IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v48y2018icp19-35.html
   My bibliography  Save this article

Modelling market implied ratings using LASSO variable selection techniques

Author

Listed:
  • Sermpinis, Georgios
  • Tsoukas, Serafeim
  • Zhang, Ping

Abstract

Making accurate predictions of corporate credit ratings is a crucial issue to both investors and rating agencies. In this paper, we investigate the determinants of market implied credit ratings in relation to financial factors, market-driven indicators and macroeconomic predictors. Applying a variable selection technique, the least absolute shrinkage and selection operator (LASSO), we document substantial predictive ability. In addition, when we compare our LASSO-selected models with the benchmark ordered probit model, we find that the former models have superior predictive power and outperform the latter model in all out-of-sample predictions.

Suggested Citation

  • Sermpinis, Georgios & Tsoukas, Serafeim & Zhang, Ping, 2018. "Modelling market implied ratings using LASSO variable selection techniques," Journal of Empirical Finance, Elsevier, vol. 48(C), pages 19-35.
  • Handle: RePEc:eee:empfin:v:48:y:2018:i:c:p:19-35
    DOI: 10.1016/j.jempfin.2018.05.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927539818300318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2018.05.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pesaran, M. Hashem & Timmermann, Allan G., 1994. "A generalization of the non-parametric Henriksson-Merton test of market timing," Economics Letters, Elsevier, vol. 44(1-2), pages 1-7.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Ederington, Louis H, 1985. "Classification Models and Bond Ratings," The Financial Review, Eastern Finance Association, vol. 20(4), pages 237-262, November.
    4. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 3-98, Wharton School Rodney L. White Center for Financial Research.
    5. Tae-Hwan Kim & Paul Mizen & Thanaset Chevapatrakul, 2008. "Forecasting changes in UK interest rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(1), pages 53-74.
    6. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    7. Serafeim Tsoukas & Marina-Eliza Spaliara, 2014. "Market Implied Ratings and Financing Constraints: Evidence from US Firms," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(1-2), pages 242-269, January.
    8. Yuhong Yang, 2005. "Can the strengths of AIC and BIC be shared? A conflict between model indentification and regression estimation," Biometrika, Biometrika Trust, vol. 92(4), pages 937-950, December.
    9. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    10. Paul Contoyannis & Andrew M. Jones & Nigel Rice, 2004. "The dynamics of health in the British Household Panel Survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(4), pages 473-503.
    11. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    12. Zhang, Yiyun & Li, Runze & Tsai, Chih-Ling, 2010. "Regularization Parameter Selections via Generalized Information Criterion," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 312-323.
    13. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    14. Poon, Winnie P. H., 2003. "Are unsolicited credit ratings biased downward?," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 593-614, April.
    15. Quinn McNemar, 1947. "Note on the sampling error of the difference between correlated proportions or percentages," Psychometrika, Springer;The Psychometric Society, vol. 12(2), pages 153-157, June.
    16. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    17. repec:bla:jfinan:v:53:y:1998:i:4:p:1389-1413 is not listed on IDEAS
    18. Natalia Bailey & Sean Holly & M. Hashem Pesaran, 2016. "A Two‐Stage Approach to Spatio‐Temporal Analysis with Strong and Weak Cross‐Sectional Dependence," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(1), pages 249-280, January.
    19. Amato, Jeffery D. & Furfine, Craig H., 2004. "Are credit ratings procyclical?," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2641-2677, November.
    20. Gentry, James A & Whitford, David T & Newbold, Paul, 1988. "Predicting Industrial Bond Ratings with a Probit Model and Funds Flow Components," The Financial Review, Eastern Finance Association, vol. 23(3), pages 269-286, August.
    21. Guttler, Andre & Wahrenburg, Mark, 2007. "The adjustment of credit ratings in advance of defaults," Journal of Banking & Finance, Elsevier, vol. 31(3), pages 751-767, March.
    22. Pogue, Thomas F. & Soldofsky, Robert M., 1969. "What's in a Bond Rating*," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 4(2), pages 201-228, June.
    23. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    24. Marshall E. Blume & Felix Lim & A. Craig MacKinlay, "undated". "The Declining Credit Quality of US Corporate Debt: Myth or Reality?," Rodney L. White Center for Financial Research Working Papers 03-98, Wharton School Rodney L. White Center for Financial Research.
    25. West, Rr, 1970. "Alternative Approach To Predicting Corporate Bond Ratings," Journal of Accounting Research, Wiley Blackwell, vol. 8(1), pages 118-125.
    26. Pinches, George E & Mingo, Kent A, 1973. "A Multivariate Analysis of Industrial Bond Ratings," Journal of Finance, American Finance Association, vol. 28(1), pages 1-18, March.
