IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2307.15151.html
   My bibliography  Save this paper

Predictability Tests Robust against Parameter Instability

Author

Listed:
  • Christis Katsouris

Abstract

We consider Wald type statistics designed for joint predictability and structural break testing based on the instrumentation method of Phillips and Magdalinos (2009). We show that under the assumption of nonstationary predictors: (i) the tests based on the OLS estimators converge to a nonstandard limiting distribution which depends on the nuisance coefficient of persistence; and (ii) the tests based on the IVX estimators can filter out the persistence under certain parameter restrictions due to the supremum functional. These results contribute to the literature of joint predictability and parameter instability testing by providing analytical tractable asymptotic theory when taking into account nonstationary regressors. We compare the finite-sample size and power performance of the Wald tests under both estimators via extensive Monte Carlo experiments. Critical values are computed using standard bootstrap inference methodologies. We illustrate the usefulness of the proposed framework to test for predictability under the presence of parameter instability by examining the stock market predictability puzzle for the US equity premium.

Suggested Citation

  • Christis Katsouris, 2023. "Predictability Tests Robust against Parameter Instability," Papers 2307.15151, arXiv.org.
  • Handle: RePEc:arx:papers:2307.15151
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2307.15151
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ploberger, Werner & Krämer;, Walter, 1990. "The Local Power of the CUSUM and CUSUM of Squares Tests," Econometric Theory, Cambridge University Press, vol. 6(3), pages 335-347, September.
    2. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    3. Inoue, Atsushi & Jin, Lu & Rossi, Barbara, 2017. "Rolling window selection for out-of-sample forecasting with time-varying parameters," Journal of Econometrics, Elsevier, vol. 196(1), pages 55-67.
    4. Amihud, Yakov & Hurvich, Clifford M., 2004. "Predictive Regressions: A Reduced-Bias Estimation Method," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 39(4), pages 813-841, December.
    5. Peter C.B. Phillips, 1987. "Multiple Regression with Integrated Time Series," Cowles Foundation Discussion Papers 852, Cowles Foundation for Research in Economics, Yale University.
    6. Kasparis, Ioannis & Andreou, Elena & Phillips, Peter C.B., 2015. "Nonparametric predictive regression," Journal of Econometrics, Elsevier, vol. 185(2), pages 468-494.
    7. Magdalinos, Tassos & Phillips, Peter C.B., 2009. "Limit Theory For Cointegrated Systems With Moderately Integrated And Moderately Explosive Regressors," Econometric Theory, Cambridge University Press, vol. 25(2), pages 482-526, April.
    8. Ke-Li Xu & Lauren Cohen, 2020. "Testing for Multiple-Horizon Predictability: Direct Regression Based versus Implication Based," The Review of Financial Studies, Society for Financial Studies, vol. 33(9), pages 4403-4443.
    9. Boldea, Otilia & Cornea-Madeira, Adriana & Hall, Alastair R., 2019. "Bootstrapping structural change tests," Journal of Econometrics, Elsevier, vol. 213(2), pages 359-397.
    10. P. C. B. Phillips & S. N. Durlauf, 1986. "Multiple Time Series Regression with Integrated Processes," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 53(4), pages 473-495.
    11. Bruce E. Hansen, 2000. "Sample Splitting and Threshold Estimation," Econometrica, Econometric Society, vol. 68(3), pages 575-604, May.
    12. Campbell, John Y. & Yogo, Motohiro, 2006. "Efficient tests of stock return predictability," Journal of Financial Economics, Elsevier, vol. 81(1), pages 27-60, July.
    13. Phillips, Peter C B, 1988. "Regression Theory for Near-Integrated Time Series," Econometrica, Econometric Society, vol. 56(5), pages 1021-1043, September.
    14. Anatolyev, Stanislav & Kosenok, Grigory, 2012. "Another Numerical Method Of Finding Critical Values For The Andrews Stability Test," Econometric Theory, Cambridge University Press, vol. 28(1), pages 239-246, February.
