IDEAS home Printed from https://ideas.repec.org/h/elg/eechap/22222_10.html
   My bibliography  Save this book chapter

Econometrics of machine learning methods in economic forecasting

In: Handbook of Research Methods and Applications in Macroeconomic Forecasting

Author

Listed:
  • Andrii Babii
  • Eric Ghysels
  • Jonas Striaukas

Abstract

Bringing together the recent advances and innovative methods in macroeconomic forecasting, this erudite Handbook outlines how to forecast, including following world events such as the Covid-19 pandemic and the global financial crisis. With contributions from global experts, chapters explore the use of machine-learning techniques, the value of social media data, and climate change forecasting. This title contains one or more Open Access chapters.

Suggested Citation

  • Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
  • Handle: RePEc:elg:eechap:22222_10
    as

    Download full text from publisher

    File URL: https://www.elgaronline.com/doi/10.4337/9781035310050.00014
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Economics and Finance; Research Methods;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:elg:eechap:22222_10. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Darrel McCalla (email available below). General contact details of provider: http://www.e-elgar.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.