Advanced statistical learning on short term load process forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Elliott, Graham & Muller, Ulrich K., 2007.
"Confidence sets for the date of a single break in linear time series regressions,"
Journal of Econometrics, Elsevier, vol. 141(2), pages 1196-1218, December.
- Elliott, Graham & Muller, Ulrich K., 2004. "Confidence Sets for the Date of a Single Break in Linear Time Series Regressions," University of California at San Diego, Economics Working Paper Series qt9hf4j4c2, Department of Economics, UC San Diego.
- Kwiatkowski, Denis & Phillips, Peter C. B. & Schmidt, Peter & Shin, Yongcheol, 1992.
"Testing the null hypothesis of stationarity against the alternative of a unit root : How sure are we that economic time series have a unit root?,"
Journal of Econometrics, Elsevier, vol. 54(1-3), pages 159-178.
- Kwiatkowski, D. & Phillips, P.C.B. & Schmidt, P., 1990. "Testing the Null Hypothesis of Stationarity Against the Alternative of Unit Root : How Sure are we that Economic Time Series have a Unit Root?," Papers 8905, Michigan State - Econometrics and Economic Theory.
- Denis Kwiatkowski & Peter C.B. Phillips & Peter Schmidt, 1991. "Testing the Null Hypothesis of Stationarity Against the Alternative of a Unit Root: How Sure Are We That Economic Time Series Have a Unit Root?," Cowles Foundation Discussion Papers 979, Cowles Foundation for Research in Economics, Yale University.
- Elliott, Graham & Müller, Ulrich K., 2014.
"Pre and post break parameter inference,"
Journal of Econometrics, Elsevier, vol. 180(2), pages 141-157.
- Elliott, Graham & Müller, Ulrich K, 2014. "Pre and post break parameter inference," University of California at San Diego, Economics Working Paper Series qt4j733246, Department of Economics, UC San Diego.
- Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
- Pesaran, M. Hashem & Timmermann, Allan, 2005.
"Small sample properties of forecasts from autoregressive models under structural breaks,"
Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
- Allan Timmermann & M. Hashem Pesaran, 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," CESifo Working Paper Series 990, CESifo.
- Pesaran, M. Hashem & Timmermann, Allan, 2004. "Small Sample Properties of Forecasts From Autoregressive Models Under Structural Breaks," CEPR Discussion Papers 4401, C.E.P.R. Discussion Papers.
- Pesaran, M.H. & Timmermann, A., 2003. "Small Sample Properties of Forecasts from Autoregressive Models under Structural Breaks," Cambridge Working Papers in Economics 0331, Faculty of Economics, University of Cambridge.
- Chao, Shih-Kang & Härdle, Wolfgang K. & Huang, Chen, 2018. "Multivariate factorizable expectile regression with application to fMRI data," Computational Statistics & Data Analysis, Elsevier, vol. 121(C), pages 1-19.
- Weber, Sylvain & Puddu, Stefano & Pacheco, Diana, 2017.
"Move it! How an electric contest motivates households to shift their load profile,"
Energy Economics, Elsevier, vol. 68(C), pages 255-270.
- Sylvain Weber & Stefano Puddu & Diana Pacheco, 2016. "Move it! How an Electric Contest Motivates Households to Shift their Load Profile," IRENE Working Papers 16-03, IRENE Institute of Economic Research.
- Brenda López Cabrera & Franziska Schulz, 2017.
"Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
- López Cabrera, Brenda & Schulz, Franziska, 2014. "Forecasting generalized quantiles of electricity demand: A functional data approach," SFB 649 Discussion Papers 2014-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Ruud, Paul A., 1991.
"Extensions of estimation methods using the EM algorithm,"
Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
- Paul A. Ruud., 1988. "Extensions of Estimation Methods Using the EM Algorithm.," Economics Working Papers 8899, University of California at Berkeley.
- Do, Linh Phuong Catherine & Lin, Kuan-Heng & Molnár, Peter, 2016. "Electricity consumption modelling: A case of Germany," Economic Modelling, Elsevier, vol. 55(C), pages 92-101.
- Cottet R. & Smith M., 2003. "Bayesian Modeling and Forecasting of Intraday Electricity Load," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 839-849, January.
- Stock, James H & Watson, Mark W, 1996.
"Evidence on Structural Instability in Macroeconomic Time Series Relations,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
- James H. Stock & Mark W. Watson, 1994. "Evidence on Structural Instability in Macroeconomic Time Series Relations," NBER Technical Working Papers 0164, National Bureau of Economic Research, Inc.
- James H. Stock & Mark W. Watson, 1994. "Evidence on structural instability in macroeconomic times series relations," Working Paper Series, Macroeconomic Issues 94-13, Federal Reserve Bank of Chicago.
- Chao, Shih-Kang & Härdle, Wolfgang Karl & Yuan, Ming, 2015. "Factorisable sparse tail event curves," SFB 649 Discussion Papers 2015-034, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
- Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
- Diebold, Francis X & Mariano, Roberto S, 2002.
"Comparing Predictive Accuracy,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
- Diebold, Francis X & Mariano, Roberto S, 1995. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(3), pages 253-263, July.
