IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v27y2011i2p413-437.html
   My bibliography  Save this article

Asymmetric loss functions and the rationality of expected stock returns

Author

Listed:
  • Aretz, Kevin
  • Bartram, Söhnke M.
  • Pope, Peter F.

Abstract

We combine the innovative approaches of Elliott, Komunjer, and Timmermann (2005) and Patton and Timmermann (2007) with a block bootstrap to analyze whether asymmetric loss functions can rationalize the S&P 500 return expectations of individual forecasters from the Livingston Surveys. Although the rationality of these forecasts has often been rejected, earlier studies have relied on the assumption that positive and negative forecast errors of identical magnitudes are equally important to forecasters. Allowing for homogenous asymmetric loss, our evidence still strongly rejects forecast rationality. However, if we allow for variation in asymmetric loss functions across forecasters, not only do we find significant differences in preferences, but also we can often no longer reject forecast rationality. Our conclusions raise serious doubts about the homogeneous expectations assumption often made in asset pricing, portfolio construction and corporate finance models.

Suggested Citation

  • Aretz, Kevin & Bartram, Söhnke M. & Pope, Peter F., 2011. "Asymmetric loss functions and the rationality of expected stock returns," International Journal of Forecasting, Elsevier, vol. 27(2), pages 413-437.
  • Handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:413-437
    DOI: 10.1016/j.ijforecast.2009.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207009001769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2009.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Carlos Capistr¡N & Allan Timmermann, 2009. "Disagreement and Biases in Inflation Expectations," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 41(2-3), pages 365-396, March.
    3. Grossman, Sanford J & Stiglitz, Joseph E, 1980. "On the Impossibility of Informationally Efficient Markets," American Economic Review, American Economic Association, vol. 70(3), pages 393-408, June.
    4. Horowitz, J., 1996. "Bootstrap Critical Values For Tests Based On The Smoothed Maximum Score Estimator," SFB 373 Discussion Papers 1996,44, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    5. Graham Elliott & Allan Timmermann & Ivana Komunjer, 2005. "Estimation and Testing of Forecast Rationality under Flexible Loss," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(4), pages 1107-1125.
    6. Clive W.J. Granger, 1999. "Outline of forecast theory using generalized cost functions," Spanish Economic Review, Springer;Spanish Economic Association, vol. 1(2), pages 161-173.
    7. repec:bla:jfinan:v:44:y:1989:i:5:p:1177-89 is not listed on IDEAS
    8. Campbell, John Y., 1987. "Stock returns and the term structure," Journal of Financial Economics, Elsevier, vol. 18(2), pages 373-399, June.
    9. Gu, Zhaoyang & Wu, Joanna Shuang, 2003. "Earnings skewness and analyst forecast bias," Journal of Accounting and Economics, Elsevier, vol. 35(1), pages 5-29, April.
    10. Patton, Andrew J. & Timmermann, Allan, 2005. "Testable implications of forecast optimality," LSE Research Online Documents on Economics 6834, London School of Economics and Political Science, LSE Library.
    11. A. Robert Nobay & David A. Peel, 2003. "Optimal Discretionary Monetary Policy in a Model of Asymmetric Central Bank Preferences," Economic Journal, Royal Economic Society, vol. 113(489), pages 657-665, July.
    12. Patton, Andrew J. & Timmermann, Allan, 2007. "Testing Forecast Optimality Under Unknown Loss," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1172-1184, December.
    13. Inkmann, Joachim, 2000. "Finite Sample Properties of One-step, Two-step and Bootstrap Empirical Likelihood Approaches to Efficient GMM Estimation," CoFE Discussion Papers 00/03, University of Konstanz, Center of Finance and Econometrics (CoFE).
    14. Elliott, Graham & Timmermann, Allan, 2004. "Optimal forecast combinations under general loss functions and forecast error distributions," Journal of Econometrics, Elsevier, vol. 122(1), pages 47-79, September.
    15. Bergström, Pål & Dahlberg, Matz & Johansson, Eva, 1997. "GMM Bootstrapping and Testing in Dynamic Panels," Working Paper Series 1997:10, Uppsala University, Department of Economics.
    16. Fama, Eugene F. & French, Kenneth R., 1988. "Dividend yields and expected stock returns," Journal of Financial Economics, Elsevier, vol. 22(1), pages 3-25, October.
    17. Amit Goyal & Ivo Welch, 2003. "Predicting the Equity Premium with Dividend Ratios," Management Science, INFORMS, vol. 49(5), pages 639-654, May.
