IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v237y2016i1d10.1007_s10479-014-1651-1.html
   My bibliography  Save this article

A stochastic semidefinite programming approach for bounds on option pricing under regime switching

Author

Listed:
  • Roy H. Kwon

    (University of Toronto)

  • Jonathan Y. Li

    (University of Toronto)

Abstract

We consider bounds for the price of a European-style call option under regime switching. Stochastic semidefinite programming models are developed that incorporate a lattice generated by a finite-state Markov chain regime-switching model as a representation of scenarios (uncertainty) to compute bounds. The optimal first-stage bound value is equivalent to a Value at Risk quantity, and the optimal solution can be obtained via simple sorting. The upper (lower) bounds from the stochastic model are bounded below (above) by the corresponding deterministic bounds and are always less conservative than their robust optimization (min-max) counterparts. In addition, penalty parameters in the model allow controllability in the degree to which the regime switching dynamics are incorporated into the bounds. We demonstrate the value of the stochastic solution (bound) and computational experiments using the S&P 500 index are performed that illustrate the advantages of the stochastic programming approach over the deterministic strategy.

Suggested Citation

  • Roy H. Kwon & Jonathan Y. Li, 2016. "A stochastic semidefinite programming approach for bounds on option pricing under regime switching," Annals of Operations Research, Springer, vol. 237(1), pages 41-75, February.
  • Handle: RePEc:spr:annopr:v:237:y:2016:i:1:d:10.1007_s10479-014-1651-1
    DOI: 10.1007/s10479-014-1651-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-014-1651-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-014-1651-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    2. Bruce D. Grundy, "undated". "Option Prices and the Underlying Asset's Return Distribution (Reprint 012)," Rodney L. White Center for Financial Research Working Papers 11-91, Wharton School Rodney L. White Center for Financial Research.
    3. Mary Hardy, 2001. "A Regime-Switching Model of Long-Term Stock Returns," North American Actuarial Journal, Taylor & Francis Journals, vol. 5(2), pages 41-53.
    4. Grundy, Bruce D, 1991. "Option Prices and the Underlying Asset's Return Distribution," Journal of Finance, American Finance Association, vol. 46(3), pages 1045-1069, July.
    5. Jackwerth, Jens Carsten & Rubinstein, Mark, 1996. "Recovering Probability Distributions from Option Prices," Journal of Finance, American Finance Association, vol. 51(5), pages 1611-1632, December.
    6. R. Everitt & W. T. Ziemba, 1979. "Two-Period Stochastic Programs with Simple Recourse," Operations Research, INFORMS, vol. 27(3), pages 485-502, June.
    7. Erricos J. Kontoghiorghes & Berç Rustem & Peter Winker (ed.), 2008. "Computational Methods in Financial Engineering," Springer Books, Springer, number 978-3-540-77958-2, December.
    8. Massimo Guidolin & Allan Timmermann, 2005. "Economic Implications of Bull and Bear Regimes in UK Stock and Bond Returns," Economic Journal, Royal Economic Society, vol. 115(500), pages 111-143, January.
    9. Peter Christoffersen & Kris Jacobs, 2004. "Which GARCH Model for Option Valuation?," Management Science, INFORMS, vol. 50(9), pages 1204-1221, September.
    10. Georgios V. Dalakouras & Roy H. Kwon & Panos M. Pardalos, 2008. "Semidefinite Programming Approaches for Bounding Asian Option Prices," Springer Books, in: Erricos J. Kontoghiorghes & Berç Rustem & Peter Winker (ed.), Computational Methods in Financial Engineering, pages 103-116, Springer.
    11. Dimitris Bertsimas & Ioana Popescu, 2002. "On the Relation Between Option and Stock Prices: A Convex Optimization Approach," Operations Research, INFORMS, vol. 50(2), pages 358-374, April.
    12. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    13. Benoit Bellone, 2005. "Classical Estimation of Multivariate Markov-Switching Models using MSVARlib," Econometrics 0508017, University Library of Munich, Germany.
    14. Jin-Chuan Duan & Ivilina Popova & Peter Ritchken, 2002. "Option pricing under regime switching," Quantitative Finance, Taylor & Francis Journals, vol. 2(2), pages 116-132.
    15. M. Wahab & Chi-Guhn Lee, 2011. "Pricing swing options with regime switching," Annals of Operations Research, Springer, vol. 185(1), pages 139-160, May.
    16. István Deák & Imre Pólik & András Prékopa & Tamás Terlaky, 2012. "Convex approximations in stochastic programming by semidefinite programming," Annals of Operations Research, Springer, vol. 200(1), pages 171-182, November.
    17. Grundy, R.D., 1991. "Option Prices and the Underlying Asset's Return Distribution," Weiss Center Working Papers 11-91, Wharton School - Weiss Center for International Financial Research.
    18. Lo, Andrew W., 1987. "Semi-parametric upper bounds for option prices and expected payoffs," Journal of Financial Economics, Elsevier, vol. 19(2), pages 373-387, December.
    19. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    20. J. A. Primbs, 2010. "SDP Relaxation of Arbitrage Pricing Bounds Based on Option Prices and Moments," Journal of Optimization Theory and Applications, Springer, vol. 144(1), pages 137-155, January.
    21. K. Hsieh & P. Ritchken, 2005. "An empirical comparison of GARCH option pricing models," Review of Derivatives Research, Springer, vol. 8(3), pages 129-150, December.
