How can big data enhance the timeliness of official statistics?
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijforecast.2017.12.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Alberto Cavallo, 2017.
"Are Online and Offline Prices Similar? Evidence from Large Multi-channel Retailers,"
American Economic Review, American Economic Association, vol. 107(1), pages 283-303, January.
- Alberto F. Cavallo, 2016. "Are Online and Offline Prices Similar? Evidence from Large Multi-Channel Retailers," NBER Working Papers 22142, National Bureau of Economic Research, Inc.
- O. De Bandt & E. Michaux & C. Bruneau & A. Flageollet, 2007.
"Forecasting inflation using economic indicators: the case of France,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(1), pages 1-22.
- Bruneau, C. & De Bandt, O. & Flageollet, A. & Michaux, E., 2003. "Forecasting Inflation using Economic Indicators: the Case of France," Working papers 101, Banque de France.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Lynn Wu & Erik Brynjolfsson, 2015. "The Future of Prediction: How Google Searches Foreshadow Housing Prices and Sales," NBER Chapters, in: Economic Analysis of the Digital Economy, pages 89-118, National Bureau of Economic Research, Inc.
- Libero Monteforte & Gianluca Moretti, 2013.
"Real‐Time Forecasts of Inflation: The Role of Financial Variables,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 32(1), pages 51-61, January.
- Libero Monteforte & Gianluca Moretti, "undated". "Real time forecasts of inflation: the role of financial variables," Working Papers wp2011-6, Department of the Treasury, Ministry of the Economy and of Finance.
- Libero Monteforte & Gianluca Moretti, 2010. "Real time forecasts of inflation: the role of financial variables," Temi di discussione (Economic working papers) 767, Bank of Italy, Economic Research and International Relations Area.
- Cavallo, Alberto, 2013. "Online and official price indexes: Measuring Argentina's inflation," Journal of Monetary Economics, Elsevier, vol. 60(2), pages 152-165.
- Paul Smith, 2016. "Google's MIDAS Touch: Predicting UK Unemployment with Internet Search Data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 35(3), pages 263-284, April.
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Pesaran, M. Hashem & Timmermann, Allan, 2009.
"Testing Dependence Among Serially Correlated Multicategory Variables,"
Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
- Pesaran, M.H. & Timmermann, A., 2006. "Testing Dependence Among Serially Correlated Multi-category Variables," Cambridge Working Papers in Economics 0648, Faculty of Economics, University of Cambridge.
- M. Hashem Pesaran & Allan Timmermann, 2006. "Testing Dependence among Serially Correlated Multi-category Variables," CESifo Working Paper Series 1770, CESifo.
- Pesaran, M. Hashem & Timmermann, Allan, 2006. "Testing Dependence among Serially Correlated Multi-Category Variables," IZA Discussion Papers 2196, Institute of Labor Economics (IZA).
- Alberto Cavallo & Roberto Rigobon, 2016.
"The Billion Prices Project: Using Online Prices for Measurement and Research,"
Journal of Economic Perspectives, American Economic Association, vol. 30(2), pages 151-178, Spring.
- Alberto Cavallo & Roberto Rigobon, 2016. "The Billion Prices Project: Using Online Prices for Measurement and Research," NBER Working Papers 22111, National Bureau of Economic Research, Inc.
- Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- Claudia Foroni & Massimiliano Marcellino & Christian Schumacher, 2015. "Unrestricted mixed data sampling (MIDAS): MIDAS regressions with unrestricted lag polynomials," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 178(1), pages 57-82, January.
- Thomas Flavin & Ekaterini Panopoulou & Theologos Pantelidis, 2009. "Forecasting growth and inflation in an enlarged euro area," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(5), pages 405-425.
- Marshall Reinsdorf & Jack E. Triplett, 2009. "A Review of Reviews: Ninety Years of Professional Thinking About the Consumer Price Index," NBER Chapters, in: Price Index Concepts and Measurement, pages 17-83, National Bureau of Economic Research, Inc.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Szafranek, Karol, 2019.
"Bagged neural networks for forecasting Polish (low) inflation,"
International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Karol Szafranek, 2017. "Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks," NBP Working Papers 262, Narodowy Bank Polski.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Margaret M. Jacobson & Christian Matthes & Todd B. Walker, 2022. "Inflation Measured Every Day Keeps Adverse Responses Away: Temporal Aggregation and Monetary Policy Transmission," Finance and Economics Discussion Series 2022-054, Board of Governors of the Federal Reserve System (U.S.).
