IDEAS home Printed from https://ideas.repec.org/a/eee/quaeco/v81y2021icp38-56.html
   My bibliography  Save this article

A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?

Author

Listed:
  • Maciel, Leandro

Abstract

This paper proposes a new strategy for portfolio selection in the Brazilian equity market with the use of multifractal detrended fluctuation analysis (MF-DFA) as a mechanism to select assets based on their efficiency levels. Empirical analysis uses daily prices to compose minimum variance (MVP) and maximum Sharpe ratio (MSR) long-only portfolios, and also includes their performances during the COVID-19 pandemic. MF-DFA indicated a multifractal nature for asset price returns, generally associated with long-term persistence. The strategy using the most efficient equities resulted in portfolios with lower levels of systematic risk (betas), indicating that the lack of efficiency is related to higher sensitivity to macroeconomic and conjuncture changes. The MVP portfolio produces higher performance than the alternatives in terms of risk and return. Finally, during the COVID-19 pandemic, besides its consistent negative impacts, MVP and MSR portfolios verified lower losses than the IBOVESPA.

Suggested Citation

  • Maciel, Leandro, 2021. "A new approach to portfolio management in the Brazilian equity market: Does assets efficiency level improve performance?," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 38-56.
  • Handle: RePEc:eee:quaeco:v:81:y:2021:i:c:p:38-56
    DOI: 10.1016/j.qref.2021.04.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S106297692100079X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.qref.2021.04.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamaani, Fouad & Roca, Eduardo, 2015. "Are the regional Gulf stock markets weak-form efficient as single stock markets and as a regional stock market?," Research in International Business and Finance, Elsevier, vol. 33(C), pages 221-246.
    2. Rizvi, Syed Aun R. & Arshad, Shaista, 2017. "Analysis of the efficiency–integration nexus of Japanese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 470(C), pages 296-308.
    3. Mensi, Walid & Tiwari, Aviral Kumar & Yoon, Seong-Min, 2017. "Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 135-146.
    4. Bodnar, Taras & Mazur, Stepan & Okhrin, Yarema, 2017. "Bayesian estimation of the global minimum variance portfolio," European Journal of Operational Research, Elsevier, vol. 256(1), pages 292-307.
    5. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    6. Lim, Sungmook & Oh, Kwang Wuk & Zhu, Joe, 2014. "Use of DEA cross-efficiency evaluation in portfolio selection: An application to Korean stock market," European Journal of Operational Research, Elsevier, vol. 236(1), pages 361-368.
    7. Richards, Anthony J, 1997. "Winner-Loser Reversals in National Stock Market Indices: Can They Be Explained?," Journal of Finance, American Finance Association, vol. 52(5), pages 2129-2144, December.
    8. Mensi, Walid & Hamdi, Atef & Shahzad, Syed Jawad Hussain & Shafiullah, Muhammad & Al-Yahyaee, Khamis Hamed, 2018. "Modeling cross-correlations and efficiency of Islamic and conventional banks from Saudi Arabia: Evidence from MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 576-589.
    9. Benjamin Miranda Tabak, 2002. "The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case," Working Papers Series 58, Central Bank of Brazil, Research Department.
    10. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2018. "Estimation of the global minimum variance portfolio in high dimensions," European Journal of Operational Research, Elsevier, vol. 266(1), pages 371-390.
    11. Alexeev, Vitali & Tapon, Francis, 2011. "Testing weak form efficiency on the Toronto Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 18(4), pages 661-691, September.
    12. Zhuang, Xiaoyang & Wei, Yu & Ma, Feng, 2015. "Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 101-113.
    13. Lin, Xiaoqiang & Fei, Fangyu & Wang, Yudong, 2011. "Analysis of the efficiency of the Shanghai stock market: A volatility perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3486-3495.
