IDEAS home Printed from https://ideas.repec.org/p/ehl/lserod/24827.html
   My bibliography  Save this paper

On time-scaling of risk and the square–root–of–time rule

Author

Listed:
  • Danielsson, Jon
  • Zigrand, Jean-Pierre

Abstract

Many financial applications, such as risk analysis and derivatives pricing, depend on time scaling of risk. A common method for this purpose, though only correct when returns are iid normal, is the square–root–of–time rule where an estimated quantile of a return distribution is scaled to a lower frequency by the square-root of the time horizon. The aim of this paper is to examine time scaling of risk when returns follow a jump diffusion process. It is argued that a jump diffusion is well-suited for the modeling of systemic risk, which is the raison d’etre of the Basel capital adequacy proposals. We demonstrate that the square–root–of–time rule leads to a systematic underestimation of risk, whereby the degree of underestimation worsens with the time horizon, the jump intensity and the confidence level. As a result, even if the square–root–of–time rule has widespread applications in the Basel Accords, it fails to address the objective of the Accords.

Suggested Citation

  • Danielsson, Jon & Zigrand, Jean-Pierre, 2003. "On time-scaling of risk and the square–root–of–time rule," LSE Research Online Documents on Economics 24827, London School of Economics and Political Science, LSE Library.
  • Handle: RePEc:ehl:lserod:24827
    as