    18. Graham Elliott & Ivana Komunjer & Allan Timmermann, 2008. "Biases in Macroeconomic Forecasts: Irrationality or Asymmetric Loss?," Journal of the European Economic Association, MIT Press, vol. 6(1), pages 122-157, March.
    19. Joel L. Horowitz, 1996. "Bootstrap Critical Values for Tests Based on the Smoothed Maximum Score Estimator," Econometrics 9603003, University Library of Munich, Germany.
    20. Joel L. Horowitz, 1998. "Bootstrap Methods for Covariance Structures," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 39-61.
    21. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    22. Brown, Bryan W & Maital, Shlomo, 1981. "What Do Economists Know? An Empirical Study of Experts' Expectations," Econometrica, Econometric Society, vol. 49(2), pages 491-504, March.
    23. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    24. repec:bla:jfinan:v:44:y:1989:i:5:p:1191-1217 is not listed on IDEAS
    25. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    26. Bin Ke & Yong Yu, 2006. "The Effect of Issuing Biased Earnings Forecasts on Analysts' Access to Management and Survival," Journal of Accounting Research, Wiley Blackwell, vol. 44(5), pages 965-999, December.
    27. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    28. Lakonishok, Josef, 1980. "Stock Market Return Expectations: Some General Properties," Journal of Finance, American Finance Association, vol. 35(4), pages 921-931, September.
    29. Hall, Peter & Horowitz, Joel L, 1996. "Bootstrap Critical Values for Tests Based on Generalized-Method-of-Moments Estimators," Econometrica, Econometric Society, vol. 64(4), pages 891-916, July.
    30. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    31. Alon Brav & Reuven Lehavy & Roni Michaely, 2005. "Using Expectations to Test Asset Pricing Models," Financial Management, Financial Management Association, vol. 34(3), Fall.
    32. Pearce, Douglas K, 1984. "An Empirical Analysis of Expected Stock Price Movements," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 16(3), pages 317-327, August.
    33. Michaely, Roni & Womack, Kent L, 1999. "Conflict of Interest and the Credibility of Underwriter Analyst Recommendations," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 653-686.
    34. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    35. Dokko, Yoon & Edelstein, Robert H, 1989. "How Well Do Economists Forecast Stock Market Prices? A Study of the Livingston Surveys," American Economic Review, American Economic Association, vol. 79(4), pages 865-871, September.
    36. Horowitz, J. L., 1995. "Bootstrap Methods In Econometrics: Theory And Numerical Performance," SFB 373 Discussion Papers 1995,63, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    37. Andrews, Donald W K, 2002. "Generalized Method of Moments Estimation When a Parameter Is on a Boundary," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(4), pages 530-544, October.
    38. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    39. Harvey, Campbell R., 1989. "Time-varying conditional covariances in tests of asset pricing models," Journal of Financial Economics, Elsevier, vol. 24(2), pages 289-317.
    40. Rajan, Raghuram & Servaes, Henri, 1997. "Analyst Following of Initial Public Offerings," Journal of Finance, American Finance Association, vol. 52(2), pages 507-529, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Silvija Vlah Jerić & Mihovil Anđelinović, 2019. "Evaluating Croatian stock index forecasts," Empirical Economics, Springer, vol. 56(4), pages 1325-1339, April.
    2. Behrens, Christoph & Pierdzioch, Christian & Risse, Marian, 2018. "Testing the optimality of inflation forecasts under flexible loss with random forests," Economic Modelling, Elsevier, vol. 72(C), pages 270-277.
    3. Demetrescu, Matei & Hacıoğlu Hoke, Sinem, 2019. "Predictive regressions under asymmetric loss: Factor augmentation and model selection," International Journal of Forecasting, Elsevier, vol. 35(1), pages 80-99.
    4. Christoph Behrens, 2019. "A Nonparametric Evaluation of the Optimality of German Export and Import Growth Forecasts under Flexible Loss," Economies, MDPI, vol. 7(3), pages 1-23, September.
    5. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    6. Sanjay Sehgal & Tarunika Jain Agrawal, 2017. "Bank Risk Factors and Changing Risk Exposures in the Pre- and Post-financial Crisis Periods: An Empirical Study for India," Management and Labour Studies, XLRI Jamshedpur, School of Business Management & Human Resources, vol. 42(4), pages 356-378, November.
