IDEAS home Printed from https://ideas.repec.org/p/kan/wpaper/202310.html
   My bibliography  Save this paper

A Combination Forecast for Nonparametric Models with Structural Breaks

Author

Listed:
  • Zongwu Cai

    (Department of Economics, The University of Kansas, Lawrence, KS 66045, USA)

  • Gunawan

    (Department of Economics, The University of Kansas, Lawrence, KS 66045, USA)

Abstract

Structural breaks in time series forecasting can cause inconsistency in the conventional OLS estimator. Recent research suggests combining pre and post-break estimators for a linear model can yield an optimal estimator for weak breaks. However, this approach is limited to linear models only. In this paper, we propose a weighted local linear estimator for a nonlinear model. This estimator assigns a weight based on both the distance of observations to the predictor covariates and their location in time. We investigate the asymptotic properties of the proposed estimator and choose the optimal tuning parameters using multifold cross-validation to account for the dependence structure in time series data. Additionally, we use a nonparametric method to estimate the break date. Our Monte Carlo simulation results provide evidence for the forecasting outperformance of our estimator over the regular nonparametric post-break estimator. Finally, we apply our proposed estimator to forecast GDP growth for nine countries and demonstrate its superior performance compared to the conventional estimator using Diebold-Mariano tests.

Suggested Citation

  • Zongwu Cai & Gunawan, 2023. "A Combination Forecast for Nonparametric Models with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202310, University of Kansas, Department of Economics, revised Sep 2023.
  • Handle: RePEc:kan:wpaper:202310
    as

