IDEAS home Printed from https://ideas.repec.org/p/chf/rpseri/rp2109.html
   My bibliography  Save this paper

A penalized two-pass regression to predict stock returns with time-varying risk premia

Author

Listed:
  • Gaetan Bakalli

    (University of Geneva)

  • Stéphane Guerrier

    (University of Geneva)

  • Olivier Scaillet

    (University of Geneva and Swiss Finance Institute)

Abstract

We develop a penalized two-pass regression with time-varying factor loadings. The penalization in the first pass enforces sparsity for the time-variation drivers while also maintaining compatibility with the no arbitrage restrictions by regularizing appropriate groups of coefficients. The second pass delivers risk premia estimates to predict equity excess returns. Our Monte Carlo results and our empirical results on a large cross-sectional data set of US individual stocks show that penalization without grouping can yield to nearly all estimated time-varying models violating the no arbitrage restrictions. Moreover, our results demonstrate that the proposed method reduces the prediction errors compared to a penalized approach without appropriate grouping or a time-invariant factor model.

Suggested Citation

  • Gaetan Bakalli & Stéphane Guerrier & Olivier Scaillet, 2021. "A penalized two-pass regression to predict stock returns with time-varying risk premia," Swiss Finance Institute Research Paper Series 21-09, Swiss Finance Institute.
  • Handle: RePEc:chf:rpseri:rp2109
    as

    Download full text from publisher

    File URL: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3777215
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Doron Avramov, 2004. "Stock Return Predictability and Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 17(3), pages 699-738.
    2. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    3. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    4. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    5. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    6. Alex Chinco & Adam D. Clark‐Joseph & Mao Ye, 2019. "Sparse Signals in the Cross‐Section of Returns," Journal of Finance, American Finance Association, vol. 74(1), pages 449-492, February.
    7. Shanken, Jay, 1990. "Intertemporal asset pricing : An Empirical Investigation," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 99-120.
    8. Jagannathan, Ravi & Wang, Zhenyu, 1996. "The Conditional CAPM and the Cross-Section of Expected Returns," Journal of Finance, American Finance Association, vol. 51(1), pages 3-53, March.
    9. Raymond Kan & Cesare Robotti & Jay Shanken, 2013. "Pricing Model Performance and the Two‐Pass Cross‐Sectional Regression Methodology," Journal of Finance, American Finance Association, vol. 68(6), pages 2617-2649, December.
    10. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    11. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," Review of Finance, European Finance Association, vol. 33(5), pages 2223-2273.
    12. Shanken, Jay & Zhou, Guofu, 2007. "Estimating and testing beta pricing models: Alternative methods and their performance in simulations," Journal of Financial Economics, Elsevier, vol. 84(1), pages 40-86, April.
    13. Guanhao Feng & Stefano Giglio & Dacheng Xiu, 2020. "Taming the Factor Zoo: A Test of New Factors," Journal of Finance, American Finance Association, vol. 75(3), pages 1327-1370, June.
    14. Shihao Gu & Bryan Kelly & Dacheng Xiu, 2020. "Empirical Asset Pricing via Machine Learning," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2223-2273.
    15. Fama, Eugene F. & French, Kenneth R., 2015. "A five-factor asset pricing model," Journal of Financial Economics, Elsevier, vol. 116(1), pages 1-22.
    16. