaper:12/02 is not listed on IDEAS
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Francis X. Diebold, 2015.
"Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 33(1), pages 1-1, January.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," PIER Working Paper Archive 12-035, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- Francis X. Diebold, 2012. "Comparing Predictive Accuracy, Twenty Years Later: A Personal Perspective on the Use and Abuse of Diebold-Mariano Tests," NBER Working Papers 18391, National Bureau of Economic Research, Inc.
- Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
- Gary Koop & Simon Potter, 2004. "Forecasting in dynamic factor models using Bayesian model averaging," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 550-565, December.
- Schinasi, Garry J. & Swamy, P. A. V. B., 1989.
"The out-of-sample forecasting performance of exchange rate models when coefficients are allowed to change,"
Journal of International Money and Finance, Elsevier, vol. 8(3), pages 375-390, September.
- Garry J. Schinasi & P. A. V. B. Swamy, 1987. "The out-of-sample forecasting performance of exchange rate models when coefficients are allowed to change," International Finance Discussion Papers 301, Board of Governors of the Federal Reserve System (U.S.).
- Garry J. Schinasi & P. A. V. B. Swamy, 1987. "The out-of-sample forecasting performance of exchange rate models when coefficients are allowed to change," Special Studies Papers 212, Board of Governors of the Federal Reserve System (U.S.).
- Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
- Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
- Giraitis, Liudas & Kapetanios, George & Price, Simon, 2013.
"Adaptive forecasting in the presence of recent and ongoing structural change,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 153-170.
- Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forcasting in the Presence of Recent and Ongoing Structural Change," CAMA Working Papers 2012-14, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change," Working Papers 691, Queen Mary University of London, School of Economics and Finance.
- Giraitis, Liudas & Kapetanios, George & Price, Simon, 2014. "Adaptive forecasting in the presence of recent and ongoing structural change," Bank of England working papers 490, Bank of England.
- Liudas Giraitis & George Kapetanios & Simon Price, 2012. "Adaptive Forecasting in the Presence of Recent and Ongoing Structural Change," Working Papers 691, Queen Mary University of London, School of Economics and Finance.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Gloria González‐Rivera & C. Vladimir Rodríguez‐Caballero & Esther Ruiz, 2024.
"Expecting the unexpected: Stressed scenarios for economic growth,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(5), pages 926-942, August.
- Gloria Gonzalez-Rivera & Vladimir Rodriguez-Caballero & Esther Ruiz, 2023. "Expecting the unexpected: Stressed scenarios for economic growth," Working Papers 202314, University of California at Riverside, Department of Economics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017.
"Rolling window selection for out-of-sample forecasting with time-varying parameters,"
Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Economics Working Papers 1435, Department of Economics and Business, Universitat Pompeu Fabra, revised Apr 2016.
- Atsushi Inoue & Lu Jin & Barbara Rossi, 2014. "Rolling Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," Working Papers 768, Barcelona School of Economics.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Rossi, Barbara & Inoue, Atsushi & Jin, Lu, 2014. "Window Selection for Out-of-Sample Forecasting with Time-Varying Parameters," CEPR Discussion Papers 10168, C.E.P.R. Discussion Papers.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Yousuf, Kashif & Ng, Serena, 2021.
"Boosting high dimensional predictive regressions with time varying parameters,"
Journal of Econometrics, Elsevier, vol. 224(1), pages 60-87.
- Kashif Yousuf & Serena Ng, 2019. "Boosting High Dimensional Predictive Regressions with Time Varying Parameters," Papers 1910.03109, arXiv.org.
- Chad Fulton & Kirstin Hubrich, 2021.
"Forecasting US Inflation in Real Time,"
Econometrics, MDPI, vol. 9(4), pages 1-20, October.
- Chad Fulton & Kirstin Hubrich, 2021. "Forecasting US Inflation in Real Time," Finance and Economics Discussion Series 2021-014, Board of Governors of the Federal Reserve System (U.S.).
- Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
- Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
- Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
- Barbara Rossi, 2013.
"Exchange Rate Predictability,"
Journal of Economic Literature, American Economic Association, vol. 51(4), pages 1063-1119, December.
- Barbara Rossi, 2013. "Exchange Rate Predictability," Working Papers 690, Barcelona School of Economics.
- Barbara Rossi, 2013. "Exchange rate predictability," Economics Working Papers 1369, Department of Economics and Business, Universitat Pompeu Fabra.
- Rossi, Barbara, 2013. "Exchange Rate Predictability," CEPR Discussion Papers 9575, C.E.P.R. Discussion Papers.
- Rossi, Barbara, 2006.
"Are Exchange Rates Really Random Walks? Some Evidence Robust To Parameter Instability,"
Macroeconomic Dynamics, Cambridge University Press, vol. 10(1), pages 20-38, February.
- Barbara Rossi, 2005. "Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability," Data 0503001, University Library of Munich, Germany.
- Barbara Rossi, 2005. "Are Exchange Rates Really Random Walks? Some Evidence Robust to Parameter Instability," International Finance 0503006, University Library of Munich, Germany.
- Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
- Nonejad, Nima, 2022. "Predicting equity premium out-of-sample by conditioning on newspaper-based uncertainty measures: A comparative study," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023.
"Forecasting inflation: The use of dynamic factor analysis and nonlinear combinations,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 514-529, April.
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2022. "Forecasting Inflation: The Use of Dynamic Factor Analysis and Nonlinear Combinations," Discussion Papers 22-12, Department of Economics, University of Birmingham.
- Stephen G. Hall & George S. Tavlas & Yongli Wang, 2023. "Forecasting inflation: the use of dynamic factor analysis and nonlinear combinations," Working Papers 314, Bank of Greece.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Benjamin K. Johannsen & Elmar Mertens, 2021.
"A Time‐Series Model of Interest Rates with the Effective Lower Bound,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 53(5), pages 1005-1046, August.
- Benjamin K. Johannsen & Elmar Mertens, 2016. "A Time Series Model of Interest Rates With the Effective Lower Bound," Finance and Economics Discussion Series 2016-033, Board of Governors of the Federal Reserve System (U.S.).
- Benjamin K Johannsen & Elmar Mertens, 2018. "A time series model of interest rates with the effective lower bound," BIS Working Papers 715, Bank for International Settlements.
- Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
- Siliverstovs, Boriss, 2017.
"Dissecting models' forecasting performance,"
Economic Modelling, Elsevier, vol. 67(C), pages 294-299.
- Boriss Siliverstovs, 2015. "Dissecting Models' Forecasting Performance," KOF Working papers 15-397, KOF Swiss Economic Institute, ETH Zurich.
- Stephen G. Hall & George S. Tavlas & Yongli Wang & Deborah Gefang, 2024. "Inflation forecasting with rolling windows: An appraisal," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(4), pages 827-851, July.
More about this item
Keywords
Autoregressive Models; Cross-Validation; Kullback-Leibler Divergence; Stationarity and Ergodicity; Macroeconomic Time Series;All these keywords.
JEL classification:
- C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2021-01-25 (Econometrics)
- NEP-ETS-2021-01-25 (Econometric Time Series)
- NEP-FOR-2021-01-25 (Forecasting)
- NEP-ORE-2021-01-25 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20210006. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.