IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i3p869-880.html
   My bibliography  Save this article

A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices

Author

Listed:
  • Campisi, Giovanni
  • Muzzioli, Silvia
  • De Baets, Bernard

Abstract

This paper investigates the information content of volatility indices for the purpose of predicting the future direction of the stock market. To this end, different machine learning methods are applied. The dataset used consists of stock index returns and volatility indices of the US stock market from January 2011 until July 2022. The predictive performance of the resulting models is evaluated on the basis of three evaluation metrics: accuracy, the area under the ROC curve, and the F-measure. The results indicate that machine learning models outperform the classical least squares linear regression model in predicting the direction of S&P 500 returns. Among the models examined, random forests and bagging attain the highest predictive performance based on all the evaluation metrics adopted.

Suggested Citation

  • Campisi, Giovanni & Muzzioli, Silvia & De Baets, Bernard, 2024. "A comparison of machine learning methods for predicting the direction of the US stock market on the basis of volatility indices," International Journal of Forecasting, Elsevier, vol. 40(3), pages 869-880.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:869-880
    DOI: 10.1016/j.ijforecast.2023.07.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023000729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.07.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:3:p:869-880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.