    27. Ruey‐Ching Hwang & K. F. Cheng & Cheng‐Few Lee, 2009. "On multiple‐class prediction of issuer credit ratings," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 535-550, September.
    28. A. Belloni & V. Chernozhukov & L. Wang, 2011. "Square-root lasso: pivotal recovery of sparse signals via conic programming," Biometrika, Biometrika Trust, vol. 98(4), pages 791-806.
    29. Doumpos, Michael & Niklis, Dimitrios & Zopounidis, Constantin & Andriosopoulos, Kostas, 2015. "Combining accounting data and a structural model for predicting credit ratings: Empirical evidence from European listed firms," Journal of Banking & Finance, Elsevier, vol. 50(C), pages 599-607.
    30. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    31. Tingni Sun & Cun-Hui Zhang, 2012. "Scaled sparse linear regression," Biometrika, Biometrika Trust, vol. 99(4), pages 879-898.
    32. Drew D. Creal & Robert B. Gramacy & Ruey S. Tsay, 2014. "Market-Based Credit Ratings," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(3), pages 430-444, July.
    33. Kaplan, Robert S & Urwitz, Gabriel, 1979. "Statistical Models of Bond Ratings: A Methodological Inquiry," The Journal of Business, University of Chicago Press, vol. 52(2), pages 231-261, April.
    34. Sudheer Chava & Robert A. Jarrow, 2008. "Bankruptcy Prediction with Industry Effects," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 21, pages 517-549, World Scientific Publishing Co. Pte. Ltd..
    35. Merton, Robert C, 1981. "On Market Timing and Investment Performance. I. An Equilibrium Theory of Value for Market Forecasts," The Journal of Business, University of Chicago Press, vol. 54(3), pages 363-406, July.
    36. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    37. Härdle, Wolfgang Karl & Prastyo, Dedy Dwi, 2013. "Default risk calculation based on predictor selection for the Southeast Asian industry," SFB 649 Discussion Papers 2013-037, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    38. Yang, Yuhong, 2007. "Prediction/Estimation With Simple Linear Models: Is It Really That Simple?," Econometric Theory, Cambridge University Press, vol. 23(1), pages 1-36, February.
    39. Tian, Shaonan & Yu, Yan & Guo, Hui, 2015. "Variable selection and corporate bankruptcy forecasts," Journal of Banking & Finance, Elsevier, vol. 52(C), pages 89-100.
    40. repec:fth:pennfi:67 is not listed on IDEAS
    41. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    42. J. Scott Long & Jeremy Freese, 2006. "Regression Models for Categorical Dependent Variables using Stata, 2nd Edition," Stata Press books, StataCorp LP, edition 2, number long2, March.
    43. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    44. Horrigan, Jo, 1966. "Determination Of Long-Term Credit Standing With Financial Ratios," Journal of Accounting Research, Wiley Blackwell, vol. 4, pages 44-62.
    45. Kao, Chihwa & Wu, Chunchi, 1990. "Two-Step Estimation of Linear Models with Ordinal Unobserved Variables: The Case of Corporate Bonds," Journal of Business & Economic Statistics, American Statistical Association, vol. 8(3), pages 317-325, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elyasiani, Elyas & Movaghari, Hadi, 2022. "Determinants of corporate cash holdings: An application of a robust variable selection technique," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 967-993.
    2. Wei Li & Florentina Paraschiv & Georgios Sermpinis, 2022. "A data-driven explainable case-based reasoning approach for financial risk detection," Quantitative Finance, Taylor & Francis Journals, vol. 22(12), pages 2257-2274, December.
    3. Alex Coad & Stjepan Srhoj, 2020. "Catching Gazelles with a Lasso: Big data techniques for the prediction of high-growth firms," Small Business Economics, Springer, vol. 55(3), pages 541-565, October.
    4. Sohrabi, Narges & Movaghari, Hadi, 2020. "Reliable factors of Capital structure: Stability selection approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 77(C), pages 296-310.
    5. Wang, Jue & Zhou, Hao & Hong, Tao & Li, Xiang & Wang, Shouyang, 2020. "A multi-granularity heterogeneous combination approach to crude oil price forecasting," Energy Economics, Elsevier, vol. 91(C).
    6. Caraiani, Petre, 2022. "Using LASSO-family models to estimate the impact of monetary policy on corporate investments," Economics Letters, Elsevier, vol. 210(C).
    7. Lucey, Brian & Urquhart, Andrew & Zhang, Hanxiong, 2022. "UK Vice Chancellor compensation: Do they get what they deserve?," The British Accounting Review, Elsevier, vol. 54(4).
    8. Marui Du & Yue Ma & Zuoquan Zhang, 2021. "A Meta Path Based Evaluation Method for Enterprise Credit Risk," Papers 2110.11594, arXiv.org, revised May 2022.
    9. Jaspreet Kaur & Madhu Vij & Ajay Kumar Chauhan, 2023. "Signals influencing corporate credit ratings—a systematic literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(1), pages 91-114, March.
    10. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    11. Caglayan, Mustafa & Pham, Tho & Talavera, Oleksandr & Xiong, Xiong, 2020. "Asset mispricing in peer-to-peer loan secondary markets," Journal of Corporate Finance, Elsevier, vol. 65(C).
    12. Yuan, Kunpeng & Chi, Guotai & Zhou, Ying & Yin, Hailei, 2022. "A novel two-stage hybrid default prediction model with k-means clustering and support vector domain description," Research in International Business and Finance, Elsevier, vol. 59(C).
