Very short-term wind speed forecasting with Bayesian structural break model
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2012.07.041
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ramirez-Rosado, Ignacio J. & Fernandez-Jimenez, L. Alfredo & Monteiro, Cláudio & Sousa, João & Bessa, Ricardo, 2009. "Comparison of two new short-term wind-power forecasting systems," Renewable Energy, Elsevier, vol. 34(7), pages 1848-1854.
- Sánchez, Ismael, 2008. "Adaptive combination of forecasts with application to wind energy," International Journal of Forecasting, Elsevier, vol. 24(4), pages 679-693.
- Wong, W.K. & Xia, Min & Chu, W.C., 2010. "Adaptive neural network model for time-series forecasting," European Journal of Operational Research, Elsevier, vol. 207(2), pages 807-816, December.
- Kavasseri, Rajesh G. & Seetharaman, Krithika, 2009. "Day-ahead wind speed forecasting using f-ARIMA models," Renewable Energy, Elsevier, vol. 34(5), pages 1388-1393.
- Gneiting, Tilmann & Larson, Kristin & Westrick, Kenneth & Genton, Marc G. & Aldrich, Eric, 2006. "Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching SpaceTime Method," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 968-979, September.
- Hong, Ying-Yi & Chang, Huei-Lin & Chiu, Ching-Sheng, 2010. "Hour-ahead wind power and speed forecasting using simultaneous perturbation stochastic approximation (SPSA) algorithm and neural network with fuzzy inputs," Energy, Elsevier, vol. 35(9), pages 3870-3876.
- Pesaran, M. Hashem & Timmermann, Allan, 2004.
"How costly is it to ignore breaks when forecasting the direction of a time series?,"
International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
- Pesaran, H.M. & Timmermann, A., 2003. "How Costly is it to Ignore Breaks when Forecasting the Direction of a Time Series?," Cambridge Working Papers in Economics 0306, Faculty of Economics, University of Cambridge.
- Allan Timmermann & M. Hashem Pesaran, 2003. "How Costly is it to Ignore Breaks when Forecasting the Direction of a Time Series?," CESifo Working Paper Series 875, CESifo.
- Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
- Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010.
"Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
- Markus Jochmann & Gary Koop & Rodney W. Strachan, 2008. "Bayesian Forecasting using Stochastic Search Variable Selection in a VAR Subject to Breaks," Working Paper series 19_08, Rimini Centre for Economic Analysis.
- Clements,Michael & Hendry,David, 1998.
"Forecasting Economic Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521634809.
- Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521632423, September.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006.
"Forecasting Time Series Subject to Multiple Structural Breaks,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
- Pesaran, M. Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," IZA Discussion Papers 1196, Institute of Labor Economics (IZA).
- Pesaran, M.H. & Pettenuzzo, D. & Timmermann, A., 2004. "‘Forecasting Time Series Subject to Multiple Structural Breaks’," Cambridge Working Papers in Economics 0433, Faculty of Economics, University of Cambridge.
- Pesaran, M. Hashem & Timmermann, Allan & Pettenuzzo, Davide, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CEPR Discussion Papers 4636, C.E.P.R. Discussion Papers.
- M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2004. "Forecasting Time Series Subject to Multiple Structural Breaks," CESifo Working Paper Series 1237, CESifo.
- Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
- Jursa, René & Rohrig, Kurt, 2008. "Short-term wind power forecasting using evolutionary algorithms for the automated specification of artificial intelligence models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 694-709.
- Chauvet, Marcelle & Potter, Simon, 2010. "Business cycle monitoring with structural changes," International Journal of Forecasting, Elsevier, vol. 26(4), pages 777-793, October.
- Liu, Hui & Tian, Hong-Qi & Chen, Chao & Li, Yan-fei, 2010. "A hybrid statistical method to predict wind speed and wind power," Renewable Energy, Elsevier, vol. 35(8), pages 1857-1861.
- Gary Koop & Simon M. Potter, 2007. "Estimation and Forecasting in Models with Multiple Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 74(3), pages 763-789.
- Kusiak, Andrew & Li, Wenyan & Song, Zhe, 2010. "Dynamic control of wind turbines," Renewable Energy, Elsevier, vol. 35(2), pages 456-463.
- Cadenas, Erasmo & Rivera, Wilfrido, 2010. "Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA–ANN model," Renewable Energy, Elsevier, vol. 35(12), pages 2732-2738.
- Sanchez, Ismael, 2006. "Short-term prediction of wind energy production," International Journal of Forecasting, Elsevier, vol. 22(1), pages 43-56.
- Sfetsos, A., 2000. "A comparison of various forecasting techniques applied to mean hourly wind speed time series," Renewable Energy, Elsevier, vol. 21(1), pages 23-35.
- Barthelmie, R.J. & Murray, F. & Pryor, S.C., 2008. "The economic benefit of short-term forecasting for wind energy in the UK electricity market," Energy Policy, Elsevier, vol. 36(5), pages 1687-1696, May.
