IDEAS home Printed from https://ideas.repec.org/a/ijc/ijcjou/y2012q3a3.html
   My bibliography  Save this article

How Informative Are Central Bank Assessments of Macroeconomic Risks?

Author

Listed:
  • Malte Knüppel

    (Deutsche Bundesbank)

  • Guido Schultefrankenfeld

    (Deutsche Bundesbank)

Abstract

Many central banks publish regular assessments of the magnitude and balance of risks to the macroeconomic outlook. In this paper, we analyze the statistical properties of the inflation risk assessments that have been published by the Bank of England and the Sveriges Riksbank. In each case, we find no significant evidence of any systematic connection between the ex ante risk assessments and the ex post forecast errors at horizons from zero to eight quarters. These results illustrate the difficult challenges in making accurate real-time assessments of temporal changes to the distribution of forecast errors. JEL Codes

Suggested Citation

  • Malte Knüppel & Guido Schultefrankenfeld, 2012. "How Informative Are Central Bank Assessments of Macroeconomic Risks?," International Journal of Central Banking, International Journal of Central Banking, vol. 8(3), pages 87-139, September.
  • Handle: RePEc:ijc:ijcjou:y:2012:q:3:a:3
    as

    Download full text from publisher

    File URL: http://www.ijcb.org/journal/ijcb12q3a3.pdf
    Download Restriction: no

