IDEAS home Printed from https://ideas.repec.org/p/zbw/bubdp1/4756.html
   My bibliography  Save this paper

Learning, structural instability and present value calculations

Author

Listed:
  • Pesaran, Mohammad Hashem
  • Pettenuzzo, Davide
  • Timmermann, Allan

Abstract

Present value calculations require predictions of cash flows both at near and distant future points in time. Such predictions are generally surrounded by considerable uncertainty and may critically depend on assumptions about parameter values as well as the form and stability of the data generating process underlying the cash flows. This paper presents new theoretical results for the existence of the infinite sum of discounted expected future values under uncertainty about the parameters characterizing the growth rate of the cash flow process. Furthermore, we explore the consequences for present values of relaxing the stability assumption in a way that allows for past and future breaks to the underlying cash flow process. We find that such breaks can lead to considerable changes in present values.

Suggested Citation

  • Pesaran, Mohammad Hashem & Pettenuzzo, Davide & Timmermann, Allan, 2006. "Learning, structural instability and present value calculations," Discussion Paper Series 1: Economic Studies 2006,27, Deutsche Bundesbank.
  • Handle: RePEc:zbw:bubdp1:4756
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/19656/1/200627dkp.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Timmermann, Allan, 2001. "Structural Breaks, Incomplete Information, and Stock Prices," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(3), pages 299-314, July.
    2. Ľluboš Pástor & Robert F. Stambaugh, 2001. "The Equity Premium and Structural Breaks," Journal of Finance, American Finance Association, vol. 56(4), pages 1207-1239, August.
    3. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    4. Pesaran, M. Hashem & Timmermann, Allan, 2002. "Market timing and return prediction under model instability," Journal of Empirical Finance, Elsevier, vol. 9(5), pages 495-510, December.
    5. David Cass & Menahem E. Yaari, 1965. "Individual Saving, Aggregate Capital Accumulation, and Efficient Growth," Cowles Foundation Discussion Papers 198, Cowles Foundation for Research in Economics, Yale University.
    6. Allan G. Timmermann, 1993. "How Learning in Financial Markets Generates Excess Volatility and Predictability in Stock Prices," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 1135-1145.
    7. Geweke, John, 2001. "A note on some limitations of CRRA utility," Economics Letters, Elsevier, vol. 71(3), pages 341-345, June.
    8. Alogoskoufis, George S & Smith, Ron, 1991. "The Phillips Curve, the Persistence of Inflation, and the Lucas Critique: Evidence from Exchange-Rate Regimes," American Economic Review, American Economic Association, vol. 81(5), pages 1254-1275, December.
    9. Robert J. Barro, 2005. "Rare Events and the Equity Premium," NBER Working Papers 11310, National Bureau of Economic Research, Inc.
    10. Stock, James H & Watson, Mark W, 1996. "Evidence on Structural Instability in Macroeconomic Time Series Relations," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(1), pages 11-30, January.
    11. Clements,Michael & Hendry,David, 1998. "Forecasting Economic Time Series," Cambridge Books, Cambridge University Press, number 9780521634809, September.
    12. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    13. Chib, Siddhartha, 1998. "Estimation and comparison of multiple change-point models," Journal of Econometrics, Elsevier, vol. 86(2), pages 221-241, June.
    14. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    15. Michael P. Clements & David F. Hendry, 2001. "Forecasting Non-Stationary Economic Time Series," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262531895, April.
    16. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    17. Menahem E. Yaari, 1965. "Uncertain Lifetime, Life Insurance, and the Theory of the Consumer," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 32(2), pages 137-150.
    18. Banerjee, Anindya & Lumsdaine, Robin L & Stock, James H, 1992. "Recursive and Sequential Tests of the Unit-Root and Trend-Break Hypotheses: Theory and International Evidence," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(3), pages 271-287, July.