    14. Arshad, Shaista & Rizvi, Syed Aun R. & Ghani, Gairuzazmi Mat & Duasa, Jarita, 2016. "Investigating stock market efficiency: A look at OIC member countries," Research in International Business and Finance, Elsevier, vol. 36(C), pages 402-413.
    15. Hédi Essid & Janet Ganouati & Stephane Vigeant, 2018. "A mean-maverick game cross-efficiency approach to portfolio selection: An application to Paris stock exchange," Post-Print hal-01916529, HAL.
    16. Sukpitak, Jessada & Hengpunya, Varagorn, 2016. "Efficiency of Thai stock markets: Detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 458(C), pages 204-209.
    17. Joe Zhu, 2014. "DEA Cross Efficiency," International Series in Operations Research & Management Science, in: Quantitative Models for Performance Evaluation and Benchmarking, edition 3, chapter 4, pages 61-92, Springer.
    18. Frahm, Gabriel & Memmel, Christoph, 2010. "Dominating estimators for minimum-variance portfolios," Journal of Econometrics, Elsevier, vol. 159(2), pages 289-302, December.
    19. Cheng, Qing & Liu, Xinyuan & Zhu, Xiaowu, 2019. "Cryptocurrency momentum effect: DFA and MF-DFA analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    20. Metghalchi, Massoud & Chen, Chien-Ping & Hayes, Linda A., 2015. "History of share prices and market efficiency of the Madrid general stock index," International Review of Financial Analysis, Elsevier, vol. 40(C), pages 178-184.
    21. Wang, Juan & Zhang, Dongxiang & Zhang, Jian, 2015. "Mean reversion in stock prices of seven Asian stock markets: Unit root test and stationary test with Fourier functions," International Review of Economics & Finance, Elsevier, vol. 37(C), pages 157-164.
    22. Grundy, Bruce D & Martin, J Spencer, 2001. "Understanding the Nature of the Risks and the," The Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 29-78.
    23. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    24. Oświe¸cimka, P. & Kwapień, J. & Drożdż, S., 2005. "Multifractality in the stock market: price increments versus waiting times," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 347(C), pages 626-638.
    25. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    26. Anagnostidis, P. & Varsakelis, C. & Emmanouilides, C.J., 2016. "Has the 2008 financial crisis affected stock market efficiency? The case of Eurozone," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 116-128.
    27. Cajueiro, Daniel O. & Tabak, Benjamin M., 2005. "Testing for time-varying long-range dependence in volatility for emerging markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 346(3), pages 577-588.
    28. Patro, Dilip K. & Wu, Yangru, 2004. "Predictability of short-horizon returns in international equity markets," Journal of Empirical Finance, Elsevier, vol. 11(4), pages 553-584, September.
    29. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Yoon, Seong-Min, 2018. "Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets," Finance Research Letters, Elsevier, vol. 27(C), pages 228-234.
    30. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    31. Sánchez-Granero, M.A. & Balladares, K.A. & Ramos-Requena, J.P. & Trinidad-Segovia, J.E., 2020. "Testing the efficient market hypothesis in Latin American stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    32. Chopra, Navin & Lakonishok, Josef & Ritter, Jay R., 1992. "Measuring abnormal performance : Do stocks overreact?," Journal of Financial Economics, Elsevier, vol. 31(2), pages 235-268, April.
    33. Banihashemi, Shokoofeh & Navidi, Sarah, 2017. "Portfolio performance evaluation in Mean-CVaR framework: A comparison with non-parametric methods value at risk in Mean-VaR analysis," Operations Research Perspectives, Elsevier, vol. 4(C), pages 21-28.
    34. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    35. Sant’Anna, Leonardo R. & Filomena, Tiago P. & Caldeira, João F., 2017. "Index tracking and enhanced indexing using cointegration and correlation with endogenous portfolio selection," The Quarterly Review of Economics and Finance, Elsevier, vol. 65(C), pages 146-157.
