IDEAS home Printed from https://ideas.repec.org/a/fip/fedlrd/y2007inovp33-42nv.3no.2.html
   My bibliography  Save this article

Forecasting real housing price growth in the Eighth District states

Author

Listed:
  • David E. Rapach
  • Jack K. Strauss

Abstract

The authors consider forecasting real housing price growth for the individual states of the Federal Reserve's Eighth District. They first analyze the forecasting ability of a large number of potential predictors of state real housing price growth using an autoregressive distributed lag (ARDL) model framework. A number of variables, including the state housing price-to-income ratio, state unemployment rate, and national inflation rate, appear to provide information that is useful for forecasting real housing price growth in many Eighth District states. Given that it is typically difficult to determine a priori the particular variable or small set of variables that are the most relevant for forecasting real housing price growth for a given state and time period, the authors also consider various methods for combining the individual ARDL model forecasts. They find that combination forecasts are quite helpful in generating accurate forecasts of real housing price growth in the individual Eighth District states.

Suggested Citation

  • David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
  • Handle: RePEc:fip:fedlrd:y:2007:i:nov:p:33-42:n:v.3no.2
    as

    Download full text from publisher

    File URL: http://research.stlouisfed.org/publications/red/2007/02/Rapach.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stock, James H. & Watson, Mark W., 1999. "Forecasting inflation," Journal of Monetary Economics, Elsevier, vol. 44(2), pages 293-335, October.
    2. Geraint Johnes & Thomas Hyclak, "undated". "House Prices and Regional Labor Markets," Working Papers ec15/93, Department of Economics, University of Lancaster.
    3. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    4. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    5. Patric H. Hendershott & John C. Weicher, 2002. "Forecasting Housing Markets: Lessons Learned," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 30(1), pages 1-11.
    6. Alan Greenspan & James E. Kennedy, 2005. "Estimates of home mortgage originations, repayments, and debt on one-to-four-family residences," Finance and Economics Discussion Series 2005-41, Board of Governors of the Federal Reserve System (U.S.).
    7. David E. Rapach & Jack K. Strauss, 2005. "Forecasting employment growth in Missouri with many potentially relevant predictors: an analysis of forecast combining methods," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 97-112.
    8. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    9. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    10. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Plakandaras, Vasilios & Gupta, Rangan & Gogas, Periklis & Papadimitriou, Theophilos, 2015. "Forecasting the U.S. real house price index," Economic Modelling, Elsevier, vol. 45(C), pages 259-267.
    2. Rangan Gupta & Stephen Miller, 2012. "“Ripple effects” and forecasting home prices in Los Angeles, Las Vegas, and Phoenix," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 48(3), pages 763-782, June.
    3. McGurk, Zachary, 2020. "US real estate inflation prediction: Exchange rates and net foreign assets," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 53-66.
    4. repec:ipg:wpaper:2014-585 is not listed on IDEAS
    5. repec:zbw:rwirep:0294 is not listed on IDEAS
    6. Goodness C. Aye & Rangan Gupta, 2013. "Forecasting Real House Price of the U.S.: An Analysis Covering 1890 to 2012," Working Papers 201362, University of Pretoria, Department of Economics.
    7. Rangan Gupta & Marius Jurgilas & Alain Kabundi & Stephen M. Miller, 2009. "Monetary Policy and Housing Sector Dynamics in a Large-Scale Bayesian Vector Autoregressive Model," Working Papers 200913, University of Pretoria, Department of Economics.
    8. Rangan Gupta & Sonali Das, 2010. "Predicting Downturns in the US Housing Market: A Bayesian Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 41(3), pages 294-319, October.
    9. Rangan Gupta & Alain Kabundi & Stephen M. Miller, 2009. "Using Large Data Sets to Forecast Housing Prices: A Case Study of Twenty US States," Working papers 2009-13, University of Connecticut, Department of Economics.
    10. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    11. Christou, Christina & Gupta, Rangan & Hassapis, Christis, 2017. "Does economic policy uncertainty forecast real housing returns in a panel of OECD countries? A Bayesian approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 50-60.
    12. Philipp an de Meulen & Martin Micheli & Torsten Schmidt, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 0294, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    13. Micheli, Martin, 2016. "Local governments' indebtedness and its impact on real estate prices," Ruhr Economic Papers 605, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    14. an de Meulen, Philipp & Micheli, Martin & Schmidt, Torsten, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 294, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
    15. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David E. & Strauss, Jack K., 2009. "Differences in housing price forecastability across US states," International Journal of Forecasting, Elsevier, vol. 25(2), pages 351-372.
    2. Rapach, David E. & Strauss, Jack K., 2012. "Forecasting US state-level employment growth: An amalgamation approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 315-327.
    3. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    4. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
    5. Cotter, John & Eyiah-Donkor, Emmanuel & Potì, Valerio, 2023. "Commodity futures return predictability and intertemporal asset pricing," Journal of Commodity Markets, Elsevier, vol. 31(C).
    6. Naresh Bansal & Jack Strauss & Alireza Nasseh, 2015. "Can we consistently forecast a firm’s earnings? Using combination forecast methods to predict the EPS of Dow firms," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 39(1), pages 1-22, January.
    7. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    8. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    9. Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014. "Using large data sets to forecast sectoral employment," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
    10. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    11. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    12. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    13. Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
    14. Ang, Andrew & Bekaert, Geert & Wei, Min, 2007. "Do macro variables, asset markets, or surveys forecast inflation better?," Journal of Monetary Economics, Elsevier, vol. 54(4), pages 1163-1212, May.
    15. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    16. Bjørnland, Hilde C. & Ravazzolo, Francesco & Thorsrud, Leif Anders, 2017. "Forecasting GDP with global components: This time is different," International Journal of Forecasting, Elsevier, vol. 33(1), pages 153-173.
    17. Sancetta, Alessio, 2007. "Online forecast combinations of distributions: Worst case bounds," Journal of Econometrics, Elsevier, vol. 141(2), pages 621-651, December.
    18. Rossi, Barbara & Sekhposyan, Tatevik, 2014. "Evaluating predictive densities of US output growth and inflation in a large macroeconomic data set," International Journal of Forecasting, Elsevier, vol. 30(3), pages 662-682.
    19. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    20. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:fip:fedlrd:y:2007:i:nov:p:33-42:n:v.3no.2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Scott St. Louis (email available below). General contact details of provider: https://edirc.repec.org/data/frbslus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.