    File URL: http://www.ijcb.org/journal/ijcb12q3a3.htm
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maximiano Pinheiro & Paulo Esteves, 2012. "On the uncertainty and risks of macroeconomic forecasts: combining judgements with sample and model information," Empirical Economics, Springer, vol. 42(3), pages 639-665, June.
    2. Lutz Kilian & Simone Manganelli, 2007. "Quantifying the Risk of Deflation," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 561-590, March.
    3. James Mitchell & Stephen G. Hall, 2005. "Evaluating, Comparing and Combining Density Forecasts Using the KLIC with an Application to the Bank of England and NIESR ‘Fan’ Charts of Inflation," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 67(s1), pages 995-1033, December.
    4. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    5. Garcí­a, Juan Angel & Manzanares, Andrés, 2007. "What can probability forecasts tell us about inflation risks?," Working Paper Series 825, European Central Bank.
    6. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    7. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    8. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    9. Wallis, Kenneth F, 1989. "Macroeconomic Forecasting: A Survey," Economic Journal, Royal Economic Society, vol. 99(394), pages 28-61, March.
    10. David L. Reifschneider & Peter Tulip, 2007. "Gauging the uncertainty of the economic outlook from historical forecasting errors," Finance and Economics Discussion Series 2007-60, Board of Governors of the Federal Reserve System (U.S.).
    11. Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
    12. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    13. Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
    14. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    15. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    16. Paul Conway, 2000. "Monetary policy in an uncertain world," Reserve Bank of New Zealand Bulletin, Reserve Bank of New Zealand, vol. 63, September.
    17. Eric Leeper, 2003. "An "Inflation Reports" Report," NBER Working Papers 10089, National Bureau of Economic Research, Inc.
    18. Mr. Prakash Kannan & Mr. Selim A Elekdag, 2009. "Incorporating Market Information into the Construction of the Fan Chart," IMF Working Papers 2009/178, International Monetary Fund.
    19. Knüppel, Malte & Schultefrankenfeld, Guido, 2011. "Evaluating macroeconomic risk forecasts," Discussion Paper Series 1: Economic Studies 2011,14, Deutsche Bundesbank.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    2. Schultefrankenfeld Guido, 2013. "Forecast uncertainty and the Bank of England’s interest rate decisions," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 17(1), pages 1-20, February.
    3. Todd E. Clark & Michael W. McCracken & Elmar Mertens, 2020. "Modeling Time-Varying Uncertainty of Multiple-Horizon Forecast Errors," The Review of Economics and Statistics, MIT Press, vol. 102(1), pages 17-33, March.
    4. Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
    5. Galbraith, John W. & van Norden, Simon, 2019. "Asymmetry in unemployment rate forecast errors," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1613-1626.
    6. Geoff Kenny & Thomas Kostka & Federico Masera, 2015. "Density characteristics and density forecast performance: a panel analysis," Empirical Economics, Springer, vol. 48(3), pages 1203-1231, May.
    7. Andrade, P. & Ghysels, E. & Idier, J., 2012. "Tails of Inflation Forecasts and Tales of Monetary Policy," Working papers 407, Banque de France.
    8. Knut Are Aastveit & James Mitchell & Francesco Ravazzolo & Herman van Dijk, 2018. "The Evolution of Forecast Density Combinations in Economics," Tinbergen Institute Discussion Papers 18-069/III, Tinbergen Institute.
    9. Reifschneider, David & Tulip, Peter, 2019. "Gauging the uncertainty of the economic outlook using historical forecasting errors: The Federal Reserve’s approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1564-1582.
    10. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    11. Juan C. Méndez-Vizcaíno & Alexander Guarin & César Anzola-Bravo & Anderson Grajales-Olarte, 2021. "Characterizing and Communicating the Balance of Risks of Macroeconomic Forecasts: A Predictive Density Approach for Colombia," Borradores de Economia 1178, Banco de la Republica de Colombia.
    12. Ohnsorge,Franziska Lieselotte & Stocker,Marc & Some,Modeste Y., 2016. "Quantifying uncertainties in global growth forecasts," Policy Research Working Paper Series 7770, The World Bank.
    13. Knüppel, Malte, 2018. "Forecast-error-based estimation of forecast uncertainty when the horizon is increased," International Journal of Forecasting, Elsevier, vol. 34(1), pages 105-116.
    14. Tsuchiya, Yoichi, 2022. "Evaluating the European Central Bank’s uncertainty forecasts," Economic Analysis and Policy, Elsevier, vol. 73(C), pages 321-330.
    15. Clements, Michael P., 2018. "Are macroeconomic density forecasts informative?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 181-198.
    16. Yoichi Tsuchiya, 2021. "The value added of the Bank of Japan's range forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 817-833, August.
    17. Andrew Binning & Junior Maih, 2016. "Forecast uncertainty in the neighborhood of the effective lower bound: How much asymmetry should we expect?," Working Paper 2016/13, Norges Bank.
    18. G. Kenny, 2014. "Comment," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(4), pages 500-504, October.
    19. Berg, Tim O. & Henzel, Steffen R., 2015. "Point and density forecasts for the euro area using Bayesian VARs," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1067-1095.
    20. David Reifschneider & Peter Tulip, 2017. "Gauging the Uncertainty of the Economic Outlook Using Historical Forecasting Errors: The Federal Reserve's Approach," RBA Research Discussion Papers rdp2017-01, Reserve Bank of Australia.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Knüppel, Malte & Schultefrankenfeld, Guido, 2019. "Assessing the uncertainty in central banks’ inflation outlooks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1748-1769.
    2. Rossi, Barbara & Sekhposyan, Tatevik, 2011. "Understanding models' forecasting performance," Journal of Econometrics, Elsevier, vol. 164(1), pages 158-172, September.
    3. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    4. Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
    5. M. Mogliani & T. Ferrière, 2016. "Rationality of announcements, business cycle asymmetry, and predictability of revisions. The case of French GDP," Working papers 600, Banque de France.
    6. Knüppel, Malte & Schultefrankenfeld, Guido, 2008. "How informative are macroeconomic risk forecasts? An examination of the Bank of England's inflation forecasts," Discussion Paper Series 1: Economic Studies 2008,14, Deutsche Bundesbank.
    7. Clarida, Richard H. & Sarno, Lucio & Taylor, Mark P. & Valente, Giorgio, 2003. "The out-of-sample success of term structure models as exchange rate predictors: a step beyond," Journal of International Economics, Elsevier, vol. 60(1), pages 61-83, May.
    8. Barbara Rossi & Tatevik Sekhposyan, 2016. "Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
    9. Pesaran, M. Hashem & Timmermann, Allan, 2009. "Testing Dependence Among Serially Correlated Multicategory Variables," Journal of the American Statistical Association, American Statistical Association, vol. 104(485), pages 325-337.
    10. repec:lan:wpaper:470 is not listed on IDEAS
    11. Hiroyuki Kawakatsu, 2021. "Information in daily data volatility measurements," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(2), pages 1642-1656, April.
    12. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    13. Sarno, Lucio & Thornton, Daniel L & Valente, Giorgio, 2005. "Federal Funds Rate Prediction," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 449-471, June.
    14. Wu, Jyh-Lin & Hu, Yu-Hau, 2009. "New evidence on nominal exchange rate predictability," Journal of International Money and Finance, Elsevier, vol. 28(6), pages 1045-1063, October.
    15. Barbara Rossi, 2019. "Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them," Economics Working Papers 1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
    16. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    17. Khoa Hoang & Robert Faff, 2021. "Is the ex‐ante equity risk premium always positive? Evidence from a new conditional expectations model," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 61(1), pages 95-124, March.
    18. Clark, Todd & McCracken, Michael, 2013. "Advances in Forecast Evaluation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1107-1201, Elsevier.
    19. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    20. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    21. Laurent Calvet & Adlai Fisher, 2003. "Regime-Switching and the Estimation of Multifractal Processes," Harvard Institute of Economic Research Working Papers 1999, Harvard - Institute of Economic Research.

    More about this item

    JEL classification:

    • E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ijc:ijcjou:y:2012:q:3:a:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Bank for International Settlements (email available below). General contact details of provider: https://www.ijcb.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.