IDEAS home Printed from https://ideas.repec.org/p/rut/rutres/200619.html
   My bibliography  Save this paper

Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output

Author

Listed:
  • Norman Swanson

    (Rutgers University)

  • Nii Ayi Armah

    (Rutgers University)

Abstract

In this chapter we discuss model selection and predictive accuracy tests in the context of parameter and model uncertainty under recursive and rolling estimation schemes. We begin by summarizing some recent theoretical findings, with particular emphasis on the construction of valid bootstrap procedures for calculating the impact of parameter estimation error on the class of test statistics with limiting distributions that are functionals of Gaussian processes with covariance kernels that are dependent upon parameter and model uncertainty. We then provide an example of a particular test which falls in this class. Namely, we outline the so-called Corradi and Swanson (CS: 2002) test of (non)linear out-of-sample Granger causality. Thereafter, we carry out a series of Monte Carlo experiments examining the properties of the CS and a variety of other related predictive accuracy and model selection type tests. Finally, we present the results of an empirical investigation of the marginal predictive content of money for income, in the spirit of Stock andWatson (1989), Swanson (1998), Amato and Swanson (2001), and the references cited therein. We find that there is evidence of predictive causation when in-sample estimation periods are ended any time during the 1980s, but less evidence during the 1970s. Furthermore, recursive estimation windows yield better prediction models when prediction periods begin in the 1980s, while rolling estimation windows yield better models when prediction periods begin during the 1970s and 1990s. Interestingly, these two results can be combined into a coherent picture of what is driving our empirical results. Namely, when recursive estimation windows yield lower overall predictive MSEs, then bigger prediction models that include money are preferred, while smaller models without money are preferred when rolling models yield the lowest MSE predictors.

Suggested Citation

  • Norman Swanson & Nii Ayi Armah, 2006. "Predictive Inference Under Model Misspecification with an Application to Assessing the Marginal Predictive Content of Money for Output," Departmental Working Papers 200619, Rutgers University, Department of Economics.
  • Handle: RePEc:rut:rutres:200619
    as