    15. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    16. Iliyan Georgiev & David I. Harvey & Stephen J. Leybourne & A. M. Robert Taylor, 2019. "A Bootstrap Stationarity Test for Predictive Regression Invalidity," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(3), pages 528-541, July.
    17. Georgiev, Iliyan & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2018. "Testing for parameter instability in predictive regression models," Journal of Econometrics, Elsevier, vol. 204(1), pages 101-118.
    18. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    19. Jean-Yves Pitarakis, 2017. "A Simple Approach for Diagnosing Instabilities in Predictive Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 79(5), pages 851-874, October.
    20. Stambaugh, Robert F., 1999. "Predictive regressions," Journal of Financial Economics, Elsevier, vol. 54(3), pages 375-421, December.
    21. Jushan Bai & Pierre Perron, 1998. "Estimating and Testing Linear Models with Multiple Structural Changes," Econometrica, Econometric Society, vol. 66(1), pages 47-78, January.
    22. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    23. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    24. Cai, Zongwu & Wang, Yunfei & Wang, Yonggang, 2015. "Testing Instability In A Predictive Regression Model With Nonstationary Regressors," Econometric Theory, Cambridge University Press, vol. 31(5), pages 953-980, October.
    25. Jean-Yves Pitarakis, 2008. "Comment on: Threshold Autoregressions With a Unit Root," Econometrica, Econometric Society, vol. 76(5), pages 1207-1217, September.
    26. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    27. Bingduo Yang & Wei Long & Liang Peng & Zongwu Cai, 2020. "Testing the Predictability of U.S. Housing Price Index Returns Based on an IVX-AR Model," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(532), pages 1598-1619, December.
    28. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    29. Chu, Chia-Shang James & Stinchcombe, Maxwell & White, Halbert, 1996. "Monitoring Structural Change," Econometrica, Econometric Society, vol. 64(5), pages 1045-1065, September.
    30. Gungor, Sermin & Luger, Richard, 2020. "Small-sample tests for stock return predictability with possibly non-stationary regressors and GARCH-type effects," Journal of Econometrics, Elsevier, vol. 218(2), pages 750-770.
    31. Cavanagh, Christopher L. & Elliott, Graham & Stock, James H., 1995. "Inference in Models with Nearly Integrated Regressors," Econometric Theory, Cambridge University Press, vol. 11(5), pages 1131-1147, October.
    32. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    33. Jesùs Gonzalo & Jean-Yves Pitarakis, 2017. "Inferring the Predictability Induced by a Persistent Regressor in a Predictive Threshold Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(2), pages 202-217, April.
    34. Phillips, Peter C.B. & Lee, Ji Hyung, 2013. "Predictive regression under various degrees of persistence and robust long-horizon regression," Journal of Econometrics, Elsevier, vol. 177(2), pages 250-264.
    35. Victoria Atanasov & Stig V. Møller & Richard Priestley, 2020. "Consumption Fluctuations and Expected Returns," Journal of Finance, American Finance Association, vol. 75(3), pages 1677-1713, June.
    36. Phillips, Peter C.B. & Lee, Ji Hyung, 2016. "Robust econometric inference with mixed integrated and mildly explosive regressors," Journal of Econometrics, Elsevier, vol. 192(2), pages 433-450.
    37. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    38. Estrella, Arturo, 2003. "Critical Values And P Values Of Bessel Process Distributions: Computation And Application To Structural Break Tests," Econometric Theory, Cambridge University Press, vol. 19(6), pages 1128-1143, December.
    39. repec:taf:jnlbes:v:30:y:2012:i:2:p:229-241 is not listed on IDEAS
    40. Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
    41. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    42. Elliott, Graham, 2011. "A control function approach for testing the usefulness of trending variables in forecast models and linear regression," Journal of Econometrics, Elsevier, vol. 164(1), pages 79-91, September.
    43. Hansen, Bruce E., 2000. "Testing for structural change in conditional models," Journal of Econometrics, Elsevier, vol. 97(1), pages 93-115, July.