    36. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    37. repec:bla:jfinan:v:58:y:2003:i:4:p:1651-1684 is not listed on IDEAS
    38. Alexandre Rubesam & André Lomonaco Beltrame, 2013. "Minimum Variance Portfolios in the Brazilian Equity Market," Brazilian Review of Finance, Brazilian Society of Finance, vol. 11(1), pages 81-118.
    39. Merton, Robert C., 1980. "On estimating the expected return on the market : An exploratory investigation," Journal of Financial Economics, Elsevier, vol. 8(4), pages 323-361, December.
    40. Mubariz Hasanov & Tolga Omay, 2007. "Are the Transition Stock Markets Efficient? Evidence from Non-Linear Unit Root Tests," Central Bank Review, Research and Monetary Policy Department, Central Bank of the Republic of Turkey, vol. 7(2), pages 1-12.
    41. Lian, Yu-Min & Chen, Jun-Home, 2019. "Portfolio selection in a multi-asset, incomplete-market economy," The Quarterly Review of Economics and Finance, Elsevier, vol. 71(C), pages 228-238.
    42. Chan, Louis K C & Jegadeesh, Narasimhan & Lakonishok, Josef, 1996. "Momentum Strategies," Journal of Finance, American Finance Association, vol. 51(5), pages 1681-1713, December.
    43. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    44. Bai, Man-Ying & Zhu, Hai-Bo, 2010. "Power law and multiscaling properties of the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(9), pages 1883-1890.
    45. Al-Yahyaee, Khamis Hamed & Mensi, Walid & Ko, Hee-Un & Yoon, Seong-Min & Kang, Sang Hoon, 2020. "Why cryptocurrency markets are inefficient: The impact of liquidity and volatility," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    46. repec:hal:journl:peer-00741629 is not listed on IDEAS
    47. Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
    48. Dimitrakopoulos, Dimitris N. & Kavussanos, Manolis G. & Spyrou, Spyros I., 2010. "Value at risk models for volatile emerging markets equity portfolios," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 515-526, November.
    49. Cajueiro, Daniel O & Tabak, Benjamin M, 2004. "The Hurst exponent over time: testing the assertion that emerging markets are becoming more efficient," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 336(3), pages 521-537.
    50. Matteo, T. Di & Aste, T. & Dacorogna, Michel M., 2005. "Long-term memories of developed and emerging markets: Using the scaling analysis to characterize their stage of development," Journal of Banking & Finance, Elsevier, vol. 29(4), pages 827-851, April.
    51. Xing, Xin & Hu, Jinjin & Yang, Yaning, 2014. "Robust minimum variance portfolio with L-infinity constraints," Journal of Banking & Finance, Elsevier, vol. 46(C), pages 107-117.
    52. Karmakar, Madhusudan, 2017. "Dependence structure and portfolio risk in Indian foreign exchange market: A GARCH-EVT-Copula approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 64(C), pages 275-291.
    53. Jiang, Chonghui & Du, Jiangze & An, Yunbi, 2019. "Combining the minimum-variance and equally-weighted portfolios: Can portfolio performance be improved?," Economic Modelling, Elsevier, vol. 80(C), pages 260-274.
    54. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan, 2019. "Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach," Finance Research Letters, Elsevier, vol. 28(C), pages 398-411.
    55. Jorion, Philippe, 1991. "Bayesian and CAPM estimators of the means: Implications for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 15(3), pages 717-727, June.
    56. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    57. Pasquini, Michele & Serva, Maurizio, 1999. "Multiscale behaviour of volatility autocorrelations in a financial market," Economics Letters, Elsevier, vol. 65(3), pages 275-279, December.
    58. Jonathan Lewellen, 2002. "Momentum and Autocorrelation in Stock Returns," The Review of Financial Studies, Society for Financial Studies, vol. 15(2), pages 533-564, March.
    59. Jang, Bong-Gyu & Park, Seyoung, 2016. "Ambiguity and optimal portfolio choice with Value-at-Risk constraint," Finance Research Letters, Elsevier, vol. 18(C), pages 158-176.