    Download full text from publisher

    File URL: http://www.sas.rutgers.edu/virtual/snde/wp/2006-19.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Kilian, Lutz, 1999. "Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(5), pages 491-510, Sept.-Oct.
    2. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    3. Friedman, Benjamin M. & Kuttner, Kenneth N., 1993. "Another look at the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 57(1-3), pages 189-203.
    4. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    5. Clements, Michael P. & Smith, Jeremy, 1998. "Evaluating The Forecast Densities Of Linear And Non-Linear Models: Applications To Output Growth And Unemployment," Economic Research Papers 268791, University of Warwick - Department of Economics.
    6. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    7. James H. Stock & Mark W. Watson, 2005. "Implications of Dynamic Factor Models for VAR Analysis," NBER Working Papers 11467, National Bureau of Economic Research, Inc.
    8. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    9. Herman J. Bierens & Werner Ploberger, 1997. "Asymptotic Theory of Integrated Conditional Moment Tests," Econometrica, Econometric Society, vol. 65(5), pages 1129-1152, September.
    10. Inoue, Atsushi & Rossi, Barbara, 2005. "Recursive Predictability Tests for Real-Time Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 336-345, July.
    11. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    12. Todd Clark & Michael McCracken, 2005. "Evaluating Direct Multistep Forecasts," Econometric Reviews, Taylor & Francis Journals, vol. 24(4), pages 369-404.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Graham Elliott & Allan Timmermann, 2016. "Economic Forecasting," Economics Books, Princeton University Press, edition 1, number 10740.
    15. Francis X. Diebold & Anthony S. Tay & Kenneth F. Wallis, 1997. "Evaluating Density Forecasts of Inflation: The Survey of Professional Forecasters," NBER Working Papers 6228, National Bureau of Economic Research, Inc.
    16. Christiano, Lawrence J. & Ljungqvist, Lars, 1988. "Money does Granger-cause output in the bivariate money-output relation," Journal of Monetary Economics, Elsevier, vol. 22(2), pages 217-235, September.
    17. Bierens, Herman J, 1990. "A Consistent Conditional Moment Test of Functional Form," Econometrica, Econometric Society, vol. 58(6), pages 1443-1458, November.
    18. Valentina Corradi & Norman Swanson, 2006. "Predictive Density Evaluation. Revised," Departmental Working Papers 200621, Rutgers University, Department of Economics.
    19. Stinchcombe, Maxwell B. & White, Halbert, 1998. "Consistent Specification Testing With Nuisance Parameters Present Only Under The Alternative," Econometric Theory, Cambridge University Press, vol. 14(3), pages 295-325, June.
    20. Norman R. Swanson & Halbert White, 1997. "A Model Selection Approach To Real-Time Macroeconomic Forecasting Using Linear Models And Artificial Neural Networks," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 540-550, November.
    21. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    22. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive Density Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 5, pages 197-284, Elsevier.
    23. Swanson, N.R. & Ozyildirim, A. & Pisu, M., 1996. "A Comparison of Alternatove causality and Predictive Accuracy Tests in the presence of Integrated and Co-integrated Economic Variables," Papers 4-96-4, Pennsylvania State - Department of Economics.
    24. Goncalves, Silvia & White, Halbert, 2004. "Maximum likelihood and the bootstrap for nonlinear dynamic models," Journal of Econometrics, Elsevier, vol. 119(1), pages 199-219, March.
    25. Bierens, Herman J., 1982. "Consistent model specification tests," Journal of Econometrics, Elsevier, vol. 20(1), pages 105-134, October.
    26. Chao, John & Corradi, Valentina & Swanson, Norman R., 2001. "Out-Of-Sample Tests For Granger Causality," Macroeconomic Dynamics, Cambridge University Press, vol. 5(4), pages 598-620, September.
    27. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    28. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    29. Swanson, Norman R., 1998. "Money and output viewed through a rolling window," Journal of Monetary Economics, Elsevier, vol. 41(3), pages 455-474, May.
    30. Stock, James H. & Watson, Mark W., 1989. "Interpreting the evidence on money-income causality," Journal of Econometrics, Elsevier, vol. 40(1), pages 161-181, January.
    31. repec:cup:macdyn:v:5:y:2001:i:4:p:598-620 is not listed on IDEAS
    32. Harvey, David I & Leybourne, Stephen J & Newbold, Paul, 1998. "Tests for Forecast Encompassing," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(2), pages 254-259, April.
    33. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.
    34. Clements, Michael P. & Smith, Jeremy, 2002. "Evaluating multivariate forecast densities: a comparison of two approaches," International Journal of Forecasting, Elsevier, vol. 18(3), pages 397-407.
    35. McCracken, Michael W., 2007. "Asymptotics for out of sample tests of Granger causality," Journal of Econometrics, Elsevier, vol. 140(2), pages 719-752, October.
    36. Jushan Bai, 2003. "Testing Parametric Conditional Distributions of Dynamic Models," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 531-549, August.
    37. Johansen, Soren, 1991. "Estimation and Hypothesis Testing of Cointegration Vectors in Gaussian Vector Autoregressive Models," Econometrica, Econometric Society, vol. 59(6), pages 1551-1580, November.
    38. Johansen, Soren, 1988. "Statistical analysis of cointegration vectors," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 231-254.
    39. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    40. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1999. "Multivariate Density Forecast Evaluation And Calibration In Financial Risk Management: High-Frequency Returns On Foreign Exchange," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 661-673, November.
    41. Thoma, Mark A., 1994. "Subsample instability and asymmetries in money-income causality," Journal of Econometrics, Elsevier, vol. 64(1-2), pages 279-306.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Garratt, Anthony & Koop, Gary & Mise, Emi & Vahey, Shaun P., 2009. "Real-Time Prediction With U.K. Monetary Aggregates in the Presence of Model Uncertainty," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 480-491.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    2. Valentina Corradi & Norman R. Swanson, 2007. "Nonparametric Bootstrap Procedures For Predictive Inference Based On Recursive Estimation Schemes," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 48(1), pages 67-109, February.
    3. Valentina Corradi & Norman Swanson, 2004. "Bootstrap Procedures for Recursive Estimation Schemes With Applications to Forecast Model Selection," Departmental Working Papers 200418, Rutgers University, Department of Economics.
    4. Valentina Corradi & Norman Swanson, 2003. "The Block Bootstrap for Parameter Estimation Error In Recursive Estimation Schemes, With Applications to Predictive Evaluation," Departmental Working Papers 200313, Rutgers University, Department of Economics.
    5. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    6. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    7. Bhardwaj, Geetesh & Swanson, Norman R., 2006. "An empirical investigation of the usefulness of ARFIMA models for predicting macroeconomic and financial time series," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 539-578.
    8. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    9. Clements, Michael P. & Franses, Philip Hans & Swanson, Norman R., 2004. "Forecasting economic and financial time-series with non-linear models," International Journal of Forecasting, Elsevier, vol. 20(2), pages 169-183.
    10. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.
    11. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    12. Philip Rothman & Dick van Dijk & Philip Hans Franses, 1999. "A Multivariate STAR Analysis of the Relationship Between Money and Output," Working Papers 9913, East Carolina University, Department of Economics.
    13. Cees Diks & Valentyn Panchenko & Dick van Dijk, 2008. "Partial Likelihood-Based Scoring Rules for Evaluating Density Forecasts in Tails," Tinbergen Institute Discussion Papers 08-050/4, Tinbergen Institute.
    14. Corradi, Valentina & Swanson, Norman R., 2006. "Predictive density and conditional confidence interval accuracy tests," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 187-228.
    15. Clark, Todd E. & McCracken, Michael W., 2001. "Tests of equal forecast accuracy and encompassing for nested models," Journal of Econometrics, Elsevier, vol. 105(1), pages 85-110, November.
    16. Busetti, Fabio & Marcucci, Juri, 2013. "Comparing forecast accuracy: A Monte Carlo investigation," International Journal of Forecasting, Elsevier, vol. 29(1), pages 13-27.
    17. Corradi, Valentina & Swanson, Norman R., 2002. "A consistent test for nonlinear out of sample predictive accuracy," Journal of Econometrics, Elsevier, vol. 110(2), pages 353-381, October.
    18. Granziera, Eleonora & Hubrich, Kirstin & Moon, Hyungsik Roger, 2014. "A predictability test for a small number of nested models," Journal of Econometrics, Elsevier, vol. 182(1), pages 174-185.
    19. Corradi, Valentina & Swanson, Norman R. & Olivetti, Claudia, 2001. "Predictive ability with cointegrated variables," Journal of Econometrics, Elsevier, vol. 104(2), pages 315-358, September.
    20. Norman Swanson & Oleg Korenok, 2006. "The Incremental Predictive Information Associated with Using Theoretical New Keynesian DSGE Models Versus Simple Linear Alternatives," Departmental Working Papers 200615, Rutgers University, Department of Economics.

    More about this item

    Keywords

    block bootstrap; forecasting; nonlinear causality; recursive estimation scheme; rolling estimation schememodel misspecification;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:rut:rutres:200619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/derutus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.