    44. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    45. Phillips, P C B, 1987. "Time Series Regression with a Unit Root," Econometrica, Econometric Society, vol. 55(2), pages 277-301, March.
    46. Alexandros Kostakis & Tassos Magdalinos & Michalis P. Stamatogiannis, 2015. "Robust Econometric Inference for Stock Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 28(5), pages 1506-1553.
    47. Chu, Chia-Shang James & Hornik, Kurt & Kuan, Chung-Ming, 1995. "The Moving-Estimates Test for Parameter Stability," Econometric Theory, Cambridge University Press, vol. 11(4), pages 699-720, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christis Katsouris, 2023. "Structural Break Detection in Quantile Predictive Regression Models with Persistent Covariates," Papers 2302.05193, arXiv.org.
    2. Narayan, Seema & Smyth, Russell, 2015. "The financial econometrics of price discovery and predictability," International Review of Financial Analysis, Elsevier, vol. 42(C), pages 380-393.
    3. Pitarakis, Jean-Yves, 2019. "Predictive Regressions," UC3M Working papers. Economics 28554, Universidad Carlos III de Madrid. Departamento de Economía.
    4. Christis Katsouris, 2023. "Limit Theory under Network Dependence and Nonstationarity," Papers 2308.01418, arXiv.org, revised Aug 2023.
    5. Christis Katsouris, 2023. "Estimation and Inference in Threshold Predictive Regression Models with Locally Explosive Regressors," Papers 2305.00860, arXiv.org, revised May 2023.
    6. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2022. "Testing for episodic predictability in stock returns," Journal of Econometrics, Elsevier, vol. 227(1), pages 85-113.
    7. Yijie Fei, 2024. "A joint test of predictability and structural break in predictive regressions," Empirical Economics, Springer, vol. 67(3), pages 985-1013, September.
    8. Zongwu Cai & Seong Yeon Chang, 2018. "A New Test In A Predictive Regression with Structural Breaks," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201811, University of Kansas, Department of Economics, revised Dec 2018.
    9. Christis Katsouris, 2023. "Break-Point Date Estimation for Nonstationary Autoregressive and Predictive Regression Models," Papers 2308.13915, arXiv.org.
    10. Georgiev, Iliyan & Harvey, David I. & Leybourne, Stephen J. & Taylor, A.M. Robert, 2018. "Testing for parameter instability in predictive regression models," Journal of Econometrics, Elsevier, vol. 204(1), pages 101-118.
    11. Christis Katsouris, 2023. "Bootstrapping Nonstationary Autoregressive Processes with Predictive Regression Models," Papers 2307.14463, arXiv.org.
    12. Christis Katsouris, 2022. "Partial Sum Processes of Residual-Based and Wald-type Break-Point Statistics in Time Series Regression Models," Papers 2202.00141, arXiv.org, revised Feb 2022.
    13. Fukang Zhu & Mengya Liu & Shiqing Ling & Zongwu Cai, 2020. "Testing for Structural Change of Predictive Regression Model to Threshold Predictive Regression Model," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202021, University of Kansas, Department of Economics, revised Dec 2020.
    14. Demetrescu, Matei & Rodrigues, Paulo M.M., 2022. "Residual-augmented IVX predictive regression," Journal of Econometrics, Elsevier, vol. 227(2), pages 429-460.
    15. Demetrescu, Matei & Georgiev, Iliyan & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Extensions to IVX methods of inference for return predictability," Journal of Econometrics, Elsevier, vol. 237(2).
    16. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    17. Andersen, Torben G. & Varneskov, Rasmus T., 2021. "Consistent inference for predictive regressions in persistent economic systems," Journal of Econometrics, Elsevier, vol. 224(1), pages 215-244.
    18. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    19. Demetrescu, Matei & Rodrigues, Paulo M.M. & Taylor, A.M. Robert, 2023. "Transformed regression-based long-horizon predictability tests," Journal of Econometrics, Elsevier, vol. 237(2).
    20. Tu, Yundong & Xie, Xinling, 2023. "Penetrating sporadic return predictability," Journal of Econometrics, Elsevier, vol. 237(1).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2307.15151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.