IDEAS home Printed from https://ideas.repec.org/a/spr/empeco/v48y2015i1p389-405.html
   My bibliography  Save this article

A new semiparametric test for superior predictive ability

Author

Listed:
  • Zongwu Cai
  • Jiancheng Jiang
  • Jingshuang Zhang
  • Xibin Zhang

Abstract

We propose a new method to test the superior predictive ability (SPA) of a benchmark model against a large group of alternative models. The proposed test is useful for reducing potential data snooping bias. Unlike previous methods, we model the covariance matrix by factor models and develop a generalized likelihood ratio (GLR) test statistic for the above testing problem. The GLR test is also extended to a stepwise GLR (step-GLR) test in the spirit of the step-RC test of Romano and Wolf (Econometrica 73(4):1237–1282, 2005 ) and step-SPA test of Hsu et al. (J Empir Financ 17(3):471–484, 2010 ). The step-GLR test can identify the most contributed predictive models to the rejection of the null hypothesis. A Monte Carlo simulation study shows that the GLR test is much more powerful and less conservative than the SPA test of Hansen (J Bus Econ Stat 23(4):365–380, 2005 ). We also present an application to illustrate the use of the GLR test and make a comparison between our GLR and Hansen’s SPA tests. Copyright Springer-Verlag Berlin Heidelberg 2015

Suggested Citation

  • Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang & Xibin Zhang, 2015. "A new semiparametric test for superior predictive ability," Empirical Economics, Springer, vol. 48(1), pages 389-405, February.
  • Handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:389-405
    DOI: 10.1007/s00181-014-0887-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s00181-014-0887-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s00181-014-0887-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joseph P. Romano & Michael Wolf, 2005. "Stepwise Multiple Testing as Formalized Data Snooping," Econometrica, Econometric Society, vol. 73(4), pages 1237-1282, July.
    2. West, Kenneth D, 1996. "Asymptotic Inference about Predictive Ability," Econometrica, Econometric Society, vol. 64(5), pages 1067-1084, September.
    3. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    4. Gencay, Ramazan, 1998. "The predictability of security returns with simple technical trading rules," Journal of Empirical Finance, Elsevier, vol. 5(4), pages 347-359, October.
    5. Peter Hansen, 2003. "Asymptotic Tests of Composite Hypotheses," Working Papers 2003-09, Brown University, Department of Economics.
    6. Lo, Andrew W & MacKinlay, A Craig, 1990. "When Are Contrarian Profits Due to Stock Market Overreaction?," The Review of Financial Studies, Society for Financial Studies, vol. 3(2), pages 175-205.
    7. Cai, Zongwu & Fan, Jianqing & Yao, Qiwei, 2000. "Functional-coefficient regression models for nonlinear time series," LSE Research Online Documents on Economics 6314, London School of Economics and Political Science, LSE Library.
    8. Andrew W. Lo & Harry Mamaysky & Jiang Wang, 2000. "Foundations of Technical Analysis: Computational Algorithms, Statistical Inference, and Empirical Implementation," Journal of Finance, American Finance Association, vol. 55(4), pages 1705-1765, August.
    9. Blume, Lawrence & Easley, David & O'Hara, Maureen, 1994. "Market Statistics and Technical Analysis: The Role of Volume," Journal of Finance, American Finance Association, vol. 49(1), pages 153-181, March.
    10. Halbert White, 2000. "A Reality Check for Data Snooping," Econometrica, Econometric Society, vol. 68(5), pages 1097-1126, September.
    11. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    12. repec:bla:jfinan:v:55:y:2000:i:4:p:1705-1770 is not listed on IDEAS
    13. Hansen, Peter Reinhard, 2005. "A Test for Superior Predictive Ability," Journal of Business & Economic Statistics, American Statistical Association, vol. 23, pages 365-380, October.
    14. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    15. Jianqing Fan & Jiancheng Jiang, 2007. "Rejoinder on: Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 471-478, December.
    16. Liu, Yufeng & Hayes, David Neil & Nobel, Andrew & Marron, J. S, 2008. "Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1281-1293.
    17. Fan, Jianqing & Jiang, Jiancheng, 2005. "Nonparametric Inferences for Additive Models," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 890-907, September.
    18. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    19. Sweeney, Richard J., 1988. "Some New Filter Rule Tests: Methods and Results," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 285-300, September.
    20. Jianqing Fan & Jiancheng Jiang, 2007. "Nonparametric inference with generalized likelihood ratio tests," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(3), pages 409-444, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    2. Hsu, Po-Hsuan & Hsu, Yu-Chin & Kuan, Chung-Ming, 2010. "Testing the predictive ability of technical analysis using a new stepwise test without data snooping bias," Journal of Empirical Finance, Elsevier, vol. 17(3), pages 471-484, June.
    3. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    4. Zongwu Cai & Jiancheng Jiang & Jingshuang Zhang, 2013. "A New Test for Superior Predictive Ability," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    5. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    6. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    7. Dichtl, Hubert & Drobetz, Wolfgang & Neuhierl, Andreas & Wendt, Viktoria-Sophie, 2021. "Data snooping in equity premium prediction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 72-94.
    8. Chen, Cheng-Wei & Huang, Chin-Sheng & Lai, Hung-Wei, 2009. "The impact of data snooping on the testing of technical analysis: An empirical study of Asian stock markets," Journal of Asian Economics, Elsevier, vol. 20(5), pages 580-591, September.
    9. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    10. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    11. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    12. Bajgrowicz, Pierre & Scaillet, Olivier, 2012. "Technical trading revisited: False discoveries, persistence tests, and transaction costs," Journal of Financial Economics, Elsevier, vol. 106(3), pages 473-491.
    13. Dan Anghel, 2013. "How Reliable is the Moving Average Crossover Rule for an Investor on the Romanian Stock Market?," The Review of Finance and Banking, Academia de Studii Economice din Bucuresti, Romania / Facultatea de Finante, Asigurari, Banci si Burse de Valori / Catedra de Finante, vol. 5(2), pages 089-115, December.
    14. Taylor, Mark & Hsu, Po-Hsuan, 2014. "Forty Years, Thirty Currencies and 21,000 Trading Rules: A Large-scale, Data-Snooping Robust Analysis of Technical Trading in t," CEPR Discussion Papers 10018, C.E.P.R. Discussion Papers.
    15. Yamamoto, Ryuichi, 2012. "Intraday technical analysis of individual stocks on the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3033-3047.
    16. Jin, Sainan & Corradi, Valentina & Swanson, Norman R., 2017. "Robust Forecast Comparison," Econometric Theory, Cambridge University Press, vol. 33(6), pages 1306-1351, December.
    17. Kuang, P. & Schröder, M. & Wang, Q., 2014. "Illusory profitability of technical analysis in emerging foreign exchange markets," International Journal of Forecasting, Elsevier, vol. 30(2), pages 192-205.
    18. Lu, Tsung-Hsun & Chen, Yi-Chi & Hsu, Yu-Chin, 2015. "Trend definition or holding strategy: What determines the profitability of candlestick charting?," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 172-183.
    19. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan & Li, Yan, 2024. "The out-of-sample performance of carry trades," Journal of International Money and Finance, Elsevier, vol. 143(C).
    20. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).

    More about this item

    Keywords

    Data snooping; Generalized likelihood ratio; Reality check; Technical trading rules; Variance matrix estimation; C14; C53;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:empeco:v:48:y:2015:i:1:p:389-405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.