Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil
Author
Abstract
Suggested Citation
DOI: 10.1002/for.2908
Download full text from publisher
References listed on IDEAS
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Armstrong, J. Scott, 1989. "Combining forecasts: The end of the beginning or the beginning of the end?," International Journal of Forecasting, Elsevier, vol. 5(4), pages 585-588.
- Harvey,Andrew C., 2013.
"Dynamic Models for Volatility and Heavy Tails,"
Cambridge Books,
Cambridge University Press, number 9781107630024.
- Harvey,Andrew C., 2013. "Dynamic Models for Volatility and Heavy Tails," Cambridge Books, Cambridge University Press, number 9781107034723, September.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Geweke, John & Amisano, Gianni, 2010.
"Comparing and evaluating Bayesian predictive distributions of asset returns,"
International Journal of Forecasting, Elsevier, vol. 26(2), pages 216-230, April.
- Amisano, Gianni & Geweke, John, 2008. "Comparing and evaluating Bayesian predictive distributions of assets returns," Working Paper Series 969, European Central Bank.
- Yongmiao Hong, 2005. "Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates," The Review of Financial Studies, Society for Financial Studies, vol. 18(1), pages 37-84.
- repec:fgv:epgrbe:v:66:n:3:a:2 is not listed on IDEAS
- Hsiao, Cheng & Wan, Shui Ki, 2014. "Is there an optimal forecast combination?," Journal of Econometrics, Elsevier, vol. 178(P2), pages 294-309.
- Blazsek, Szabolcs & Carrizo, Daniela & Eskildsen, Ricardo & Gonzalez, Humberto, 2018. "Forecasting rate of return after extreme values when using AR-t-GARCH and QAR-Beta-t-EGARCH," Finance Research Letters, Elsevier, vol. 24(C), pages 193-198.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2011.
"The Model Confidence Set,"
Econometrica, Econometric Society, vol. 79(2), pages 453-497, March.
- Peter R. Hansen & Asger Lunde & James M. Nason, 2010. "The Model Confidence Set," CREATES Research Papers 2010-76, Department of Economics and Business Economics, Aarhus University.
- Jonathan H. Wright, 2009.
"Forecasting US inflation by Bayesian model averaging,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(2), pages 131-144.
- Jonathan H. Wright, 2003. "Forecasting U.S. inflation by Bayesian Model Averaging," International Finance Discussion Papers 780, Board of Governors of the Federal Reserve System (U.S.).
- Christian Kascha & Francesco Ravazzolo, 2010.
"Combining inflation density forecasts,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(1-2), pages 231-250.
- Christian Kascha & Francesco Ravazzolo, 2008. "Combining inflation density forecasts," Working Paper 2008/22, Norges Bank.
- Gorgi, Paolo & Koopman, Siem Jan & Li, Mengheng, 2019.
"Forecasting economic time series using score-driven dynamic models with mixed-data sampling,"
International Journal of Forecasting, Elsevier, vol. 35(4), pages 1735-1747.
- Paolo Gorgi & Siem Jan (S.J.) Koopman & Mengheng Li, 2018. "Forecasting economic time series using score-driven dynamic models with mixed-data sampling," Tinbergen Institute Discussion Papers 18-026/III, Tinbergen Institute.
- Timothy Cogley & Thomas J. Sargent, 2005.
"Drift and Volatilities: Monetary Policies and Outcomes in the Post WWII U.S,"
Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 8(2), pages 262-302, April.
- Timothy Cogley & Thomas Sargent, "undated". "Drifts and Volatilities: Monetary Policies and Outcomes in the Post WWII US," Working Papers 2133503, Department of Economics, W. P. Carey School of Business, Arizona State University.
- Timothy Cogley & Thomas J. Sargent, 2003. "Drifts and volatilities: monetary policies and outcomes in the post WWII U.S," FRB Atlanta Working Paper 2003-25, Federal Reserve Bank of Atlanta.
- West, Kenneth D & McCracken, Michael W, 1998.
"Regression-Based Tests of Predictive Ability,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 817-840, November.
- West, K.D. & McCracken, M.W., 1997. "Regression-Based Tests of Predictive Ability," Working papers 9710, Wisconsin Madison - Social Systems.
- Kenneth D. West & Michael W. McCracken, 1998. "Regression-Based Tests of Predictive Ability," NBER Technical Working Papers 0226, National Bureau of Economic Research, Inc.