    13. Wen-Kuo Chen & Dalianus Riantama & Long-Sheng Chen, 2020. "Using a Text Mining Approach to Hear Voices of Customers from Social Media toward the Fast-Food Restaurant Industry," Sustainability, MDPI, vol. 13(1), pages 1-17, December.
    14. Ayşe Özmen, 2023. "Sparse regression modeling for short- and long‐term natural gas demand prediction," Annals of Operations Research, Springer, vol. 322(2), pages 921-946, March.
    15. Georgios Sermpinis & Serafeim Tsoukas & Ping Zhang, 2019. "What influences a bank's decision to go public?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1464-1485, October.
    16. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mizen, Paul & Tsoukas, Serafeim, 2012. "Forecasting US bond default ratings allowing for previous and initial state dependence in an ordered probit model," International Journal of Forecasting, Elsevier, vol. 28(1), pages 273-287.
    2. Hwang, Ruey-Ching & Chung, Huimin & Chu, C.K., 2010. "Predicting issuer credit ratings using a semiparametric method," Journal of Empirical Finance, Elsevier, vol. 17(1), pages 120-137, January.
    3. Ruey-Ching Hwang, 2013. "Forecasting credit ratings with the varying-coefficient model," Quantitative Finance, Taylor & Francis Journals, vol. 13(12), pages 1947-1965, December.
    4. Ruey‐Ching Hwang & K. F. Cheng & Cheng‐Few Lee, 2009. "On multiple‐class prediction of issuer credit ratings," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(5), pages 535-550, September.
    5. Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.
    6. Afef Feki Krichene & Walid Khoufi, 2016. "On the Nonlinearity of the Financial Ratios-Credit Ratings Relationship," Applied Finance and Accounting, Redfame publishing, vol. 2(2), pages 65-70, August.
    7. Shen, Chung-Hua & Huang, Yu-Li & Hasan, Iftekhar, 2012. "Asymmetric benchmarking in bank credit rating," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 22(1), pages 171-193.
    8. Serafeim Tsoukas & Marina-Eliza Spaliara, 2014. "Market Implied Ratings and Financing Constraints: Evidence from US Firms," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 41(1-2), pages 242-269, January.
    9. Ken Hung & Hui Wen Cheng & Shih-shen Chen & Ying-Chen Huang, 2013. "Factors that Affect Credit Rating: An Application of Ordered Probit Models," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 94-108, December.
    10. Manzoni, Katiuscia, 2004. "Modeling Eurobond credit ratings and forecasting downgrade probability," International Review of Financial Analysis, Elsevier, vol. 13(3), pages 277-300.
    11. Balios, Dimitris & Thomadakis, Stavros & Tsipouri, Lena, 2016. "Credit rating model development: An ordered analysis based on accounting data," Research in International Business and Finance, Elsevier, vol. 38(C), pages 122-136.
    12. Jaspreet Kaur & Madhu Vij & Ajay Kumar Chauhan, 2023. "Signals influencing corporate credit ratings—a systematic literature review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 50(1), pages 91-114, March.
    13. Georgios Sermpinis & Serafeim Tsoukas & Ping Zhang, 2019. "What influences a bank's decision to go public?," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(4), pages 1464-1485, October.
    14. Themistokles Lazarides & Evaggelos Drimpetas, 2016. "Defining the factors of Fitch rankings in the European banking sector," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 6(2), pages 315-339, August.
    15. Goldmann, Leonie & Crook, Jonathan & Calabrese, Raffaella, 2024. "A new ordinal mixed-data sampling model with an application to corporate credit rating levels," European Journal of Operational Research, Elsevier, vol. 314(3), pages 1111-1126.
    16. Mäkinen, Taneli & Li, Fan & Mercatanti, Andrea & Silvestrini, Andrea, 2022. "Causal analysis of central bank holdings of corporate bonds under interference," Economic Modelling, Elsevier, vol. 113(C).
    17. Van Laere, Elisabeth & Baesens, Bart, 2010. "The development of a simple and intuitive rating system under Solvency II," Insurance: Mathematics and Economics, Elsevier, vol. 46(3), pages 500-510, June.
    18. Umberto Amato & Anestis Antoniadis & Italia De Feis & Irene Gijbels, 2021. "Penalised robust estimators for sparse and high-dimensional linear models," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 1-48, March.
    19. Marcelo C. Medeiros & Eduardo F. Mendes, 2015. "l1-Regularization of High-Dimensional Time-Series Models with Flexible Innovations," Textos para discussão 636, Department of Economics PUC-Rio (Brazil).
    20. Azmat, Saad & Skully, Michael & Brown, Kym, 2017. "The (little) difference that makes all the difference between Islamic and conventional bonds," Pacific-Basin Finance Journal, Elsevier, vol. 42(C), pages 46-59.

    More about this item

    Keywords

    Market implied ratings; LASSO; Financial ratios; Forecasting;
    All these keywords.

    JEL classification:

    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G33 - Financial Economics - - Corporate Finance and Governance - - - Bankruptcy; Liquidation
    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • O16 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Financial Markets; Saving and Capital Investment; Corporate Finance and Governance

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:48:y:2018:i:c:p:19-35. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.