IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/56347.html
   My bibliography  Save this paper

Sign-based specification tests for martingale difference with conditional heteroscedasity

Author

Listed:
  • Chen, Min
  • Zhu, Ke

Abstract

This article proposes Cramer-von Mises (CM) and Kolmogrove-Smirnov (KS) test statistics based on the signs of a time series to test the null hypothesis that the series is a martingale difference sequence (MDS) with conditional heteroscedasity. Both of test statistics allowing for heavy-tailedness, non-stationarity, and nonlinear serial dependence of unknown forms, are easy-to-implement. Unlike the sign-based variance-ratio test in Wright (2000), our sign-based CM and KS tests have no need to select the lag. Unlike other often used specification tests for MDS, our sign-based CM and KS tests are robust and have exact distributions which can be simulated easily. Simulation studies and applications further demonstrate the importance of our sign-based CM and KS tests.

Suggested Citation

  • Chen, Min & Zhu, Ke, 2014. "Sign-based specification tests for martingale difference with conditional heteroscedasity," MPRA Paper 56347, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:56347
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/56347/1/MPRA_paper_56347.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Yongmiao, 1996. "Consistent Testing for Serial Correlation of Unknown Form," Econometrica, Econometric Society, vol. 64(4), pages 837-864, July.
    2. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    3. Durlauf, Steven N., 1991. "Spectral based testing of the martingale hypothesis," Journal of Econometrics, Elsevier, vol. 50(3), pages 355-376, December.
    4. Deo, Rohit S., 2000. "Spectral tests of the martingale hypothesis under conditional heteroscedasticity," Journal of Econometrics, Elsevier, vol. 99(2), pages 291-315, December.
    5. Timmermann, Allan & Granger, Clive W. J., 2004. "Efficient market hypothesis and forecasting," International Journal of Forecasting, Elsevier, vol. 20(1), pages 15-27.
    6. Shao, Xiaofeng, 2011. "Testing For White Noise Under Unknown Dependence And Its Applications To Diagnostic Checking For Time Series Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 312-343, April.
    7. Marc Hallin & Catherine Vermandele & Bas J. M. Werker, 2008. "Semiparametrically efficient inference based on signs and ranks for median‐restricted models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(2), pages 389-412, April.
    8. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    9. Chen, Willa W. & Deo, Rohit S., 2006. "The Variance Ratio Statistic At Large Horizons," Econometric Theory, Cambridge University Press, vol. 22(2), pages 206-234, April.
    10. Wright, Jonathan H, 2000. "Alternative Variance-Ratio Tests Using Ranks and Signs," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(1), pages 1-9, January.
    11. Linton, Oliver & Pan, Jiazhu & Wang, Hui, 2010. "Estimation For A Nonstationary Semi-Strong Garch(1,1) Model With Heavy-Tailed Errors," Econometric Theory, Cambridge University Press, vol. 26(1), pages 1-28, February.
    12. Christian Francq & Jean‐Michel Zakoïan, 2012. "Strict Stationarity Testing and Estimation of Explosive and Stationary Generalized Autoregressive Conditional Heteroscedasticity Models," Econometrica, Econometric Society, vol. 80(2), pages 821-861, March.
    13. Hansen, Bruce E, 1994. "Autoregressive Conditional Density Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 35(3), pages 705-730, August.
    14. Elise Coudin & Jean-Marie Dufour, 2009. "Finite-sample distribution-free inference in linear median regressions under heteroscedasticity and non-linear dependence of unknown form," Econometrics Journal, Royal Economic Society, vol. 12(s1), pages 19-49, January.
    15. Marc Hallin & Catherine Vermandele & Bas Werker, 2008. "Semiparametrically efficient inference based on signs and ranks statistics for median-restricted models," ULB Institutional Repository 2013/13408, ULB -- Universite Libre de Bruxelles.
    16. Shao, Xiaofeng, 2011. "A bootstrap-assisted spectral test of white noise under unknown dependence," Journal of Econometrics, Elsevier, vol. 162(2), pages 213-224, June.