- Francis X. Diebold & Roberto S. Mariano, 1994. "Comparing Predictive Accuracy," NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
- Darbellay, Georges A. & Slama, Marek, 2000. "Forecasting the short-term demand for electricity: Do neural networks stand a better chance?," International Journal of Forecasting, Elsevier, vol. 16(1), pages 71-83.
- Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
- Schnabel, Sabine K. & Eilers, Paul H.C., 2009. "Optimal expectile smoothing," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4168-4177, October.
- An, Ning & Zhao, Weigang & Wang, Jianzhou & Shang, Duo & Zhao, Erdong, 2013. "Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting," Energy, Elsevier, vol. 49(C), pages 279-288.
- Bianco, Vincenzo & Manca, Oronzio & Nardini, Sergio, 2009. "Electricity consumption forecasting in Italy using linear regression models," Energy, Elsevier, vol. 34(9), pages 1413-1421.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Boot, Tom & Pick, Andreas, 2020. "Does modeling a structural break improve forecast accuracy?," Journal of Econometrics, Elsevier, vol. 215(1), pages 35-59.
- Tom Boot & Andreas Pick, 2017. "A near optimal test for structural breaks when forecasting under square error loss," Tinbergen Institute Discussion Papers 17-039/III, Tinbergen Institute.
- Rossi, Barbara, 2013.
"Advances in Forecasting under Instability,"
Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324,
Elsevier.
- Barbara Rossi, 2011. "Advances in Forecasting Under Instability," Working Papers 11-20, Duke University, Department of Economics.
- Cancelo, José Ramón & Espasa, Antoni & Grafe, Rosmarie, 2008. "Forecasting the electricity load from one day to one week ahead for the Spanish system operator," International Journal of Forecasting, Elsevier, vol. 24(4), pages 588-602.
- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Cancelo, José Ramón & Grafe, Rosmarie, 2007. "Forecasting from one day to one week ahead for the Spanish system operator," DES - Working Papers. Statistics and Econometrics. WS ws078418, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Gantungalag Altansukh & Denise R. Osborn, 2022. "Using structural break inference for forecasting time series," Empirical Economics, Springer, vol. 63(1), pages 1-41, July.
- Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
- Bashiri Behmiri, Niaz & Fezzi, Carlo & Ravazzolo, Francesco, 2023. "Incorporating air temperature into mid-term electricity load forecasting models using time-series regressions and neural networks," Energy, Elsevier, vol. 278(C).
- Batchelor, Roy & Alizadeh, Amir & Visvikis, Ilias, 2007. "Forecasting spot and forward prices in the international freight market," International Journal of Forecasting, Elsevier, vol. 23(1), pages 101-114.
- Xiaojie Xu, 2017. "The rolling causal structure between the Chinese stock index and futures," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 31(4), pages 491-509, November.
- Yingying Xu & Zhi‐Xin Liu & Chi‐Wei Su & Jaime Ortiz, 2019. "Gold and inflation: Expected inflation effect or carrying cost effect?," International Finance, Wiley Blackwell, vol. 22(3), pages 380-398, December.
- Sandrine Lardic & Valérie Mignon, 2004. "Fractional cointegration and the term structure," Empirical Economics, Springer, vol. 29(4), pages 723-736, December.
- Hännikäinen Jari, 2017.
"Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks,"
Journal of Econometric Methods, De Gruyter, vol. 6(1), pages 1-22, January.
- Hännikäinen, Jari, 2015. "Selection of an estimation window in the presence of data revisions and recent structural breaks," MPRA Paper 66759, University Library of Munich, Germany.
- Jari Hännikäinen, 2016. "Selection of an Estimation Window in the Presence of Data Revisions and Recent Structural Breaks," Working Papers 1692, Tampere University, Faculty of Management and Business, Economics.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2019.
"Unemployment rate hysteresis and the great recession: exploring the metropolitan evidence,"
Empirical Economics, Springer, vol. 56(1), pages 61-79, January.
- Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2013. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working papers 2013-19, University of Connecticut, Department of Economics.
- Giorgio Canarella & Stephen M. Miller & Stephen K. Pollard, 2014. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 1403, University of Nevada, Las Vegas , Department of Economics.
- Giorgio Canarella & Rangan Gupta & Stephen M. Miller & Stephen K. Pollard, 2017. "Unemployment Rate Hysteresis and the Great Recession: Exploring the Metropolitan Evidence," Working Papers 201740, University of Pretoria, Department of Economics.
- Jaume Rosselló Nadal & Mohcine Bakhat, 2009. "A new approach to estimating tourism-induced electricity consumption," CRE Working Papers (Documents de treball del CRE) 2009/6, Centre de Recerca Econòmica (UIB ·"Sa Nostra").
- Nonejad, Nima, 2020. "Crude oil price volatility and equity return predictability: A comparative out-of-sample study," International Review of Financial Analysis, Elsevier, vol. 71(C).
More about this item
Keywords
Short Term Load Forecast; Deep Neural Network; Hard Structure Load Process;All these keywords.
JEL classification:
- C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
- C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- Q31 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Demand and Supply; Prices
- Q41 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Demand and Supply; Prices
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-11-29 (Big Data)
- NEP-CMP-2021-11-29 (Computational Economics)
- NEP-ENE-2021-11-29 (Energy Economics)
- NEP-FOR-2021-11-29 (Forecasting)
- NEP-ORE-2021-11-29 (Operations Research)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:irtgdp:2021020. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/wfhubde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.