    Download full text from publisher

    File URL: http://eprints.lse.ac.uk/24827/
    File Function: Open access version.
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Schwert, G William, 1990. "Stock Volatility and the Crash of '87," The Review of Financial Studies, Society for Financial Studies, vol. 3(1), pages 77-102.
    2. Drost, Feike C & Nijman, Theo E, 1993. "Temporal Aggregation of GARCH Processes," Econometrica, Econometric Society, vol. 61(4), pages 909-927, July.
    3. Peter Carr & Liuren Wu, 2003. "What Type of Process Underlies Options? A Simple Robust Test," Journal of Finance, American Finance Association, vol. 58(6), pages 2581-2610, December.
    4. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    5. Pan, Jun, 2002. "The jump-risk premia implicit in options: evidence from an integrated time-series study," Journal of Financial Economics, Elsevier, vol. 63(1), pages 3-50, January.
    6. M.J.B. Hall, 1996. "The amendment to the capital accord to incorporate market risk," BNL Quarterly Review, Banca Nazionale del Lavoro, vol. 49(197), pages 271-277.
    7. Bakshi, Gurdip & Cao, Charles & Chen, Zhiwu, 1997. "Empirical Performance of Alternative Option Pricing Models," Journal of Finance, American Finance Association, vol. 52(5), pages 2003-2049, December.
    8. Franklin Allen & Douglas Gale, 2000. "Financial Contagion," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 1-33, February.
    9. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    10. Piazzesi, Monika, 2001. "An Econometric Model of the Yield Curve With Macroeconomic Jump Effects," University of California at Los Angeles, Anderson Graduate School of Management qt5946p7hn, Anderson Graduate School of Management, UCLA.
    11. Patrick A. Groenendijk & André Lucas & Casper G. de Vries, 1998. "A Hybrid Joint Moment Ratio Test for Financial Time Series," Tinbergen Institute Discussion Papers 98-104/2, Tinbergen Institute.
    12. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    13. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    14. Jarrow, Robert A & Rosenfeld, Eric R, 1984. "Jump Risks and the Intertemporal Capital Asset Pricing Model," The Journal of Business, University of Chicago Press, vol. 57(3), pages 337-351, July.
    15. Muller, Ulrich A. & Dacorogna, Michel M. & Olsen, Richard B. & Pictet, Olivier V. & Schwarz, Matthias & Morgenegg, Claude, 1990. "Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis," Journal of Banking & Finance, Elsevier, vol. 14(6), pages 1189-1208, December.
    16. Guidolin, Massimo & Timmermann, Allan, 2006. "Term structure of risk under alternative econometric specifications," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 285-308.
    17. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    18. Naik, Vasanttilak & Lee, Moon, 1990. "General Equilibrium Pricing of Options on the Market Portfolio with Discontinuous Returns," The Review of Financial Studies, Society for Financial Studies, vol. 3(4), pages 493-521.
    19. Jean-Pierre Zigrand & Jon Danielsson, 2001. "What Happens When You Regulate Risk? Evidence from a Simple Equilibrium Model," FMG Discussion Papers dp393, Financial Markets Group.
    20. Johnson, Gordon & Schneeweis, Thomas, 1994. "Jump-Diffusion Processes in the Foreign Exchange Markets and the Release of Macroeconomic News," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 309-329.
    21. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    22. Danielsson, Jon & Shin, Hyun Song & Zigrand, Jean-Pierre, 2004. "The impact of risk regulation on price dynamics," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 1069-1087, May.
    23. Kim, Myung-Jig & Oh, Young-Ho & Brooks, Robert, 1994. "Are Jumps in Stock Returns Diversifiable? Evidence and Implications for Option Pricing," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 29(4), pages 609-631, December.
    24. Ball, Clifford A. & Torous, Walter N., 1983. "A Simplified Jump Process for Common Stock Returns," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 18(1), pages 53-65, March.
    25. Philippe Jorion, 1988. "On Jump Processes in the Foreign Exchange and Stock Markets," The Review of Financial Studies, Society for Financial Studies, vol. 1(4), pages 427-445.
    26. Dong‐Hyun Ahn & Jacob Boudoukh & Matthew Richardson & Robert F. Whitelaw, 1999. "Optimal Risk Management Using Options," Journal of Finance, American Finance Association, vol. 54(1), pages 359-375, February.
    27. Akgiray, Vedat & Booth, G Geoffrey, 1988. "Mixed Diffusion-Jump Process Modeling of Exchange Rate Movements," The Review of Economics and Statistics, MIT Press, vol. 70(4), pages 631-637, November.
    28. Monika Piazzesi, 2001. "An Econometric Model of the Yield Curve with Macroeconomic Jump Effects," NBER Working Papers 8246, National Bureau of Economic Research, Inc.
    29. Ball, Clifford A & Torous, Walter N, 1985. "On Jumps in Common Stock Prices and Their Impact on Call Option Pricing," Journal of Finance, American Finance Association, vol. 40(1), pages 155-173, March.
    30. Francis X. Diebold & Andrew Hickman & Atsushi Inoue & Til Schuermann, 1997. "Converting 1-Day Volatility to h-Day Volatitlity: Scaling by Root-h is Worse Than You Think," Center for Financial Institutions Working Papers 97-34, Wharton School Center for Financial Institutions, University of Pennsylvania.
    31. Attari, Mukarram, 1999. "Discontinuous Interest Rate Processes: An Equilibrium Model for Bond Option Prices," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 34(3), pages 293-322, September.
    32. Bates, David S., 2000. "Post-'87 crash fears in the S&P 500 futures option market," Journal of Econometrics, Elsevier, vol. 94(1-2), pages 181-238.
    33. Engle, Robert F, 1982. "Autoregressive Conditional Heteroscedasticity with Estimates of the Variance of United Kingdom Inflation," Econometrica, Econometric Society, vol. 50(4), pages 987-1007, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Calvet, Laurent E. & Fisher, Adlai J., 2008. "Multifrequency jump-diffusions: An equilibrium approach," Journal of Mathematical Economics, Elsevier, vol. 44(2), pages 207-226, January.
    3. Yan, Shu, 2011. "Jump risk, stock returns, and slope of implied volatility smile," Journal of Financial Economics, Elsevier, vol. 99(1), pages 216-233, January.
    4. Christensen, Kim & Oomen, Roel C.A. & Podolskij, Mark, 2014. "Fact or friction: Jumps at ultra high frequency," Journal of Financial Economics, Elsevier, vol. 114(3), pages 576-599.
    5. Jean-Thomas Bernard & Lynda Khalaf & Maral Kichian & Sebastien Mcmahon, 2008. "Forecasting commodity prices: GARCH, jumps, and mean reversion," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(4), pages 279-291.
    6. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    7. Chang, Charles & Fuh, Cheng-Der & Lin, Shih-Kuei, 2013. "A tale of two regimes: Theory and empirical evidence for a Markov-modulated jump diffusion model of equity returns and derivative pricing implications," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3204-3217.
    8. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    9. Khalaf, Lynda & Saphores, Jean-Daniel & Bilodeau, Jean-Francois, 2003. "Simulation-based exact jump tests in models with conditional heteroskedasticity," Journal of Economic Dynamics and Control, Elsevier, vol. 28(3), pages 531-553, December.
    10. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold, 2007. "Roughing It Up: Including Jump Components in the Measurement, Modeling, and Forecasting of Return Volatility," The Review of Economics and Statistics, MIT Press, vol. 89(4), pages 701-720, November.
    11. Torben G. Andersen & Luca Benzoni & Jesper Lund, 2002. "An Empirical Investigation of Continuous‐Time Equity Return Models," Journal of Finance, American Finance Association, vol. 57(3), pages 1239-1284, June.
    12. Mandeep S. Chahal & Jun Wang, 1997. "Jump Diffusion Processes and Emerging Bond and Stock Markets: An Investigation Using Daily Data," Multinational Finance Journal, Multinational Finance Journal, vol. 1(3), pages 169-197, September.
    13. Jón Daníelsson & Jean-Pierre Zigrand, 2008. "Equilibrium asset pricing with systemic risk," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 35(2), pages 293-319, May.
    14. Liu, Yi & Liu, Huifang & Zhang, Lei, 2019. "Modeling and forecasting return jumps using realized variation measures," Economic Modelling, Elsevier, vol. 76(C), pages 63-80.
    15. Chen, Chin-Ho, 2019. "Downside jump risk and the levels of futures-cash basis," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
    16. Lin, Bing-Huei & Yeh, Shih-Kuo, 2000. "On the distribution and conditional heteroscedasticity in Taiwan stock prices," Journal of Multinational Financial Management, Elsevier, vol. 10(3-4), pages 367-395, December.
    17. Wang, Jying-Nan & Yeh, Jin-Huei & Cheng, Nick Ying-Pin, 2011. "How accurate is the square-root-of-time rule in scaling tail risk: A global study," Journal of Banking & Finance, Elsevier, vol. 35(5), pages 1158-1169, May.
    18. Christina Nikitopoulos-Sklibosios, 2005. "A Class of Markovian Models for the Term Structure of Interest Rates Under Jump-Diffusions," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2005, January-A.
    19. Kaehler, Jürgen & Marnet, Volker, 1993. "Markov-switching models for exchange-rate dynamics and the pricing of foreign-currency options," ZEW Discussion Papers 93-03, ZEW - Leibniz Centre for European Economic Research.
    20. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.

    More about this item

    Keywords

    square-root-of time rule; time-scaling of risk; value-at-risk; systemic risk; risk regulation; jump diffusions;
    All these keywords.

    JEL classification:

    • D81 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Criteria for Decision-Making under Risk and Uncertainty
    • G18 - Financial Economics - - General Financial Markets - - - Government Policy and Regulation
    • G20 - Financial Economics - - Financial Institutions and Services - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ehl:lserod:24827. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: LSERO Manager (email available below). General contact details of provider: https://edirc.repec.org/data/lsepsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.