    17. Kian‐Ping Lim & Robert Brooks, 2011. "The Evolution Of Stock Market Efficiency Over Time: A Survey Of The Empirical Literature," Journal of Economic Surveys, Wiley Blackwell, vol. 25(1), pages 69-108, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ke Zhu, 2016. "Bootstrapping the portmanteau tests in weak auto-regressive moving average models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(2), pages 463-485, March.
    2. Charles, Amélie & Darné, Olivier & Kim, Jae H., 2012. "Exchange-rate return predictability and the adaptive markets hypothesis: Evidence from major foreign exchange rates," Journal of International Money and Finance, Elsevier, vol. 31(6), pages 1607-1626.
    3. repec:wyi:journl:002087 is not listed on IDEAS
    4. Zhang, Xianyang, 2016. "White noise testing and model diagnostic checking for functional time series," Journal of Econometrics, Elsevier, vol. 194(1), pages 76-95.
    5. Chang, Jinyuan & Jiang, Qing & Shao, Xiaofeng, 2023. "Testing the martingale difference hypothesis in high dimension," Journal of Econometrics, Elsevier, vol. 235(2), pages 972-1000.
    6. Yongmiao Hong, 2013. "Serial Correlation and Serial Dependence," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    7. Stéphane Goutte & David Guerreiro & Bilel Sanhaji & Sophie Saglio & Julien Chevallier, 2019. "International Financial Markets," Post-Print halshs-02183053, HAL.
    8. Xuexin WANG, 2021. "Generalized Spectral Tests for High Dimensional Multivariate Martingale Difference Hypotheses," Working Papers 2021-11-06, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    9. Zhu, Ke & Li, Wai Keung, 2015. "A bootstrapped spectral test for adequacy in weak ARMA models," Journal of Econometrics, Elsevier, vol. 187(1), pages 113-130.
    10. Guay, Alain & Guerre, Emmanuel & Lazarová, Štěpána, 2013. "Robust adaptive rate-optimal testing for the white noise hypothesis," Journal of Econometrics, Elsevier, vol. 176(2), pages 134-145.
    11. Hill, Jonathan B. & Motegi, Kaiji, 2019. "Testing the white noise hypothesis of stock returns," Economic Modelling, Elsevier, vol. 76(C), pages 231-242.
    12. Aggarwal, Divya, 2019. "Do bitcoins follow a random walk model?," Research in Economics, Elsevier, vol. 73(1), pages 15-22.
    13. Nankervis, John C. & Savin, N. E., 2010. "Testing for Serial Correlation: Generalized Andrews–Ploberger Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(2), pages 246-255.
    14. Wang, Hui & Pan, Jiazhu, 2014. "Normal mixture quasi maximum likelihood estimation for non-stationary TGARCH(1,1) models," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 117-123.
    15. Gourieroux, Christian & Jasiak, Joann, 2019. "Robust analysis of the martingale hypothesis," Econometrics and Statistics, Elsevier, vol. 9(C), pages 17-41.
    16. Peter C. B. Phillips & Sainan Jin, 2014. "Testing the Martingale Hypothesis," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 537-554, October.
    17. Mengya Liu & Fukan Zhu & Ke Zhu, 2020. "Multi-frequency-band tests for white noise under heteroskedasticity," Papers 2004.09161, arXiv.org.
    18. Li, Linyuan & Duchesne, Pierre & Liou, Chu Pheuil, 2021. "On diagnostic checking in ARMA models with conditionally heteroscedastic martingale difference using wavelet methods," Econometrics and Statistics, Elsevier, vol. 19(C), pages 169-187.
    19. Roberto Ortiz & Mauricio Contreras & Marcelo Villena, 2015. "On the Efficient Market Hypothesis of Stock Market Indexes: The Role of Non-synchronous Trading and Portfolio Effects," Papers 1510.03926, arXiv.org.
    20. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    21. Luger, Richard, 2012. "Finite-sample bootstrap inference in GARCH models with heavy-tailed innovations," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3198-3211.

    More about this item

    Keywords

    Conditional heteroscedasity; Cramer-von Mises test; Kolmogrove-Smirnov test; Martingale difference; Robustness.;
    All these keywords.

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:56347. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.