- Nowotarski, Jakub & Raviv, Eran & Trück, Stefan & Weron, Rafał, 2014.
"An empirical comparison of alternative schemes for combining electricity spot price forecasts,"
Energy Economics, Elsevier, vol. 46(C), pages 395-412.
- Jakub Nowotarski & Eran Raviv & Stefan Trueck & Rafal Weron, 2013. "An empirical comparison of alternate schemes for combining electricity spot price forecasts," HSC Research Reports HSC/13/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013.
"Complete subset regressions,"
Journal of Econometrics, Elsevier, vol. 177(2), pages 357-373.
- Elliott, Graham & Gargano, Antonio & Timmermann, Allan, 2013. "Complete subset regressions," University of California at San Diego, Economics Working Paper Series qt1st3n7z7, Department of Economics, UC San Diego.
- Arruda, Elano Ferreira & Ferreira, Roberto Tatiwa & Castelar, Ivan, 2011.
"Modelos Lineares e Não Lineares da Curva de Phillips para Previsão da Taxa de Inflação no Brasil,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 65(3), September.
- Elano Ferreira Arruda & Roberto Tatiwa Ferreira & Ivan Castelar, 2008. "Modelos lineares e não lineares da curva de Phillips para previsão da taxa de Inflação no Brasil," Anais do XXXVI Encontro Nacional de Economia [Proceedings of the 36th Brazilian Economics Meeting] 200807211607140, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
- Lucas, André & Zhang, Xin, 2016.
"Score-driven exponentially weighted moving averages and Value-at-Risk forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 293-302.
- André Lucas & Xin Zhang, 2014. "Score Driven exponentially Weighted Moving Average and Value-at-Risk Forecasting," Tinbergen Institute Discussion Papers 14-092/IV/DSF77, Tinbergen Institute, revised 09 Sep 2015.
- Lucas, André & Zhang, Xin, 2015. "Score Driven Exponentially Weighted Moving Averages and Value-at-Risk Forecasting," Working Paper Series 309, Sveriges Riksbank (Central Bank of Sweden).
- Bollerslev, Tim, 1986.
"Generalized autoregressive conditional heteroskedasticity,"
Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
- Tim Bollerslev, 1986. "Generalized autoregressive conditional heteroskedasticity," EERI Research Paper Series EERI RP 1986/01, Economics and Econometrics Research Institute (EERI), Brussels.
- Gianni Amisano & John Geweke, 2017.
"Prediction Using Several Macroeconomic Models,"
The Review of Economics and Statistics, MIT Press, vol. 99(5), pages 912-925, December.
- Amisano, Gianni & Geweke, John, 2013. "Prediction using several macroeconomic models," Working Paper Series 1537, European Central Bank.
- Barbara Rossi & Atsushi Inoue, 2012.
"Out-of-Sample Forecast Tests Robust to the Choice of Window Size,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
- Rossi, Barbara & Inoue, Atsushi, 2011. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," CEPR Discussion Papers 8542, C.E.P.R. Discussion Papers.
- Atsushi Inoue & Barbara Rossi, 2011. "Out-of-sample forecast tests robust to the choice of window size," Working Papers 11-31, Federal Reserve Bank of Philadelphia.
- Barbara Rossi & Atsushi Inoue, 2012. "Out-of-sample forecast tests robust to the choice of window size," Economics Working Papers 1404, Department of Economics and Business, Universitat Pompeu Fabra.
- Asger Lunde & Peter R. Hansen, 2005.
"A forecast comparison of volatility models: does anything beat a GARCH(1,1)?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
- Asger Lunde & Peter Reinhard Hansen, 2001. "A Forecast Comparison of Volatility Models: Does Anything Beat a GARCH(1,1)?," Working Papers 2001-04, Brown University, Department of Economics.
- James H. Stock & Mark W. Watson, 2007.
"Why Has U.S. Inflation Become Harder to Forecast?,"
Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
- James H. Stock & Mark W. Watson, 2006. "Why Has U.S. Inflation Become Harder to Forecast?," NBER Working Papers 12324, National Bureau of Economic Research, Inc.
- Newey, Whitney & West, Kenneth, 2014.
"A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
- Newey, Whitney K & West, Kenneth D, 1987. "A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix," Econometrica, Econometric Society, vol. 55(3), pages 703-708, May.
