IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i8p1333-1349.html
   My bibliography  Save this article

Nonparametric predictive inference for stock returns

Author

Listed:
  • Rebecca M. Baker
  • Tahani Coolen-Maturi
  • Frank P. A. Coolen

Abstract

In finance, inferences about future asset returns are typically quantified with the use of parametric distributions and single-valued probabilities. It is attractive to use less restrictive inferential methods, including nonparametric methods which do not require distributional assumptions about variables, and imprecise probability methods which generalize the classical concept of probability to set-valued quantities. Main attractions include the flexibility of the inferences to adapt to the available data and that the level of imprecision in inferences can reflect the amount of data on which these are based. This paper introduces nonparametric predictive inference (NPI) for stock returns. NPI is a statistical approach based on few assumptions, with inferences strongly based on data and with uncertainty quantified via lower and upper probabilities. NPI is presented for inference about future stock returns, as a measure for risk and uncertainty, and for pairwise comparison of two stocks based on their future aggregate returns. The proposed NPI methods are illustrated using historical stock market data.

Suggested Citation

  • Rebecca M. Baker & Tahani Coolen-Maturi & Frank P. A. Coolen, 2017. "Nonparametric predictive inference for stock returns," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(8), pages 1333-1349, June.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1333-1349
    DOI: 10.1080/02664763.2016.1204429
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1204429
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1204429?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sullivan, Ryan & Timmermann, Allan & White, Halbert, 2001. "Dangers of data mining: The case of calendar effects in stock returns," Journal of Econometrics, Elsevier, vol. 105(1), pages 249-286, November.
    2. Mark Trede & Cornelia Savu, 2013. "Do stock returns have an Archimedean copula?," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(8), pages 1764-1778, August.
    3. Ludvigson, Sydney C. & Ng, Serena, 2007. "The empirical risk-return relation: A factor analysis approach," Journal of Financial Economics, Elsevier, vol. 83(1), pages 171-222, January.
    4. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    5. Henkel, Sam James & Martin, J. Spencer & Nardari, Federico, 2011. "Time-varying short-horizon predictability," Journal of Financial Economics, Elsevier, vol. 99(3), pages 560-580, March.
    6. P Coolen-Schrijner & F P A Coolen & S C Shaw, 2006. "Nonparametric adaptive opportunity-based age replacement strategies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 63-81, January.
    7. Evan Gatev & William N. Goetzmann & K. Geert Rouwenhorst, 2006. "Pairs Trading: Performance of a Relative-Value Arbitrage Rule," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 797-827.
    8. J. F. Lawless & Marc Fredette, 2005. "Frequentist prediction intervals and predictive distributions," Biometrika, Biometrika Trust, vol. 92(3), pages 529-542, September.
    9. Kim, Jae H., 2006. "Wild bootstrapping variance ratio tests," Economics Letters, Elsevier, vol. 92(1), pages 38-43, July.
    10. Coolen, F. P. A., 1998. "Low structure imprecise predictive inference for Bayes' problem," Statistics & Probability Letters, Elsevier, vol. 36(4), pages 349-357, January.
    11. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    12. Giovanni De Luca & Giorgia Rivieccio, 2009. "Archimedean copulae for risk measurement," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(8), pages 907-924.
    13. P Coolen-Schrijner & S C Shaw & F P A Coolen, 2009. "Opportunity-based age replacement with a one-cycle criterion," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(10), pages 1428-1438, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ting He, 2020. "Nonparametric Predictive Inference for Asian options," Papers 2008.13082, arXiv.org.
    2. He, Ting, 2023. "An imprecise pricing model for Asian options based on Nonparametric predictive inference," Pacific-Basin Finance Journal, Elsevier, vol. 77(C).
    3. Adriano S. Koshiyama & Nikan Firoozye & Philip Treleaven, 2019. "A derivatives trading recommendation system: The mid‐curve calendar spread case," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 26(2), pages 83-103, April.
    4. Adriano Soares Koshiyama & Nick Firoozye & Philip Treleaven, 2018. "A Machine Learning-based Recommendation System for Swaptions Strategies," Papers 1810.02125, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    2. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    3. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    4. Gupta, Rangan & Hammoudeh, Shawkat & Modise, Mampho P. & Nguyen, Duc Khuong, 2014. "Can economic uncertainty, financial stress and consumer sentiments predict U.S. equity premium?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 367-378.
    5. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    6. repec:ipg:wpaper:2013-020 is not listed on IDEAS
    7. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    8. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    9. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    10. Hanan Naser & Fatema Alaali, 2018. "Can oil prices help predict US stock market returns? Evidence using a dynamic model averaging (DMA) approach," Empirical Economics, Springer, vol. 55(4), pages 1757-1777, December.
    11. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    12. Faria, Gonçalo & Verona, Fabio, 2018. "Forecasting stock market returns by summing the frequency-decomposed parts," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 228-242.
    13. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    14. Wang, Yudong & Liu, Li & Ma, Feng & Diao, Xundi, 2018. "Momentum of return predictability," Journal of Empirical Finance, Elsevier, vol. 45(C), pages 141-156.
    15. Stein, Tobias, 2024. "Forecasting the equity premium with frequency-decomposed technical indicators," International Journal of Forecasting, Elsevier, vol. 40(1), pages 6-28.
    16. Gonçalo Faria & Fabio Verona, 2021. "Time-frequency forecast of the equity premium," Quantitative Finance, Taylor & Francis Journals, vol. 21(12), pages 2119-2135, December.
    17. He, Zhongzhi (Lawrence) & Zhu, Jie & Zhu, Xiaoneng, 2015. "Multi-factor volatility and stock returns," Journal of Banking & Finance, Elsevier, vol. 61(S2), pages 132-149.
    18. Baur, Dirk G. & Dichtl, Hubert & Drobetz, Wolfgang & Wendt, Viktoria-Sophie, 2020. "Investing in gold – Market timing or buy-and-hold?," International Review of Financial Analysis, Elsevier, vol. 71(C).
    19. Tsiakas, Ilias & Li, Jiahan & Zhang, Haibin, 2020. "Equity premium prediction and the state of the economy," Journal of Empirical Finance, Elsevier, vol. 58(C), pages 75-95.
    20. Rapach, David E. & Ringgenberg, Matthew C. & Zhou, Guofu, 2016. "Short interest and aggregate stock returns," Journal of Financial Economics, Elsevier, vol. 121(1), pages 46-65.
    21. James Yae & Yang Luo, 2023. "Robust monitoring machine: a machine learning solution for out-of-sample R $$^2$$ 2 -hacking in return predictability monitoring," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-28, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:8:p:1333-1349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.