- Pinson, P. & Nielsen, H.Aa. & Madsen, H. & Kariniotakis, G., 2009. "Skill forecasting from ensemble predictions of wind power," Applied Energy, Elsevier, vol. 86(7-8), pages 1326-1334, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Tascikaraoglu, A. & Uzunoglu, M., 2014. "A review of combined approaches for prediction of short-term wind speed and power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 243-254.
- Arnaud Dufays & Zhuo Li & Jeroen V.K. Rombouts & Yong Song, 2021. "Sparse change‐point VAR models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 703-727, September.
- Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
- Dufays, Arnaud & Rombouts, Jeroen V.K., 2020. "Relevant parameter changes in structural break models," Journal of Econometrics, Elsevier, vol. 217(1), pages 46-78.
- Yu, Jie & Chen, Kuilin & Mori, Junichi & Rashid, Mudassir M., 2013. "A Gaussian mixture copula model based localized Gaussian process regression approach for long-term wind speed prediction," Energy, Elsevier, vol. 61(C), pages 673-686.
- Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
- Li, Gong & Shi, Jing, 2010. "On comparing three artificial neural networks for wind speed forecasting," Applied Energy, Elsevier, vol. 87(7), pages 2313-2320, July.
- Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010.
"Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
- Markus Jochmann & Gary Koop & Rodney W. Strachan, 2008. "Bayesian Forecasting using Stochastic Search Variable Selection in a VAR Subject to Breaks," Working Paper series 19_08, Rimini Centre for Economic Analysis.
- Sandra Minerva Valdivia-Bautista & José Antonio Domínguez-Navarro & Marco Pérez-Cisneros & Carlos Jesahel Vega-Gómez & Beatriz Castillo-Téllez, 2023. "Artificial Intelligence in Wind Speed Forecasting: A Review," Energies, MDPI, vol. 16(5), pages 1-28, March.
- Sylvia Kaufmann, 2011. "K-state switching models with endogenous transition distributions," Working Papers 2011-13, Swiss National Bank.
- Karlsson, Sune, 2013.
"Forecasting with Bayesian Vector Autoregression,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 791-897,
Elsevier.
- Karlsson, Sune, 2012. "Forecasting with Bayesian Vector Autoregressions," Working Papers 2012:12, Örebro University, School of Business.
- Franz Ruch & Mehmet Balcilar & Rangan Gupta & Mampho P. Modise, 2020.
"Forecasting core inflation: the case of South Africa,"
Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3004-3022, June.
- Franz Ruch & Mehmet Balcilar Author-Name-First Mehmet & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 15-08, Eastern Mediterranean University, Department of Economics.
- Franz Ruch & Mehmet Balcilar & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 201543, University of Pretoria, Department of Economics.
- Liu, Yin & Davanloo Tajbakhsh, Sam & Conejo, Antonio J., 2021. "Spatiotemporal wind forecasting by learning a hierarchically sparse inverse covariance matrix using wind directions," International Journal of Forecasting, Elsevier, vol. 37(2), pages 812-824.
- Liu, Hui & Tian, Hong-qi & Liang, Xi-feng & Li, Yan-fei, 2015. "Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks," Applied Energy, Elsevier, vol. 157(C), pages 183-194.
- Fisher, Mark & Jensen, Mark J., 2019.
"Bayesian inference and prediction of a multiple-change-point panel model with nonparametric priors,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 187-202.
- Mark Fisher & Mark J. Jensen, 2018. "Bayesian Inference and Prediction of a Multiple-Change-Point Panel Model with Nonparametric Priors," FRB Atlanta Working Paper 2018-2, Federal Reserve Bank of Atlanta.
- Mark Fisher & Mark J. Jensen, 2018. "Bayesian Inference and Prediction of a Multiple-Change-Point Panel Model with Nonparametric Priors," Working Paper series 18-12, Rimini Centre for Economic Analysis.
- Chen, Kuilin & Yu, Jie, 2014. "Short-term wind speed prediction using an unscented Kalman filter based state-space support vector regression approach," Applied Energy, Elsevier, vol. 113(C), pages 690-705.
- Maheu, John M. & Song, Yong, 2014.
"A new structural break model, with an application to Canadian inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 30(1), pages 144-160.
- John M Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Papers tecipa-448, University of Toronto, Department of Economics.
- Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
- John M. Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Paper series 27_12, Rimini Centre for Economic Analysis.
- Liu, Hui & Tian, Hong-qi & Li, Yan-fei, 2012. "Comparison of two new ARIMA-ANN and ARIMA-Kalman hybrid methods for wind speed prediction," Applied Energy, Elsevier, vol. 98(C), pages 415-424.
- Smith, Simon C. & Timmermann, Allan & Zhu, Yinchu, 2019. "Variable selection in panel models with breaks," Journal of Econometrics, Elsevier, vol. 212(1), pages 323-344.
- Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
More about this item
Keywords
Time series; Forecasting; Wind power; Wind speed; Bayesian structural break model;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:637-647. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.