- Whitney K. Newey & Kenneth D. West, 1986. "A Simple, Positive Semi-Definite, Heteroskedasticity and AutocorrelationConsistent Covariance Matrix," NBER Technical Working Papers 0055, National Bureau of Economic Research, Inc.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- Medeiros, Marcelo C & Vasconcelos, Gabriel & Freitas, Eduardo, 2016. "Forecasting Brazilian Inflation with High-Dimensional Models," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 36(2), November.
- Giorgio E. Primiceri, 2005. "Time Varying Structural Vector Autoregressions and Monetary Policy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 821-852.
- Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
- Marco Del Negro & Giorgio E. Primiceri, 2015.
"Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
- Marco Del Negro & Giorgio E. Primiceri, 2013. "Time-Varying Structural Vector Autoregressions and Monetary Policy: a Corrigendum," Staff Reports 619, Federal Reserve Bank of New York.
- Kapetanios, George & Labhard, Vincent & Price, Simon, 2008.
"Forecasting Using Bayesian and Information-Theoretic Model Averaging: An Application to U.K. Inflation,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 33-41, January.
- George Kapetanios & Vincent Labhard & Simon Price, 2005. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Bank of England working papers 268, Bank of England.
- Kapetanios, G. & Labhard, V. & Price, S., 2007. "Forecasting using Bayesian and information theoretic model averaging: an application to UK inflation," Working Papers 07/15, Department of Economics, City University London.
- George Kapetanios & Vincent Labhard & Simon Price, 2006. "Forecasting using Bayesian and Information Theoretic Model Averaging: An Application to UK Inflation," Working Papers 566, Queen Mary University of London, School of Economics and Finance.
- Drew Creal & Siem Jan Koopman & André Lucas, 2013. "Generalized Autoregressive Score Models With Applications," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 28(5), pages 777-795, August.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Jose, Victor Richmond R. & Winkler, Robert L., 2008. "Simple robust averages of forecasts: Some empirical results," International Journal of Forecasting, Elsevier, vol. 24(1), pages 163-169.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2016.
"Spillover dynamics for systemic risk measurement using spatial financial time series models,"
Journal of Econometrics, Elsevier, vol. 195(2), pages 211-223.
- Blasques, Francisco & Koopman, Siem Jan & Lucas, Andre & Schaumburg, Julia, 2014. "Spillover dynamics for systemic risk measurement using spatial financial time series models," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100632, Verein für Socialpolitik / German Economic Association.
- Francisco Blasques & Siem Jan Koopman & Andre Lucas & Julia Schaumburg, 2014. "Spillover Dynamics for Systemic Risk Measurement using Spatial Financial Time Series Models," Tinbergen Institute Discussion Papers 14-107/III, Tinbergen Institute.
- Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
- Jacob A. Mincer & Victor Zarnowitz, 1969. "The Evaluation of Economic Forecasts," NBER Chapters, in: Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, pages 3-46, National Bureau of Economic Research, Inc.
- Raffaella Giacomini & Halbert White, 2006.
"Tests of Conditional Predictive Ability,"
Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
- Raffaella Giacomini & Halbert White, 2003. "Tests of conditional predictive ability," Boston College Working Papers in Economics 572, Boston College Department of Economics.
- Giacomini, Raffaella & White, Halbert, 2003. "Tests of Conditional Predictive Ability," University of California at San Diego, Economics Working Paper Series qt5jk0j5jh, Department of Economics, UC San Diego.
- Raffaella Giacomini & Halbert White, 2003. "Tests of Conditional Predictive Ability," Econometrics 0308001, University Library of Munich, Germany.
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2014.
"Modeling and predicting the CBOE market volatility index,"
Journal of Banking & Finance, Elsevier, vol. 40(C), pages 1-10.
- Marcelo Fernandes & Marcelo Cunha Medeiros & MArcelo Scharth, 2007. "Modeling and predicting the CBOE market volatility index," Textos para discussão 548, Department of Economics PUC-Rio (Brazil).
- Fernandes, Marcelo & Medeiros, Marcelo C. & Scharth, Marcel, 2013. "Modeling and predicting the CBOE market volatility index," Textos para discussão 342, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Szabolcs Blazsek & Helmuth Chavez & Carlos Mendez, 2016. "Model stability and forecast performance of Beta--EGARCH," Applied Economics Letters, Taylor & Francis Journals, vol. 23(17), pages 1219-1223, November.
- Nelson, Daniel B, 1991. "Conditional Heteroskedasticity in Asset Returns: A New Approach," Econometrica, Econometric Society, vol. 59(2), pages 347-370, March.