- Bogdan Oancea, 2023. "Automatic Product Classification Using Supervised Machine Learning Algorithms in Price Statistics," Mathematics, MDPI, vol. 11(7), pages 1-32, March.
- Ilaria Benedetti & Tiziana Laureti & Luigi Palumbo & Brandon M. Rose, 2022. "Computation of High-Frequency Sub-National Spatial Consumer Price Indexes Using Web Scraping Techniques," Economies, MDPI, vol. 10(4), pages 1-20, April.
- Zhenkun Zhou & Zikun Song & Tao Ren, 2022. "Predicting China's CPI by Scanner Big Data," Papers 2211.16641, arXiv.org, revised Oct 2023.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Aparicio, Diego & Bertolotto, Manuel I., 2020. "Forecasting inflation with online prices," International Journal of Forecasting, Elsevier, vol. 36(2), pages 232-247.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Stefan Neuwirth, 2017. "Time-varying mixed frequency forecasting: A real-time experiment," KOF Working papers 17-430, KOF Swiss Economic Institute, ETH Zurich.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Knotek, Edward S. & Zaman, Saeed, 2019.
"Financial nowcasts and their usefulness in macroeconomic forecasting,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1708-1724.
- Edward S. Knotek & Saeed Zaman, 2017. "Financial Nowcasts and Their Usefulness in Macroeconomic Forecasting," Working Papers (Old Series) 1702, Federal Reserve Bank of Cleveland.
- Mahmut Gunay, 2020. "Nowcasting Turkish GDP with MIDAS: Role of Functional Form of the Lag Polynomial," Working Papers 2002, Research and Monetary Policy Department, Central Bank of the Republic of Turkey.
- Jung, Alexander, 2017. "Forecasting broad money velocity," The North American Journal of Economics and Finance, Elsevier, vol. 42(C), pages 421-432.
- Macias, Paweł & Stelmasiak, Damian & Szafranek, Karol, 2023. "Nowcasting food inflation with a massive amount of online prices," International Journal of Forecasting, Elsevier, vol. 39(2), pages 809-826.
- Kertlly de Medeiros, Rennan & da Nóbrega Besarria, Cássio & Pitta de Jesus, Diego & Phillipe de Albuquerquemello, Vinicius, 2022. "Forecasting oil prices: New approaches," Energy, Elsevier, vol. 238(PC).
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Galvão, Ana Beatriz, 2013.
"Changes in predictive ability with mixed frequency data,"
International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
- Ana Beatriz Galvão, 2007. "Changes in Predictive Ability with Mixed Frequency Data," Working Papers 595, Queen Mary University of London, School of Economics and Finance.
- Degiannakis, Stavros & Filis, George, 2018. "Forecasting oil prices: High-frequency financial data are indeed useful," Energy Economics, Elsevier, vol. 76(C), pages 388-402.
- Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
- Sarun Kamolthip, 2021.
"Macroeconomic Forecasting with LSTM and Mixed Frequency Time Series Data,"
PIER Discussion Papers
165, Puey Ungphakorn Institute for Economic Research.
- Sarun Kamolthip, 2021. "Macroeconomic forecasting with LSTM and mixed frequency time series data," Papers 2109.13777, arXiv.org.
- Rong Fu & Luze Xie & Tao Liu & Juan Huang & Binbin Zheng, 2022. "Chinese Economic Growth Projections Based on Mixed Data of Carbon Emissions under the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
- Philip ME Garboden, 2019. "Sources and Types of Big Data for Macroeconomic Forecasting," Working Papers 2019-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Boriss Siliverstovs, 2017.
"Short-term forecasting with mixed-frequency data: a MIDASSO approach,"
Applied Economics, Taylor & Francis Journals, vol. 49(13), pages 1326-1343, March.
- Boriss Siliverstovs, 2015. "Short-term forecasting with mixed-frequency data: A MIDASSO approach," KOF Working papers 15-375, KOF Swiss Economic Institute, ETH Zurich.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Benedikt Maas, 2020.
"Short‐term forecasting of the US unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(3), pages 394-411, April.
- Maas, Benedikt, 2019. "Short-term forecasting of the US unemployment rate," MPRA Paper 94066, University Library of Munich, Germany.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
More about this item
Keywords
Forecasting; Inflation; Online prices;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:34:y:2018:i:2:p:225-234. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.