IDEAS home Printed from https://ideas.repec.org/a/eee/intfin/v52y2018icp102-113.html
   My bibliography  Save this article

Does intraday technical trading have predictive power in precious metal markets?

Author

Listed:
  • Batten, Jonathan A.
  • Lucey, Brian M.
  • McGroarty, Frank
  • Peat, Maurice
  • Urquhart, Andrew

Abstract

Previous research has identified that investors place more emphasis on technical analysis than fundamental analysis, however the research has largely been confined to daily data and stock market indices. This paper studies whether intraday technical trading rules have any significant predictive power in the precious metals market through three popular moving average rules. We find that using the standard parameters previously used in the literature, technical trading rules offer no predictive power whatsoever. However after utilising a universe of parameters, we find a number of parameter combinations offer significant predictability in the gold market, but there remains no significant predictability in the silver market. Our results show that the longer parameters of the technical trading rules are more successful than the traditional parameters chosen in the literature. Therefore intraday technical trading rules have some predictive power in the gold market but offer no significant predictability in the silver market.

Suggested Citation

  • Batten, Jonathan A. & Lucey, Brian M. & McGroarty, Frank & Peat, Maurice & Urquhart, Andrew, 2018. "Does intraday technical trading have predictive power in precious metal markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 52(C), pages 102-113.
  • Handle: RePEc:eee:intfin:v:52:y:2018:i:c:p:102-113
    DOI: 10.1016/j.intfin.2017.06.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1042443117301087
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.intfin.2017.06.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brian M. Lucey & Sile Li, 2015. "What precious metals act as safe havens, and when? Some US evidence," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 35-45, January.
    2. Hudson, Robert & Dempsey, Michael & Keasey, Kevin, 1996. "A note on the weak form efficiency of capital markets: The application of simple technical trading rules to UK stock prices - 1935 to 1994," Journal of Banking & Finance, Elsevier, vol. 20(6), pages 1121-1132, July.
    3. Yamamoto, Ryuichi, 2012. "Intraday technical analysis of individual stocks on the Tokyo Stock Exchange," Journal of Banking & Finance, Elsevier, vol. 36(11), pages 3033-3047.
    4. Hendrik Bessembinder & Kalok Chan, 1998. "Market Efficiency and the Returns to Technical Analysis," Financial Management, Financial Management Association, vol. 27(2), Summer.
    5. Narayan, Paresh Kumar & Mishra, Sagarika & Narayan, Seema & Thuraisamy, Kannan, 2015. "Is Exchange Rate Trading Profitable?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 217-229.
    6. Martin Hauptfleisch & Tālis J. Putniņš & Brian Lucey, 2016. "Who Sets the Price of Gold? London or New York," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 36(6), pages 564-586, June.
    7. Ryan Sullivan & Allan Timmermann & Halbert White, 1999. "Data‐Snooping, Technical Trading Rule Performance, and the Bootstrap," Journal of Finance, American Finance Association, vol. 54(5), pages 1647-1691, October.
    8. Ole Emmrich & Francis Joseph McGroarty, 2013. "Should gold be included in institutional investment portfolios?," Applied Financial Economics, Taylor & Francis Journals, vol. 23(19), pages 1553-1565, October.
    9. Matthieu Duvinage & Paolo Mazza & Mikael Petitjean, 2013. "The intra-day performance of market timing strategies and trading systems based on Japanese candlesticks," Quantitative Finance, Taylor & Francis Journals, vol. 13(7), pages 1059-1070, January.
    10. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    11. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    12. Mark J Ready, 2002. "Profits from Technical Trading Rules," Financial Management, Financial Management Association, vol. 31(3), Fall.
    13. Day, Theodore E. & Wang, Pingying, 2002. "Dividends, nonsynchronous prices, and the returns from trading the Dow Jones Industrial Average," Journal of Empirical Finance, Elsevier, vol. 9(4), pages 431-454, November.
    14. Narayan, Paresh Kumar & Narayan, Seema & Sharma, Susan Sunila, 2013. "An analysis of commodity markets: What gain for investors?," Journal of Banking & Finance, Elsevier, vol. 37(10), pages 3878-3889.
    15. Okunev, John & White, Derek, 2003. "Do Momentum-Based Strategies Still Work in Foreign Currency Markets?," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 38(2), pages 425-447, June.
    16. Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
    17. Szakmary, Andrew C. & Shen, Qian & Sharma, Subhash C., 2010. "Trend-following trading strategies in commodity futures: A re-examination," Journal of Banking & Finance, Elsevier, vol. 34(2), pages 409-426, February.