- Barbara Rossi & Tatevik Sekhposyan, 2016.
"Forecast Rationality Tests in the Presence of Instabilities, with Applications to Federal Reserve and Survey Forecasts,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 31(3), pages 507-532, April.
- Barbara Rossi & Tatevik Sekhposyany, 2014. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," Working Papers 765, Barcelona School of Economics.
- Barbara Rossi & Tatevik Sekhposyan, 2014. "Forecast rationality tests in the presence of instabilities, with applications to Federal Reserve and survey forecasts," Economics Working Papers 1426, Department of Economics and Business, Universitat Pompeu Fabra, revised Nov 2014.
- Rossi, Barbara & Sekhposyan, Tatevik, 2016. "Forecast Rationality Tests in the Presence of Instabilities, With Applications to Federal Reserve and Survey Forecasts," CEPR Discussion Papers 11391, C.E.P.R. Discussion Papers.
- Peter Nystrup & Henrik Madsen & Erik Lindström, 2017. "Long Memory of Financial Time Series and Hidden Markov Models with Time‐Varying Parameters," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 36(8), pages 989-1002, December.
- Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Diebold, Francis X & Gunther, Todd A & Tay, Anthony S, 1998. "Evaluating Density Forecasts with Applications to Financial Risk Management," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 863-883, November.
- Jacob A. Mincer, 1969. "Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance," NBER Books, National Bureau of Economic Research, Inc, number minc69-1.
- Kohlscheen, Emanuel, 2012.
"Uma nota sobre erros de previsão da inflação de curto-prazo,"
Revista Brasileira de Economia - RBE, EPGE Brazilian School of Economics and Finance - FGV EPGE (Brazil), vol. 66(3), October.
- Emanuel Kohlscheen, 2010. "Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo," Working Papers Series 227, Central Bank of Brazil, Research Department.
- Raffaella Giacomini & Barbara Rossi, 2010.
"Forecast comparisons in unstable environments,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(4), pages 595-620.
- Giacomini, Raffaella & Rossi, Barbara, 2008. "Forecast Comparisons in Unstable Environments," Working Papers 08-04, Duke University, Department of Economics.
- Tilmann Gneiting & Fadoua Balabdaoui & Adrian E. Raftery, 2007. "Probabilistic forecasts, calibration and sharpness," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(2), pages 243-268, April.
- Barbara Rossi & Matthieu Soupre, 2017. "Implementing tests for forecast evaluation in the presence of instabilities," Stata Journal, StataCorp LP, vol. 17(4), pages 850-865, December.
- David F. Hendry & Michael P. Clements, 2004.
"Pooling of forecasts,"
Econometrics Journal, Royal Economic Society, vol. 7(1), pages 1-31, June.
- David Hendry & Michael P. Clements, 2001. "Pooling of Forecasts," Economics Papers 2002-W9, Economics Group, Nuffield College, University of Oxford.
- Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
- Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
- James H. Stock & Mark W. Watson, 2007. "Why Has U.S. Inflation Become Harder to Forecast?," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(s1), pages 3-33, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Barbara Rossi, 2019.
"Forecasting in the presence of instabilities: How do we know whether models predict well and how to improve them,"
Economics Working Papers
1711, Department of Economics and Business, Universitat Pompeu Fabra, revised Jul 2021.
- Barbara Rossi, 2019. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," Working Papers 1162, Barcelona School of Economics.
- Rossi, Barbara, 2020. "Forecasting in the Presence of Instabilities: How Do We Know Whether Models Predict Well and How to Improve Them," CEPR Discussion Papers 14472, C.E.P.R. Discussion Papers.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024.
"Predicting Bond Return Predictability,"
Management Science, INFORMS, vol. 70(2), pages 931-951, February.
- Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2020. "Predicting bond return predictability," CREATES Research Papers 2020-09, Department of Economics and Business Economics, Aarhus University.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Pablo Guerróon‐Quintana & Molin Zhong, 2023.
"Macroeconomic forecasting in times of crises,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(3), pages 295-320, April.
- Pablo Guerrón-Quintana & Molin Zhong, 2017. "Macroeconomic Forecasting in Times of Crises," Finance and Economics Discussion Series 2017-018, Board of Governors of the Federal Reserve System (U.S.).
- Delle Monache, Davide & Petrella, Ivan, 2017.