    22. So, Mike K P & Lam, K & Li, W K, 1998. "A Stochastic Volatility Model with Markov Switching," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 244-253, April.
    23. Jun-ya Gotoh & Hiroshi Konno, 2002. "Bounding Option Prices by Semidefinite Programming: A Cutting Plane Algorithm," Management Science, INFORMS, vol. 48(5), pages 665-678, May.
    24. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    25. Cox, John C. & Ross, Stephen A. & Rubinstein, Mark, 1979. "Option pricing: A simplified approach," Journal of Financial Economics, Elsevier, vol. 7(3), pages 229-263, September.
    26. Ritchken, Peter H, 1985. "On Option Pricing Bounds," Journal of Finance, American Finance Association, vol. 40(4), pages 1219-1233, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lorenzo Reus & Guillermo Alexander Sepúlveda-Hurtado, 2023. "Foreign exchange trading and management with the stochastic dual dynamic programming method," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-38, December.
    2. Adrian Gepp & Geoff Harris & Bruce Vanstone, 2020. "Financial applications of semidefinite programming: a review and call for interdisciplinary research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3527-3555, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roy Kwon & Jonathan Li, 2016. "A stochastic semidefinite programming approach for bounds on option pricing under regime switching," Annals of Operations Research, Springer, vol. 237(1), pages 41-75, February.
    2. Hsuan-Chu Lin & Ren-Raw Chen & Oded Palmon, 2012. "Non-parametric method for European option bounds," Review of Quantitative Finance and Accounting, Springer, vol. 38(1), pages 109-129, January.
    3. Chourdakis, Kyriakos & Dendramis, Yiannis & Tzavalis, Elias, 2014. "Are regime-shift sources of risk priced in the market?," Journal of Empirical Finance, Elsevier, vol. 28(C), pages 151-170.
    4. Shin-Yun Wang & Ming-Che Chuang & Shih-Kuei Lin & So-De Shyu, 2021. "Option pricing under stock market cycles with jump risks: evidence from the S&P 500 index," Review of Quantitative Finance and Accounting, Springer, vol. 56(1), pages 25-51, January.
    5. Bollen, Nicolas P. B. & Gray, Stephen F. & Whaley, Robert E., 2000. "Regime switching in foreign exchange rates: Evidence from currency option prices," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 239-276.
    6. repec:dau:papers:123456789/30 is not listed on IDEAS
    7. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    8. Donald J. Brown & Rustam Ibragimov, 2005. "Sign Tests for Dependent Observations and Bounds for Path-Dependent Options," Cowles Foundation Discussion Papers 1518, Cowles Foundation for Research in Economics, Yale University.
    9. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    10. Tianyang Wang & James Dyer & Warren Hahn, 2015. "A copula-based approach for generating lattices," Review of Derivatives Research, Springer, vol. 18(3), pages 263-289, October.
    11. Zuluaga, Luis F. & Peña, Javier & Du, Donglei, 2009. "Third-order extensions of Lo's semiparametric bound for European call options," European Journal of Operational Research, Elsevier, vol. 198(2), pages 557-570, October.
    12. Peter Christoffersen & Redouane Elkamhi & Bruno Feunou & Kris Jacobs, 2010. "Option Valuation with Conditional Heteroskedasticity and Nonnormality," The Review of Financial Studies, Society for Financial Studies, vol. 23(5), pages 2139-2183.
    13. Wilkens, Sascha & Roder, Klaus, 2006. "The informational content of option-implied distributions: Evidence from the Eurex index and interest rate futures options market," Global Finance Journal, Elsevier, vol. 17(1), pages 50-74, September.
    14. Jun-ya Gotoh & Yoshitsugu Yamamoto & Weifeng Yao, 2011. "Bounding Contingent Claim Prices via Hedging Strategy with Coherent Risk Measures," Journal of Optimization Theory and Applications, Springer, vol. 151(3), pages 613-632, December.
    15. Donald Brown & Rustam Ibragimov & Johan Walden, 2015. "Bounds for path-dependent options," Annals of Finance, Springer, vol. 11(3), pages 433-451, November.
    16. René Garcia & Eric Ghysels & Eric Renault, 2004. "The Econometrics of Option Pricing," CIRANO Working Papers 2004s-04, CIRANO.
    17. En-Der Su & Feng-Jeng Lin, 2012. "Two-State Volatility Transition Pricing and Hedging of TXO Options," Computational Economics, Springer;Society for Computational Economics, vol. 39(3), pages 259-287, March.
    18. Luis F. Zuluaga & Javier F. Peña, 2005. "A Conic Programming Approach to Generalized Tchebycheff Inequalities," Mathematics of Operations Research, INFORMS, vol. 30(2), pages 369-388, May.
    19. Ioana Popescu, 2005. "A Semidefinite Programming Approach to Optimal-Moment Bounds for Convex Classes of Distributions," Mathematics of Operations Research, INFORMS, vol. 30(3), pages 632-657, August.
    20. Martin Cincibuch, 2002. "Distributions Implied by Exchange Traded Options: A Ghost’s Smile?," CERGE-EI Working Papers wp200, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    21. Christoffersen, Peter & Jacobs, Kris & Ornthanalai, Chayawat & Wang, Yintian, 2008. "Option valuation with long-run and short-run volatility components," Journal of Financial Economics, Elsevier, vol. 90(3), pages 272-297, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:237:y:2016:i:1:d:10.1007_s10479-014-1651-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.