IDEAS home Printed from https://ideas.repec.org/a/eee/mulfin/v18y2008i5p477-487.html
   My bibliography  Save this article

Forecasting gold price changes: Rolling and recursive neural network models

Author

Listed:
  • Parisi, Antonino
  • Parisi, Franco
  • Díaz, David

Abstract

This paper analyzes recursive and rolling neural network models to forecast one-step-ahead sign variations in gold price. Different combinations of techniques and sample sizes are studied for feed forward and ward neural networks. The results shows the rolling ward networks exceed the recursive ward networks and feed forward networks in forecasting gold price sign variation. The results support the use of neural networks with a dynamic framework to forecast the gold price sign variations, recalculating the weights of the network on a period-by-period basis, through a rolling process. Our results are validated using the block bootstrap methodology with an average sign prediction of 60.68% with a standard deviation of 2.82% for the rolling ward net.

Suggested Citation

  • Parisi, Antonino & Parisi, Franco & Díaz, David, 2008. "Forecasting gold price changes: Rolling and recursive neural network models," Journal of Multinational Financial Management, Elsevier, vol. 18(5), pages 477-487, December.
  • Handle: RePEc:eee:mulfin:v:18:y:2008:i:5:p:477-487
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042-444X(08)00003-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arturo Estrella & Frederic S. Mishkin, 1998. "Predicting U.S. Recessions: Financial Variables As Leading Indicators," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 45-61, February.
    2. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    3. Qi, Min, 2001. "Predicting US recessions with leading indicators via neural network models," International Journal of Forecasting, Elsevier, vol. 17(3), pages 383-401.
    4. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    5. Sam Mirmirani & H.C. Li, 2004. "Gold Price, Neural Networks and Genetic Algorithm," Computational Economics, Springer;Society for Computational Economics, vol. 23(2), pages 193-200, March.
    6. Parisi F, Antonino & Parisi F, Franco & Guerrero C., José Luis, 2003. "Modelos predictivos de redes neuronales en índices bursátiles," El Trimestre Económico, Fondo de Cultura Económica, vol. 0(280), pages 721-744, octubre-d.
    7. Mark T. Leung & An-Sing Chen, 2005. "Performance evaluation of neural network architectures: the case of predicting foreign exchange correlations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 403-420.
    8. McMillan, David G., 2005. "Non-linear dynamics in international stock market returns," Review of Financial Economics, Elsevier, vol. 14(1), pages 81-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruan, Qingsong & Huang, Ying & Jiang, Wei, 2016. "The exceedance and cross-correlations between the gold spot and futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 139-151.
    2. Rangan Gupta & Sayar Karmakar & Christian Pierdzioch, 2024. "Safe Havens, Machine Learning, and the Sources of Geopolitical Risk: A Forecasting Analysis Using Over a Century of Data," Computational Economics, Springer;Society for Computational Economics, vol. 64(1), pages 487-513, July.
    3. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    4. Devendra Joshi & Premkumar Chithaluru & Divya Anand & Fahima Hajjej & Kapil Aggarwal & Vanessa Yelamos Torres & Ernesto Bautista Thompson, 2023. "RETRACTED: An Evolutionary Technique for Building Neural Network Models for Predicting Metal Prices," Mathematics, MDPI, vol. 11(7), pages 1-19, March.
    5. Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
    6. Shafiee, Shahriar & Topal, Erkan, 2010. "An overview of global gold market and gold price forecasting," Resources Policy, Elsevier, vol. 35(3), pages 178-189, September.
    7. Zhao, Jue & Hosseini, Shahab & Chen, Qinyang & Jahed Armaghani, Danial, 2023. "Super learner ensemble model: A novel approach for predicting monthly copper price in future," Resources Policy, Elsevier, vol. 85(PB).
    8. Ewees, Ahmed A. & Elaziz, Mohamed Abd & Alameer, Zakaria & Ye, Haiwang & Jianhua, Zhang, 2020. "Improving multilayer perceptron neural network using chaotic grasshopper optimization algorithm to forecast iron ore price volatility," Resources Policy, Elsevier, vol. 65(C).
    9. Fenghua Wen & Xin Yang & Xu Gong & Kin Keung Lai, 2017. "Multi-Scale Volatility Feature Analysis and Prediction of Gold Price," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 205-223, January.
    10. Yu Zhao & Xi Zhang & Zhongshun Shi & Lei He, 2017. "Grain Price Forecasting Using a Hybrid Stochastic Method," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 34(05), pages 1-24, October.
    11. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    12. Vladimir Pyrlik & Pavel Elizarov & Aleksandra Leonova, 2021. "Forecasting Realized Volatility Using Machine Learning and Mixed-Frequency Data (the Case of the Russian Stock Market)," CERGE-EI Working Papers wp713, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    13. Chi-Wei Su & Xu-Yu Cai & Ran Tao, 2020. "Can Stock Investor Sentiment Be Contagious in China?," Sustainability, MDPI, vol. 12(4), pages 1-16, February.