    18. Michael H. Breitner & Christian Dunis & Hans-Jörg Mettenheim & Christopher Neely & Georgios Sermpinis & Hamad Alsayed & Frank McGroarty, 2014. "Ultra‐High‐Frequency Algorithmic Arbitrage Across International Index Futures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(6), pages 391-408, September.
    19. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    20. Eugenie Hol & Siem Jan Koopman, 2002. "Stock Index Volatility Forecasting with High Frequency Data," Tinbergen Institute Discussion Papers 02-068/4, Tinbergen Institute.
    21. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    22. Menkhoff, Lukas, 2010. "The use of technical analysis by fund managers: International evidence," Journal of Banking & Finance, Elsevier, vol. 34(11), pages 2573-2586, November.
    23. Hudson, Robert & McGroarty, Frank & Urquhart, Andrew, 2017. "Sampling frequency and the performance of different types of technical trading rules," Finance Research Letters, Elsevier, vol. 22(C), pages 136-139.
    24. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    25. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    26. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    27. Andersen, Torben G, 2000. "Some Reflections on Analysis of High-Frequency Data," Journal of Business & Economic Statistics, American Statistical Association, vol. 18(2), pages 146-153, April.
    28. Zarrabi, Nima & Snaith, Stuart & Coakley, Jerry, 2017. "FX technical trading rules can be profitable sometimes!," International Review of Financial Analysis, Elsevier, vol. 49(C), pages 113-127.
    29. Narayan, Paresh Kumar & Mishra, Sagarika & Thuraisamy, Kannan, 2015. "Is exchange rate trading profitable?," Working Papers fe_2015_09, Deakin University, Department of Economics.
    30. Hsu, Po-Hsuan & Taylor, Mark P. & Wang, Zigan, 2016. "Technical trading: Is it still beating the foreign exchange market?," Journal of International Economics, Elsevier, vol. 102(C), pages 188-208.
    31. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    32. Suzanne Fifield & David Power & C. Donald Sinclair, 2005. "An analysis of trading strategies in eleven European stock markets," The European Journal of Finance, Taylor & Francis Journals, vol. 11(6), pages 531-548.
    33. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    34. Brock, William & Lakonishok, Josef & LeBaron, Blake, 1992. "Simple Technical Trading Rules and the Stochastic Properties of Stock Returns," Journal of Finance, American Finance Association, vol. 47(5), pages 1731-1764, December.
    35. Brett W. Fawley & Christopher J. Neely, 2013. "Four stories of quantitative easing," Review, Federal Reserve Bank of St. Louis, issue Jan, pages 51-88.
    36. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Can commodity futures be profitably traded with quantitative market timing strategies?," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1810-1819, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shangkun Deng & Zhihao Su & Yanmei Ren & Haoran Yu & Yingke Zhu & Chenyang Wei, 2022. "Can Japanese Candlestick Patterns be Profitable on the Component Stocks of the SSE50 Index?," SAGE Open, , vol. 12(3), pages 21582440221, August.
    2. I. Marta Miranda García & María‐Jesús Segovia‐Vargas & Usue Mori & José A. Lozano, 2023. "Early prediction of Ibex 35 movements," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1150-1166, August.
    3. Bilgin, Mehmet Huseyin & Gogolin, Fabian & Lau, Marco Chi Keung & Vigne, Samuel A., 2018. "Time-variation in the relationship between white precious metals and inflation: A cross-country analysis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 56(C), pages 55-70.
    4. Vásquez Sáenz, Javier & Quiroga, Facundo Manuel & Bariviera, Aurelio F., 2023. "Data vs. information: Using clustering techniques to enhance stock returns forecasting," International Review of Financial Analysis, Elsevier, vol. 88(C).
    5. Rana, Hafiz Muhammad Usman & O'Connor, Fergal, 2023. "Domestic macroeconomic determinants of precious metals prices in developed and emerging economies: An international analysis of the long and short run," International Review of Financial Analysis, Elsevier, vol. 89(C).
    6. Zhidan Luo & Wei Guo & Qingfu Liu & Yiuman Tse, 2023. "A hybrid prediction model with time‐varying gain tracking differentiator in Taylor expansion: Evidence from precious metals," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(5), pages 1138-1149, August.
    7. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    8. Sermpinis, Georgios & Hassanniakalager, Arman & Stasinakis, Charalampos & Psaradellis, Ioannis, 2021. "Technical analysis profitability and Persistence: A discrete false discovery approach on MSCI indices," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 73(C).
    9. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    10. Corbet, Shaen & Eraslan, Veysel & Lucey, Brian & Sensoy, Ahmet, 2019. "The effectiveness of technical trading rules in cryptocurrency markets," Finance Research Letters, Elsevier, vol. 31(C), pages 32-37.
    11. Christos Alexakis & Vasileios Pappas & Emmanouil Skarmeas, 2021. "Market abuse under different close price determination mechanisms: A European case," Post-Print hal-03182927, HAL.