    19. Paye, Bradley S. & Timmermann, Allan, 2006. "Instability of return prediction models," Journal of Empirical Finance, Elsevier, vol. 13(3), pages 274-315, June.
    20. Lucas, Robert E, Jr, 1978. "Asset Prices in an Exchange Economy," Econometrica, Econometric Society, vol. 46(6), pages 1429-1445, November.
    21. Clements, Michael P. & Hendry, David F., 1998. "Forecasting economic processes," International Journal of Forecasting, Elsevier, vol. 14(1), pages 111-131, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hashem Pesaran & Davide Pettenuzzo & Allan Timmermann, 2006. "Forecasting Time Series Subject to Multiple Structural Breaks," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 73(4), pages 1057-1084.
    2. Pesaran, M. Hashem & Timmermann, Allan, 2004. "How costly is it to ignore breaks when forecasting the direction of a time series?," International Journal of Forecasting, Elsevier, vol. 20(3), pages 411-425.
    3. Geweke, John & Jiang, Yu, 2011. "Inference and prediction in a multiple-structural-break model," Journal of Econometrics, Elsevier, vol. 163(2), pages 172-185, August.
    4. Jiawen Xu & Pierre Perron, 2023. "Forecasting in the presence of in-sample and out-of-sample breaks," Empirical Economics, Springer, vol. 64(6), pages 3001-3035, June.
    5. Pesaran, M. Hashem & Timmermann, Allan, 2005. "Small sample properties of forecasts from autoregressive models under structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 183-217.
    6. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    7. Jiawen Xu & Pierre Perron, 2015. "Forecasting in the presence of in and out of sample breaks," Boston University - Department of Economics - Working Papers Series wp2015-012, Boston University - Department of Economics.
    8. Gary M. Koop & Simon M. Potter, 2004. "Forecasting and Estimating Multiple Change-point Models with an Unknown Number of Change-points," Discussion Papers in Economics 04/31, Division of Economics, School of Business, University of Leicester.
    9. Giordani, Paolo & Kohn, Robert, 2008. "Efficient Bayesian Inference for Multiple Change-Point and Mixture Innovation Models," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 66-77, January.
    10. Sjoerd van den Hauwe & Richard Paap & Dick J.C. van Dijk, 2011. "An Alternative Bayesian Approach to Structural Breaks in Time Series Models," Tinbergen Institute Discussion Papers 11-023/4, Tinbergen Institute.
    11. Gary Koop & Simon M. Potter, 2009. "Prior Elicitation In Multiple Change-Point Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 50(3), pages 751-772, August.
    12. Jochmann, Markus & Koop, Gary & Strachan, Rodney W., 2010. "Bayesian forecasting using stochastic search variable selection in a VAR subject to breaks," International Journal of Forecasting, Elsevier, vol. 26(2), pages 326-347, April.
    13. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Filippo di Mauro & L. Vanessa Smith & Stephane Dees & M. Hashem Pesaran, 2007. "Exploring the international linkages of the euro area: a global VAR analysis," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 22(1), pages 1-38.
    16. Guidolin, Massimo, 2006. "Pessimistic beliefs under rational learning: Quantitative implications for the equity premium puzzle," Journal of Economics and Business, Elsevier, vol. 58(2), pages 85-118.
    17. Andrew Ang & Allan Timmermann, 2012. "Regime Changes and Financial Markets," Annual Review of Financial Economics, Annual Reviews, vol. 4(1), pages 313-337, October.
    18. Pettenuzzo, Davide & Timmermann, Allan, 2011. "Predictability of stock returns and asset allocation under structural breaks," Journal of Econometrics, Elsevier, vol. 164(1), pages 60-78, September.
    19. John M. Maheu & Stephen Gordon, 2008. "Learning, forecasting and structural breaks," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(5), pages 553-583.
    20. Koo, Bonsoo & Seo, Myung Hwan, 2015. "Structural-break models under mis-specification: Implications for forecasting," Journal of Econometrics, Elsevier, vol. 188(1), pages 166-181.

    More about this item

    Keywords

    present value; stock prices; structural breaks; Bayesian learning;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdp1:4756. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.