    14. Ntim, Collins G. & English, John & Nwachukwu, Jacinta & Wang, Yan, 2015. "On the efficiency of the global gold markets," International Review of Financial Analysis, Elsevier, vol. 41(C), pages 218-236.
    15. Zhao, Ze & Wang, Jianzhou & Zhao, Jing & Su, Zhongyue, 2012. "Using a Grey model optimized by Differential Evolution algorithm to forecast the per capita annual net income of rural households in China," Omega, Elsevier, vol. 40(5), pages 525-532.
    16. Xian, Lu & He, Kaijian & Lai, Kin Keung, 2016. "Gold price analysis based on ensemble empirical model decomposition and independent component analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 454(C), pages 11-23.
    17. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    18. Yang, Mo & Wang, Ruotong & Zeng, Zixun & Li, Peizhi, 2024. "Improved prediction of global gold prices: An innovative Hurst-reconfiguration-based machine learning approach," Resources Policy, Elsevier, vol. 88(C).
    19. Gutiérrez, Martha & Franco, Giovanni & Campuzano, Carlos, 2013. "Gold prices: Analyzing its cyclical behavior," Revista Lecturas de Economía, Universidad de Antioquia, CIE, issue 79, pages 113-142, September.
    20. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    21. Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    22. Sroka Łukasz, 2022. "Applying Block Bootstrap Methods in Silver Prices Forecasting," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 15-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guidolin, Massimo & Hyde, Stuart & McMillan, David & Ono, Sadayuki, 2009. "Non-linear predictability in stock and bond returns: When and where is it exploitable?," International Journal of Forecasting, Elsevier, vol. 25(2), pages 373-399.
    2. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    3. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    4. Dahmene, Meriam & Boughrara, Adel & Slim, Skander, 2021. "Nonlinearity in stock returns: Do risk aversion, investor sentiment and, monetary policy shocks matter?," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 676-699.
    5. Olson, Dennis & Mossman, Charles, 2003. "Neural network forecasts of Canadian stock returns using accounting ratios," International Journal of Forecasting, Elsevier, vol. 19(3), pages 453-465.
    6. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    7. Bauer, Gregory H., 2017. "International house price cycles, monetary policy and credit," Journal of International Money and Finance, Elsevier, vol. 74(C), pages 88-114.
    8. Chen, Nan-Kuang & Chen, Shiu-Sheng & Chou, Yu-Hsi, 2017. "Further evidence on bear market predictability: The role of the external finance premium," International Review of Economics & Finance, Elsevier, vol. 50(C), pages 106-121.
    9. Becker, Janis & Leschinski, Christian, 2018. "Directional Predictability of Daily Stock Returns," Hannover Economic Papers (HEP) dp-624, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    10. Peter F. Christoffersen & Francis X. Diebold, 2006. "Financial Asset Returns, Direction-of-Change Forecasting, and Volatility Dynamics," Management Science, INFORMS, vol. 52(8), pages 1273-1287, August.
    11. Harri Pönkä, 2017. "Predicting the direction of US stock markets using industry returns," Empirical Economics, Springer, vol. 52(4), pages 1451-1480, June.
    12. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    13. Nyberg, Henri, 2010. "QR-GARCH-M Model for Risk-Return Tradeoff in U.S. Stock Returns and Business Cycles," MPRA Paper 23724, University Library of Munich, Germany.
    14. David McMillan & Alan Speight, 2006. "Non-linear long horizon returns predictability: evidence from six south-east Asian markets," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 13(2), pages 95-111, June.
    15. Massimo Guidolin & Stuart Hyde & David McMillan & Sadayuki Ono, 2014. "Does the Macroeconomy Predict UK Asset Returns in a Nonlinear Fashion? Comprehensive Out-of-Sample Evidence," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(4), pages 510-535, August.
    16. Chauvet, Marcelle & Potter, Simon, 2013. "Forecasting Output," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 141-194, Elsevier.
    17. Don Harding & Adrian Pagan, 2006. "The Econometric Analysis of Constructed Binary Time Series," Department of Economics - Working Papers Series 963, The University of Melbourne.
    18. Wang, Lu & Ma, Feng & Hao, Jianyang & Gao, Xinxin, 2021. "Forecasting crude oil volatility with geopolitical risk: Do time-varying switching probabilities play a role?," International Review of Financial Analysis, Elsevier, vol. 76(C).
    19. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    20. Chevapatrakul, Thanaset, 2013. "Return sign forecasts based on conditional risk: Evidence from the UK stock market index," Journal of Banking & Finance, Elsevier, vol. 37(7), pages 2342-2353.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:mulfin:v:18:y:2008:i:5:p:477-487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/mulfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.