    12. Alexakis, Christos & Pappas, Vasileios & Skarmeas, Emmanouil, 2021. "Market abuse under different close price determination mechanisms: A European case," International Review of Financial Analysis, Elsevier, vol. 74(C).
    13. Urquhart, Andrew & Zhang, Hanxiong, 2019. "The performance of technical trading rules in Socially Responsible Investments," International Review of Economics & Finance, Elsevier, vol. 63(C), pages 397-411.
    14. Zhang, Wei & Wang, Pengfei & Li, Yi, 2020. "Intraday momentum in Chinese commodity futures markets," Research in International Business and Finance, Elsevier, vol. 54(C).
    15. Robert Hudson & Andrew Urquhart, 2021. "Technical trading and cryptocurrencies," Annals of Operations Research, Springer, vol. 297(1), pages 191-220, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin, Xiaoye, 2022. "Performance of intraday technical trading in China’s gold market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 76(C).
    2. Urquhart, Andrew & Gebka, Bartosz & Hudson, Robert, 2015. "How exactly do markets adapt? Evidence from the moving average rule in three developed markets," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 38(C), pages 127-147.
    3. Shynkevich, Andrei, 2012. "Performance of technical analysis in growth and small cap segments of the US equity market," Journal of Banking & Finance, Elsevier, vol. 36(1), pages 193-208.
    4. Robert Hudson & Andrew Urquhart, 2021. "Technical trading and cryptocurrencies," Annals of Operations Research, Springer, vol. 297(1), pages 191-220, February.
    5. Fong, Tom Pak Wing & Wu, Shui Tang, 2020. "Predictability in sovereign bond returns using technical trading rules: Do developed and emerging markets differ?," The North American Journal of Economics and Finance, Elsevier, vol. 51(C).
    6. Hung, Chiayu & Lai, Hung-Neng, 2022. "Information asymmetry and the profitability of technical analysis," Journal of Banking & Finance, Elsevier, vol. 134(C).
    7. Urquhart, Andrew & Zhang, Hanxiong, 2019. "The performance of technical trading rules in Socially Responsible Investments," International Review of Economics & Finance, Elsevier, vol. 63(C), pages 397-411.
    8. Xiaoye Jin, 2022. "Evaluating the predictive power of intraday technical trading in China's crude oil market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(7), pages 1416-1432, November.
    9. Strobel, Marcus & Auer, Benjamin R., 2018. "Does the predictive power of variable moving average rules vanish over time and can we explain such tendencies?," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 168-184.
    10. Ikhlaas Gurrib & Firuz Kamalov & Elgilani Elshareif, 2021. "Can the Leading US Energy Stock Prices be Predicted using the Ichimoku Cloud?," International Journal of Energy Economics and Policy, Econjournals, vol. 11(1), pages 41-51.
    11. Anghel, Dan Gabriel, 2021. "Data Snooping Bias in Tests of the Relative Performance of Multiple Forecasting Models," Journal of Banking & Finance, Elsevier, vol. 126(C).
    12. Andrei Shynkevich, 2021. "Impact of bitcoin futures on the informational efficiency of bitcoin spot market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(1), pages 115-134, January.
    13. Ülkü, Numan & Prodan, Eugeniu, 2013. "Drivers of technical trend-following rules' profitability in world stock markets," International Review of Financial Analysis, Elsevier, vol. 30(C), pages 214-229.
    14. Shynkevich, Andrei, 2013. "Time-series momentum as an intra- and inter-industry effect: Implications for market efficiency," Journal of Economics and Business, Elsevier, vol. 69(C), pages 64-85.
    15. Cristiana Tudor & Andrei Anghel, 2021. "The Financialization of Crude Oil Markets and Its Impact on Market Efficiency: Evidence from the Predictive Ability and Performance of Technical Trading Strategies," Energies, MDPI, vol. 14(15), pages 1-19, July.
    16. Jying‐Nan Wang & Hung‐Chun Liu & Jiangze Du & Yuan‐Teng Hsu, 2019. "Economic benefits of technical analysis in portfolio management: Evidence from global stock markets," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 890-902, April.
    17. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    18. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    19. Hudson, Robert & McGroarty, Frank & Urquhart, Andrew, 2017. "Sampling frequency and the performance of different types of technical trading rules," Finance Research Letters, Elsevier, vol. 22(C), pages 136-139.
    20. Shynkevich, Andrei, 2016. "Predictability in bond returns using technical trading rules," Journal of Banking & Finance, Elsevier, vol. 70(C), pages 55-69.

    More about this item

    Keywords

    Precious metals; Technical analysis; Predictability; Gold; Silver;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G15 - Financial Economics - - General Financial Markets - - - International Financial Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfin:v:52:y:2018:i:c:p:102-113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/intfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.