"Adaptive models and heavy tails with an application to inflation forecasting,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 482-501.
- Delle Monache, Davide & Petrella, Ivan, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," MPRA Paper 75424, University Library of Munich, Germany.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails with an application to inflation forecasting," BCAM Working Papers 1603, Birkbeck Centre for Applied Macroeconomics.
- Raffaella Giacomini & Barbara Rossi, 2013. "Forecasting in macroeconomics," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 17, pages 381-408, Edward Elgar Publishing.
- Araujo, Gustavo Silva & Gaglianone, Wagner Piazza, 2023.
"Machine learning methods for inflation forecasting in Brazil: New contenders versus classical models,"
Latin American Journal of Central Banking (previously Monetaria), Elsevier, vol. 4(2).
- Gustavo Silva Araujo & Wagner Piazza Gaglianone, 2022. "Machine Learning Methods for Inflation Forecasting in Brazil: new contenders versus classical models," Working Papers Series 561, Central Bank of Brazil, Research Department.
- Nima Nonejad, 2021. "An Overview Of Dynamic Model Averaging Techniques In Time‐Series Econometrics," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 566-614, April.
- Raffaella Giacomini & Barbara Rossi, 2015.
"Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models,"
Annual Review of Economics, Annual Reviews, vol. 7(1), pages 207-229, August.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in nonstationary environments: What works and what doesn't in reduced-form and structural models," Economics Working Papers 1476, Department of Economics and Business, Universitat Pompeu Fabra.
- Raffaella Giacomini & Barbara Rossi, 2014. "Forecasting in Nonstationary Environments: What Works and What Doesn't in Reduced-Form and Structural Models," Working Papers 819, Barcelona School of Economics.
- repec:wrk:wrkemf:13 is not listed on IDEAS
- Mauro Bernardi & Leopoldo Catania, 2016. "Comparison of Value-at-Risk models using the MCS approach," Computational Statistics, Springer, vol. 31(2), pages 579-608, June.
- Malte Knuppel & Fabian Kruger & Marc-Oliver Pohle, 2022.
"Score-based calibration testing for multivariate forecast distributions,"
Papers
2211.16362, arXiv.org, revised Dec 2023.
- Knüppel, Malte & Krüger, Fabian & Pohle, Marc-Oliver, 2022. "Score-based calibration testing for multivariate forecast distributions," Discussion Papers 50/2022, Deutsche Bundesbank.
- Todd E. Clark & Michael W. McCracken, 2010.
"Averaging forecasts from VARs with uncertain instabilities,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
- Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29.
- Todd E. Clark & Michael W. McCracken, 2006. "Averaging forecasts from VARs with uncertain instabilities," Research Working Paper RWP 06-12, Federal Reserve Bank of Kansas City.
- Todd E. Clark & Michael W. McCracken, 2008. "Averaging forecasts from VARs with uncertain instabilities," Working Papers 2008-030, Federal Reserve Bank of St. Louis.
- Todd E. Clark & Michael W. McCracken, 2007. "Averaging forecasts from VARs with uncertain instabilities," Finance and Economics Discussion Series 2007-42, Board of Governors of the Federal Reserve System (U.S.).
- Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
- Garcia, Márcio G.P. & Medeiros, Marcelo C. & Vasconcelos, Gabriel F.R., 2017. "Real-time inflation forecasting with high-dimensional models: The case of Brazil," International Journal of Forecasting, Elsevier, vol. 33(3), pages 679-693.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Davide Delle Monache & Ivan Petrella, 2014.
"Adaptive Models and Heavy Tails,"
Birkbeck Working Papers in Economics and Finance
1409, Birkbeck, Department of Economics, Mathematics & Statistics.
- Petrella, Ivan & Delle Monache, Davide, 2016. "Adaptive models and heavy tails," Bank of England working papers 577, Bank of England.
- Davide Delle Monache & Ivan Petrella, 2014. "Adaptive Models and Heavy Tails," Working Papers 720, Queen Mary University of London, School of Economics and Finance.
- Davide Delle Monache & Ivan Petrella, 2016. "Adaptive models and heavy tails," Temi di discussione (Economic working papers) 1052, Bank of Italy, Economic Research and International Relations Area.
- Bonnier, Jean-Baptiste, 2022. "Forecasting crude oil volatility with exogenous predictors: As good as it GETS?," Energy Economics, Elsevier, vol. 111(C).
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:42:y:2023:i:2:p:369-401. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.