    Download full text from publisher

    File URL: http://www2.ku.edu/~kuwpaper/2023Papers/202310.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Estrella, Arturo & Mishkin, Frederic S., 1997. "The predictive power of the term structure of interest rates in Europe and the United States: Implications for the European Central Bank," European Economic Review, Elsevier, vol. 41(7), pages 1375-1401, July.
    2. Arturo Estrella & Anthony P. Rodrigues & Sebastian Schich, 2003. "How Stable is the Predictive Power of the Yield Curve? Evidence from Germany and the United States," The Review of Economics and Statistics, MIT Press, vol. 85(3), pages 629-644, August.
    3. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    4. Bernanke, Ben S & Blinder, Alan S, 1992. "The Federal Funds Rate and the Channels of Monetary Transmission," American Economic Review, American Economic Association, vol. 82(4), pages 901-921, September.
    5. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    6. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
    7. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    8. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    9. Pesaran, M. Hashem & Timmermann, Allan, 2007. "Selection of estimation window in the presence of breaks," Journal of Econometrics, Elsevier, vol. 137(1), pages 134-161, March.
    10. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    11. Sun, Yuying & Hong, Yongmiao & Lee, Tae-Hwy & Wang, Shouyang & Zhang, Xinyu, 2021. "Time-varying model averaging," Journal of Econometrics, Elsevier, vol. 222(2), pages 974-992.
    12. James H. Stock & Mark W. Watson, 1989. "New Indexes of Coincident and Leading Economic Indicators," NBER Chapters, in: NBER Macroeconomics Annual 1989, Volume 4, pages 351-409, National Bureau of Economic Research, Inc.
    13. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Maria Mohr & Leonie Selk, 2020. "Estimating change points in nonparametric time series regression models," Statistical Papers, Springer, vol. 61(4), pages 1437-1463, August.
    16. Hansen, Bruce E., 2008. "Least-squares forecast averaging," Journal of Econometrics, Elsevier, vol. 146(2), pages 342-350, October.
    17. Clements, Michael P. & Hendry, David F. (ed.), 2011. "The Oxford Handbook of Economic Forecasting," OUP Catalogue, Oxford University Press, number 9780195398649.
    18. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    19. Pesaran, M. Hashem & Pick, Andreas, 2011. "Forecast Combination Across Estimation Windows," Journal of Business & Economic Statistics, American Statistical Association, vol. 29(2), pages 307-318.
    20. Schrimpf, Andreas & Wang, Qingwei, 2010. "A reappraisal of the leading indicator properties of the yield curve under structural instability," International Journal of Forecasting, Elsevier, vol. 26(4), pages 836-857, October.
    21. Hansen, Bruce E. & Racine, Jeffrey S., 2012. "Jackknife model averaging," Journal of Econometrics, Elsevier, vol. 167(1), pages 38-46.
    22. Cai, Zongwu & Masry, Elias, 2000. "Nonparametric Estimation Of Additive Nonlinear Arx Time Series: Local Linear Fitting And Projections," Econometric Theory, Cambridge University Press, vol. 16(4), pages 465-501, August.
    23. Bruce E. Hansen, 2007. "Least Squares Model Averaging," Econometrica, Econometric Society, vol. 75(4), pages 1175-1189, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae‐Hwy Lee & Shahnaz Parsaeian & Aman Ullah, 2022. "Forecasting Under Structural Breaks Using Improved Weighted Estimation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 84(6), pages 1485-1501, December.
    2. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    3. Hännikäinen Jari, 2017. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
    4. Yin, Anwen, 2015. "Forecasting and model averaging with structural breaks," ISU General Staff Papers 201501010800005727, Iowa State University, Department of Economics.
    5. Vasilios Plakandaras & Juncal Cunado & Rangan Gupta & Mark E. Wohar, 2016. "Do Leading Indicators Forecast U.S. Recessions? A Nonlinear Re-Evaluation Using Historical Data," Working Papers 201685, University of Pretoria, Department of Economics.
    6. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    7. Pesaran, M. Hashem & Pick, Andreas & Pranovich, Mikhail, 2013. "Optimal forecasts in the presence of structural breaks," Journal of Econometrics, Elsevier, vol. 177(2), pages 134-152.
    8. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    9. Leo Krippner & Leif Anders Thorsrud, 2009. "Forecasting New Zealand's economic growth using yield curve information," Reserve Bank of New Zealand Discussion Paper Series DP2009/18, Reserve Bank of New Zealand.
    10. David C. Wheelock & Mark E. Wohar, 2009. "Can the term spread predict output growth and recessions? a survey of the literature," Review, Federal Reserve Bank of St. Louis, vol. 91(Sep), pages 419-440.
    11. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    12. He, Zhongfang, 2009. "Forecasting output growth by the yield curve: the role of structural breaks," MPRA Paper 28208, University Library of Munich, Germany.
    13. Guidolin, Massimo & Ono, Sadayuki, 2006. "Are the dynamic linkages between the macroeconomy and asset prices time-varying?," Journal of Economics and Business, Elsevier, vol. 58(5-6), pages 480-518.
    14. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    15. Morell, Joseph, 2018. "The decline in the predictive power of the US term spread: A structural interpretation," Journal of Macroeconomics, Elsevier, vol. 55(C), pages 314-331.
    16. repec:zbw:bofitp:2006_018 is not listed on IDEAS
    17. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    18. Kuosmanen, Petri & Vataja, Juuso, 2019. "Time-varying predictive content of financial variables in forecasting GDP growth in the G-7 countries," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 211-222.
    19. Raffaella Giacomini & Barbara Rossi, 2006. "How Stable is the Forecasting Performance of the Yield Curve for Output Growth?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 68(s1), pages 783-795, December.
    20. Arnaud Mehl, 2009. "The Yield Curve as a Predictor and Emerging Economies," Open Economies Review, Springer, vol. 20(5), pages 683-716, November.
    21. De Pace, Pierangelo & Weber, Kyle D., 2016. "The time-varying leading properties of the high yield spread in the United States," International Journal of Forecasting, Elsevier, vol. 32(1), pages 203-230.

    More about this item

    Keywords

    Combination Forecasting; Local Linear Fitting; Multifold Cross-Validation; Nonparametric Model; Structural Break Model;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kan:wpaper:202310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Zongwu Cai (email available below). General contact details of provider: https://edirc.repec.org/data/deuksus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.