    60. Spreitzer, U.W. & Reznik, V., 2007. "On the optimization of a CAPM portfolio using lower partial moments as measure of risk and using the possibility of safeguarding its loss," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 378(2), pages 423-426.
    61. Bao, Te & Diks, Cees & Li, Hao, 2018. "A generalized CAPM model with asymmetric power distributed errors with an application to portfolio construction," Economic Modelling, Elsevier, vol. 68(C), pages 611-621.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
    2. Ali, Sajid & Shahzad, Syed Jawad Hussain & Raza, Naveed & Al-Yahyaee, Khamis Hamed, 2018. "Stock market efficiency: A comparative analysis of Islamic and conventional stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 139-153.
    3. Shahzad, Syed Jawad Hussain & Nor, Safwan Mohd & Mensi, Walid & Kumar, Ronald Ravinesh, 2017. "Examining the efficiency and interdependence of US credit and stock markets through MF-DFA and MF-DXA approaches," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 351-363.
    4. Aloui, Chaker & Shahzad, Syed Jawad Hussain & Jammazi, Rania, 2018. "Dynamic efficiency of European credit sectors: A rolling-window multifractal detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 337-349.
    5. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).
    6. Dewandaru, Ginanjar & Masih, Rumi & Bacha, Obiyathulla Ismath & Masih, A. Mansur. M., 2015. "Developing trading strategies based on fractal finance: An application of MF-DFA in the context of Islamic equities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 438(C), pages 223-235.
    7. Tiwari, Aviral Kumar & Aye, Goodness C. & Gupta, Rangan, 2019. "Stock market efficiency analysis using long spans of Data: A multifractal detrended fluctuation approach," Finance Research Letters, Elsevier, vol. 28(C), pages 398-411.
    8. Balvers, Ronald J. & Wu, Yangru, 2006. "Momentum and mean reversion across national equity markets," Journal of Empirical Finance, Elsevier, vol. 13(1), pages 24-48, January.
    9. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    10. Oliveira, Alexandre Silva de & Ceretta, Paulo Sergio & Albrecht, Peter, 2023. "Performance comparison of multifractal techniques and artificial neural networks in the construction of investment portfolios," Finance Research Letters, Elsevier, vol. 55(PA).
    11. Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    12. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    13. Shrestha, Keshab & Naysary, Babak & Philip, Sheena Sara Suresh, 2023. "Fintech market efficiency: A multifractal detrended fluctuation analysis," Finance Research Letters, Elsevier, vol. 54(C).
    14. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    15. Adam Zaremba & Jacob Koby Shemer, 2018. "Price-Based Investment Strategies," Springer Books, Springer, number 978-3-319-91530-2, July.
    16. Daniel, Kent & Hirshleifer, David & Teoh, Siew Hong, 2002. "Investor psychology in capital markets: evidence and policy implications," Journal of Monetary Economics, Elsevier, vol. 49(1), pages 139-209, January.
    17. Ashok Chanabasangouda Patil & Shailesh Rastogi, 2020. "Multifractal Analysis of Market Efficiency across Structural Breaks: Implications for the Adaptive Market Hypothesis," JRFM, MDPI, vol. 13(10), pages 1-18, October.
    18. Lee, Minhyuk & Song, Jae Wook & Kim, Sondo & Chang, Woojin, 2018. "Asymmetric market efficiency using the index-based asymmetric-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 1278-1294.
    19. David Hirshleifer, 2001. "Investor Psychology and Asset Pricing," Journal of Finance, American Finance Association, vol. 56(4), pages 1533-1597, August.
    20. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).

    More about this item

    Keywords

    Portfolio selection; Efficiency; MF-DFA; Equity Markets; B3;
    All these keywords.

    JEL classification:

    • B3 - Schools of Economic Thought and Methodology - - History of Economic Thought: Individuals

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:quaeco:v:81:y:2021:i:c:p:38-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620167 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.