IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v17y2010i4p668-688.html
   My bibliography  Save this article

Market efficiency and learning in an artificial stock market: A perspective from Neo-Austrian economics

Author

Listed:
  • Benink, Harald A.
  • Gordillo, José Luis
  • Pardo, Juan Pablo
  • Stephens, Christopher R.

Abstract

An agent-based artificial financial market (AFM) is used to study market efficiency and learning in the context of the Neo-Austrian economic paradigm. Efficiency is defined in terms of the "excess" profits associated with different trading strategies, where excess is defined relative to a dynamic buy and hold benchmark in order to make a clean separation between trading gains and market gains. We define an Inefficiency matrix that takes into account the difference in excess profits of one trading strategy versus another (signal) relative to the standard error of those profits (noise) and use this statistical measure to gauge the degree of market efficiency. A one-parameter family of trading strategies is considered, the value of the parameter measuring the relative informational advantage of one strategy versus another. Efficiency is then investigated in terms of the composition of the market defined in terms of the relative proportions of traders using a particular strategy and the parameter values associated with the strategies. We show that markets are more efficient when informational advantages are small (small signal) and when there are many coexisting signals. Learning is introduced by considering "copycat" traders that learn the relative values of the different strategies in the market and copy the most successful one. We show how such learning leads to a more informationally efficient market but can also lead to a less efficient market as measured in terms of excess profits. It is also shown how the presence of exogeneous information shocks that change trader expectations increases efficiency and complicates the inference problem of copycats.

Suggested Citation

  • Benink, Harald A. & Gordillo, José Luis & Pardo, Juan Pablo & Stephens, Christopher R., 2010. "Market efficiency and learning in an artificial stock market: A perspective from Neo-Austrian economics," Journal of Empirical Finance, Elsevier, vol. 17(4), pages 668-688, September.
  • Handle: RePEc:eee:empfin:v:17:y:2010:i:4:p:668-688
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927-5398(10)00015-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. LeBaron, Blake, 2001. "Evolution And Time Horizons In An Agent-Based Stock Market," Macroeconomic Dynamics, Cambridge University Press, vol. 5(02), pages 225-254, April.
    2. LeBaron, Blake, 2000. "Agent-based computational finance: Suggested readings and early research," Journal of Economic Dynamics and Control, Elsevier, vol. 24(5-7), pages 679-702, June.
    3. J. Doyne Farmer, 2002. "Market force, ecology and evolution," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 895-953, November.
    4. Arthur, W.B. & Holland, J.H. & LeBaron, B. & Palmer, R. & Tayler, P., 1996. "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Working papers 9625, Wisconsin Madison - Social Systems.
    5. Israel M. Kirzner, 1997. "Entrepreneurial Discovery and the Competitive Market Process: An Austrian Approach," Journal of Economic Literature, American Economic Association, vol. 35(1), pages 60-85, March.
    6. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    7. Harald Benink & Peter Bossaerts, 2001. "An Exploration of Neo‐Austrian Theory Applied to Financial Markets," Journal of Finance, American Finance Association, vol. 56(3), pages 1011-1027, June.
    8. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    9. LeBaron, Blake, 2006. "Agent-based Computational Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 24, pages 1187-1233, Elsevier.
    10. Chen, Shu-Heng & Yeh, Chia-Hsuan, 2002. "On the emergent properties of artificial stock markets: the efficient market hypothesis and the rational expectations hypothesis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 217-239, October.
    11. W. Brian Arthur & Paul Tayler, "undated". "Asset Pricing Under Endogenous Expectations in an Artificial Stock Market," Computing in Economics and Finance 1997 57, Society for Computational Economics.
    12. Balvers, Ronald J & Cosimano, Thomas F & McDonald, Bill, 1990. "Predicting Stock Returns in an Efficient Market," Journal of Finance, American Finance Association, vol. 45(4), pages 1109-1128, September.
    13. Fama, Eugene F, 1991. "Efficient Capital Markets: II," Journal of Finance, American Finance Association, vol. 46(5), pages 1575-1617, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christopher R. Stephens & Harald A. Benink & José Luís Gordillo & Juan Pablo Pardo-Guerra, 2021. "A New Measure of Market Inefficiency," JRFM, MDPI, vol. 14(6), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Harald A. Benink & Jose Luis Gordillo & Juan Pablo Pardo & Christopher R. Stephens, 2004. "A Study of Neo-Austrian Economics using an Artificial Stock Market," Finance 0411038, University Library of Munich, Germany.
    2. Thomas Holtfort, 2019. "From standard to evolutionary finance: a literature survey," Management Review Quarterly, Springer, vol. 69(2), pages 207-232, June.
    3. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    4. Jasmina Hasanhodzic & Andrew Lo & Emanuele Viola, 2011. "A computational view of market efficiency," Quantitative Finance, Taylor & Francis Journals, vol. 11(7), pages 1043-1050.
    5. Christopher R. Stephens & Harald A. Benink & José Luís Gordillo & Juan Pablo Pardo-Guerra, 2021. "A New Measure of Market Inefficiency," JRFM, MDPI, vol. 14(6), pages 1-22, June.
    6. Amilon, Henrik, 2008. "Estimation of an adaptive stock market model with heterogeneous agents," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 342-362, March.
    7. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    8. Hommes, C.H., 2005. "Heterogeneous Agents Models: two simple examples, forthcoming In: Lines, M. (ed.) Nonlinear Dynamical Systems in Economics, CISM Courses and Lectures, Springer, 2005, pp.131-164," CeNDEF Working Papers 05-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    9. Mikhail Anufriev & Giulio Bottazzi, 2004. "Asset Pricing Model with Heterogeneous Investment Horizons," LEM Papers Series 2004/22, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    10. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    11. Hommes, C.H., 2001. "Modeling the stylized facts in finance through simple nonlinear adaptive systems," CeNDEF Working Papers 01-06, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    12. Brock, William A. & Hommes, Cars H. & Wagener, Florian O. O., 2005. "Evolutionary dynamics in markets with many trader types," Journal of Mathematical Economics, Elsevier, vol. 41(1-2), pages 7-42, February.
    13. Anufriev, Mikhail & Panchenko, Valentyn, 2009. "Asset prices, traders' behavior and market design," Journal of Economic Dynamics and Control, Elsevier, vol. 33(5), pages 1073-1090, May.
    14. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    15. Oldham, Matthew, 2020. "Quantifying the concerns of Dimon and Buffett with data and computation," Journal of Economic Dynamics and Control, Elsevier, vol. 113(C).
    16. Peter Christoffersen & Francis X. Diebold, 2002. "Financial Asset Returns, Market Timing, and Volatility Dynamics," CIRANO Working Papers 2002s-02, CIRANO.
    17. Brock, W.A. & Hommes, C.H. & Wagener, F.O.O., 2001. "Evolutionary Dynamics in Financial Markets With Many Trader Types," CeNDEF Working Papers 01-01, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
    18. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    19. Leonardo dos Santos Pinheiro & Flavio Codeco COelho, 2017. "An Agent-based Model of Contagion in Financial Networks," Papers 1703.07513, arXiv.org.
    20. J. Doyne Farmer & John Geanakoplos, 2008. "The virtues and vices of equilibrium and the future of financial economics," Papers 0803.2996, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:17:y:2010:i:4:p:668-688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.