    7. Fildes, Robert, 2015. "Forecasters and rationality—A comment on Fritsche et al., Forecasting the Brazilian Real and Mexican Peso: Asymmetric loss, forecast rationality and forecaster herding," International Journal of Forecasting, Elsevier, vol. 31(1), pages 140-143.
    8. Ulu, Yasemin, 2007. "Optimal prediction under LINLIN loss: Empirical evidence," International Journal of Forecasting, Elsevier, vol. 23(4), pages 707-715.
    9. So-Won Choi & Eul-Bum Lee, 2022. "Contractor’s Risk Analysis of Engineering Procurement and Construction (EPC) Contracts Using Ontological Semantic Model and Bi-Long Short-Term Memory (LSTM) Technology," Sustainability, MDPI, vol. 14(11), pages 1-32, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wayne E. Ferson & Sergei Sarkissian & Timothy T. Simin, 2003. "Spurious Regressions in Financial Economics?," Journal of Finance, American Finance Association, vol. 58(4), pages 1393-1413, August.
    2. Capistrán, Carlos, 2008. "Bias in Federal Reserve inflation forecasts: Is the Federal Reserve irrational or just cautious?," Journal of Monetary Economics, Elsevier, vol. 55(8), pages 1415-1427, November.
    3. Shanken, Jay & Tamayo, Ane, 2012. "Payout yield, risk, and mispricing: A Bayesian analysis," Journal of Financial Economics, Elsevier, vol. 105(1), pages 131-152.
    4. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    5. Yufeng Han, 2010. "On the Economic Value of Return Predictability," Annals of Economics and Finance, Society for AEF, vol. 11(1), pages 1-33, May.
    6. Chen, Yong & Da, Zhi & Huang, Dayong, 2022. "Short selling efficiency," Journal of Financial Economics, Elsevier, vol. 145(2), pages 387-408.
    7. Graham, John R. & Harvey, Campbell R., 1996. "Market timing ability and volatility implied in investment newsletters' asset allocation recommendations," Journal of Financial Economics, Elsevier, vol. 42(3), pages 397-421, November.
    8. Daniel Mantilla-García & Vijay Vaidyanathan, 2017. "Predicting stock returns in the presence of uncertain structural changes and sample noise," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(3), pages 357-391, August.
    9. Cooper, Michael J. & Gubellini, Stefano, 2011. "The critical role of conditioning information in determining if value is really riskier than growth," Journal of Empirical Finance, Elsevier, vol. 18(2), pages 289-305, March.
    10. Veress, Aron & Kaiser, Lars, 2017. "Forecasting quality of professionals: Does affiliation matter?," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 159-168.
    11. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    12. Pettenuzzo, Davide & Timmermann, Allan & Valkanov, Rossen, 2014. "Forecasting stock returns under economic constraints," Journal of Financial Economics, Elsevier, vol. 114(3), pages 517-553.
    13. Tim Bollerslev & George Tauchen & Hao Zhou, 2009. "Expected Stock Returns and Variance Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(11), pages 4463-4492, November.
    14. Chen, Long, 2009. "On the reversal of return and dividend growth predictability: A tale of two periods," Journal of Financial Economics, Elsevier, vol. 92(1), pages 128-151, April.
    15. Hai Lin & Daniel Quill & Henk Berkman, 2016. "Information diffusion and the predictability of New Zealand stock market returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 56(3), pages 749-785, September.
    16. Wang, Yunqi & Zhou, Ti, 2023. "Out-of-sample equity premium prediction: The role of option-implied constraints," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 199-226.
    17. Neil Kellard & John Nankervis & Fotis Papadimitriou, 2007. "Predicting the UK Equity Premium with Dividend Ratios: An Out-Of-Sample Recursive Residuals Graphical Approach," Money Macro and Finance (MMF) Research Group Conference 2006 129, Money Macro and Finance Research Group.
    18. Maio, Paulo, 2016. "Cross-sectional return dispersion and the equity premium," Journal of Financial Markets, Elsevier, vol. 29(C), pages 87-109.
    19. Bai, Jennie & Bali, Turan G. & Wen, Quan, 2021. "Is there a risk-return tradeoff in the corporate bond market? Time-series and cross-sectional evidence," Journal of Financial Economics, Elsevier, vol. 142(3), pages 1017-1037.
    20. Stefano Gubellini, 2014. "Conditioning information and cross-sectional anomalies," Review of Quantitative Finance and Accounting, Springer, vol. 43(3), pages 529-569, October.

    More about this item

    Keywords

    Financial markets; General loss functions; GMM block bootstrapping; Livingston Survey; Price forecasting;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:27:y:2011:i:2:p:413-437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.