IDEAS home Printed from https://ideas.repec.org/p/zbw/rwirep/294.html
   My bibliography  Save this paper

Forecasting House Prices in Germany

Author

Listed:
  • an de Meulen, Philipp
  • Micheli, Martin
  • Schmidt, Torsten

Abstract

In the academic debate there is a broad consensus that house price fluctuations have a substantial impact on financial stability and real economic activity. Therefore, it is important to have timely information on actual and expected house price developments. The aim of this paper is to measure the latest price movements in different real estate markets in Germany and forecast near-term price developments. Therefore we construct hedonic house price indices based on real estate advertisements on the internet platform ImmobilienScout24. Then, starting with a naive AR(p) model as a benchmark, we investigate whether VAR and ARDL models using additional macroeconomic information can improve the forecasting performance as measured by the mean squared forecast error (MSFE). While these models reduce the forecast error only slightly, forecast combination approaches enhance the predictive power considerably.

Suggested Citation

  • an de Meulen, Philipp & Micheli, Martin & Schmidt, Torsten, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 294, RWI - Leibniz-Institut für Wirtschaftsforschung, Ruhr-University Bochum, TU Dortmund University, University of Duisburg-Essen.
  • Handle: RePEc:zbw:rwirep:294
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/61677/1/722360347.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David E. Rapach & Jack K. Strauss, 2007. "Forecasting real housing price growth in the Eighth District states," Regional Economic Development, Federal Reserve Bank of St. Louis, issue Nov, pages 33-42.
    2. Kelvin J. Lancaster, 1966. "A New Approach to Consumer Theory," Journal of Political Economy, University of Chicago Press, vol. 74(2), pages 132-132.
    3. Gupta, Rangan & Kabundi, Alain & Miller, Stephen M., 2011. "Forecasting the US real house price index: Structural and non-structural models with and without fundamentals," Economic Modelling, Elsevier, vol. 28(4), pages 2013-2021, July.
    4. Gattini, Luca & Hiebert, Paul, 2010. "Forecasting and assessing Euro area house prices through the lens of key fundamentals," Working Paper Series 1249, European Central Bank.
    5. Teekens, R & Koerts, J, 1972. "Some Statistical Implications of the Log Transformation of Multiplicative Models," Econometrica, Econometric Society, vol. 40(5), pages 793-819, September.
    6. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    7. Thomas Bauer & Sven Feuerschütte & Michael Kiefer & Philipp an de Meulen & Martin Micheli & Torsten Schmidt & Lars-Holger Wilke, 2013. "Ein hedonischer Immobilienpreisindex auf Basis von Internetdaten: 2007–2011," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 7(1), pages 5-30, August.
    8. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    9. William D. Larson, 2010. "Evaluating Alternative Methods of Forecasting House Prices: A Post-Crisis Reassessment," Working Papers 2010-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Feb 2011.
    10. Jack Triplett, 2004. "Handbook on Hedonic Indexes and Quality Adjustments in Price Indexes: Special Application to Information Technology Products," OECD Science, Technology and Industry Working Papers 2004/9, OECD Publishing.
    11. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    12. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Pierdzioch, 2012. "Macroeconomic Factors and the German Real Estate Market: A Stock-Market-Based Forecasting Experiment," Review of Economics & Finance, Better Advances Press, Canada, vol. 2, pages 87-96, May.
    2. Rüdiger Budde & Martin Micheli, 2013. "Monitoring regionaler Immobilienpreise," RWI Konjunkturbericht, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, pages 17, December.
    3. Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
    4. Konstantin A. Kholodilin & Boriss Siliverstovs, 2017. "Think national, forecast local: a case study of 71 German urban housing markets," Applied Economics, Taylor & Francis Journals, vol. 49(42), pages 4271-4297, September.
    5. Konstantin A. Kholodilin & Boriss Siliverstovs, 2014. "Business Confidence and Forecasting of Housing Prices and Rents in Large German Cities," Discussion Papers of DIW Berlin 1360, DIW Berlin, German Institute for Economic Research.
    6. Budde, Rüdiger & Micheli, Martin, 2013. "Monitoring regionaler Immobilienpreise," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 64(4), pages 31-47.
    7. Sara Ferreira Filipe, 2018. "Housing prices and mortgage credit in Luxembourg," BCL working papers 117, Central Bank of Luxembourg.
    8. Konstantin A. Kholodilin & Andreas Mense, 2012. "Forecasting the Prices and Rents for Flats in Large German Cities," Discussion Papers of DIW Berlin 1207, DIW Berlin, German Institute for Economic Research.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philipp an de Meulen & Martin Micheli & Torsten Schmidt, 2011. "Forecasting House Prices in Germany," Ruhr Economic Papers 0294, Rheinisch-Westfälisches Institut für Wirtschaftsforschung, Ruhr-Universität Bochum, Universität Dortmund, Universität Duisburg-Essen.
    2. repec:zbw:rwirep:0294 is not listed on IDEAS
    3. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    4. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    5. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    6. Samuels, Jon D. & Sekkel, Rodrigo M., 2017. "Model Confidence Sets and forecast combination," International Journal of Forecasting, Elsevier, vol. 33(1), pages 48-60.
    7. David G. McMillan & Mark E. Wohar, 2010. "Stock return predictability and dividend-price ratio: a nonlinear approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 15(4), pages 351-365.
    8. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.
    9. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    10. Guidolin, Massimo & Timmermann, Allan, 2009. "Forecasts of US short-term interest rates: A flexible forecast combination approach," Journal of Econometrics, Elsevier, vol. 150(2), pages 297-311, June.
    11. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    12. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    13. Francis X. Diebold & Minchul Shin, 2017. "Beating the Simple Average: Egalitarian LASSO for Combining Economic Forecasts," PIER Working Paper Archive 17-017, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 20 Aug 2017.
    14. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    15. Karsten R. Gerdrup & Anne Sofie Jore & Christie Smith & Leif Anders Thorsrud, 2009. "Evaluating ensemble density combination - forecasting GDP and inflation," Working Paper 2009/19, Norges Bank.
    16. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    17. Genre, Véronique & Kenny, Geoff & Meyler, Aidan & Timmermann, Allan, 2013. "Combining expert forecasts: Can anything beat the simple average?," International Journal of Forecasting, Elsevier, vol. 29(1), pages 108-121.
    18. Soybilgen, Barış & Yazgan, Ege, 2018. "Evaluating nowcasts of bridge equations with advanced combination schemes for the Turkish unemployment rate," Economic Modelling, Elsevier, vol. 72(C), pages 99-108.
    19. Chan, Felix & Pauwels, Laurent L., 2018. "Some theoretical results on forecast combinations," International Journal of Forecasting, Elsevier, vol. 34(1), pages 64-74.
    20. Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
    21. Jiun-Hua Su, 2021. "No-Regret Forecasting with Egalitarian Committees," Papers 2109.13801, arXiv.org.

    More about this item

    Keywords

    House price forecasts; forecast combination; hedonic price index; House price forecasts; forecast combination; hedonic price index;
    All these keywords.

    JEL classification:

    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • R31 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location - - - Housing Supply and Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:rwirep:294. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/rwiesde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.