IDEAS home Printed from https://ideas.repec.org/a/gai/ruserr/r23100.html
   My bibliography  Save this article

Анализ Возможностей Улучшения Качества Прогнозов Цен На Природные Ресурсы Методами Комбинирования На Основе Регрессионных Оценок Весов

Author

Listed:
  • Ekaterina V. Astafyeva

    (Russian Presidential Academy of National Economy and Public Administration)

  • Maria Yu. Turuntseva

    (Russian Presidential Academy of National Economy and Public Administration; Gaidar Institute for Economic Policy)

Abstract

Из многочисленных эмпирических работ следует, что объединение (комбинирование) прогнозов позволяет повысить точность прогнозирования по сравнению с индивидуальными прогнозами. В настоящей статье исследуются возможности регрессионных методов комбинирования прогнозов для улучшения качества прогнозов цен на нефть, алюминий, золото, никель и медь. Основой для расчетов служит база прогнозов Института экономической политики им. Е.Т. Гайдара, предоставляющая массив индивидуальных (объединяемых) прогнозов. Все расчеты проводятся в режиме (псевдо) реального времени. На основе полученных в работе оценок можно утверждать, что для цен на ресурсы независимо от рассматриваемого периода существует регрессионный метод объединения, обеспечивающий качественные преимущества относительно всех первичных прогнозов. Вместе с тем, обобщая результаты качественных характеристик регрессионных и простейших методов комбинирования, следует отметить, что выбор лучшего способа объединения прогнозов (и даже группы способов) неоднозначен и зависит от прогнозируемого показателя.

Suggested Citation

  • Ekaterina V. Astafyeva & Maria Yu. Turuntseva, 2023. "Анализ Возможностей Улучшения Качества Прогнозов Цен На Природные Ресурсы Методами Комбинирования На Основе Регрессионных Оценок Весов," Russian Economic Development (in Russian), Gaidar Institute for Economic Policy, issue 12, pages 24-33, December.
  • Handle: RePEc:gai:ruserr:r23100
    as

    Download full text from publisher

    File URL: http://www.iep.ru/files/RePEc/gai/ruserr/r23100.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kapetanios, George & Labhard, Vincent & Price, Simon, 2008. "Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
    2. Leeb, Hannes & Pötscher, Benedikt M., 2008. "Can One Estimate The Unconditional Distribution Of Post-Model-Selection Estimators?," Econometric Theory, Cambridge University Press, vol. 24(2), pages 338-376, April.
    3. Hansen, Bruce E., 2005. "Challenges For Econometric Model Selection," Econometric Theory, Cambridge University Press, vol. 21(1), pages 60-68, February.
    4. Francis X. Diebold & Peter Pauly, 1987. "Structural change and the combination of forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 6(1), pages 21-40.
    5. Diebold, Francis X, 1988. "Serial Correlation and the Combination of Forecasts," Journal of Business & Economic Statistics, American Statistical Association, vol. 6(1), pages 105-111, January.
    6. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ekaterina V. Astafyeva & Maria Yu. Turuntseva, 2023. "Analysis of Opportunities to Improve the Quality of Natural Resource Price by Combining Forecasts Resulting from Methods Based on Regression Estimates of Weights [Анализ Возможностей Улучшения Каче," Russian Economic Development, Gaidar Institute for Economic Policy, issue 12, pages 24-33, December.
    2. Chen, Bin & Maung, Kenwin, 2023. "Time-varying forecast combination for high-dimensional data," Journal of Econometrics, Elsevier, vol. 237(2).
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    5. Pablo Pincheira-Brown & Andrea Bentancor & Nicolás Hardy, 2023. "An Inconvenient Truth about Forecast Combinations," Mathematics, MDPI, vol. 11(18), pages 1-24, September.
    6. Sandra Eickmeier & Christina Ziegler, 2008. "How successful are dynamic factor models at forecasting output and inflation? A meta-analytic approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(3), pages 237-265.
    7. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    8. Alexandre Belloni & Victor Chernozhukov & Christian Hansen, 2011. "Inference on Treatment Effects After Selection Amongst High-Dimensional Controls," Papers 1201.0224, arXiv.org, revised May 2012.
    9. Drechsel, Katja & Scheufele, Rolf, 2011. "The Financial Crisis from a Forecaster’s Perspective," IWH Discussion Papers 5/2011, Halle Institute for Economic Research (IWH).
    10. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    11. Kira Alhorn & Holger Dette & Kirsten Schorning, 2021. "Optimal Designs for Model Averaging in non-nested Models," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 83(2), pages 745-778, August.
    12. Kapetanios, George & Labhard, Vincent & Price, Simon, 2006. "Forecasting using predictive likelihood model averaging," Economics Letters, Elsevier, vol. 91(3), pages 373-379, June.
    13. Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
    14. Hilde C. Bjørnland & Karsten Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2012. "Does Forecast Combination Improve Norges Bank Inflation Forecasts?," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(2), pages 163-179, April.
    15. Schwarzmüller, Tim, 2015. "Model pooling and changes in the informational content of predictors: An empirical investigation for the euro area," Kiel Working Papers 1982, Kiel Institute for the World Economy (IfW Kiel).
    16. Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
    17. Xinyu Zhang & Alan T. K. Wan & Sherry Z. Zhou, 2011. "Focused Information Criteria, Model Selection, and Model Averaging in a Tobit Model With a Nonzero Threshold," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(1), pages 132-142, June.
    18. McCloskey, Adam, 2017. "Bonferroni-based size-correction for nonstandard testing problems," Journal of Econometrics, Elsevier, vol. 200(1), pages 17-35.
    19. Christopher G. Gibbs, 2017. "Forecast combination, non-linear dynamics, and the macroeconomy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(3), pages 653-686, March.
    20. Drechsel, Katja & Scheufele, Rolf, 2012. "The performance of short-term forecasts of the German economy before and during the 2008/2009 recession," International Journal of Forecasting, Elsevier, vol. 28(2), pages 428-445.

    More about this item

    Keywords

    комбинирование прогнозов; объединение прогнозов; цены на нефть; цены на алюминий; цены на золото; цены на никель; цены на медь;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • E31 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Price Level; Inflation; Deflation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gai:ruserr:r23100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Olga Beloborodova (email available below). General contact details of provider: https://edirc.repec.org/data/gaidaru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.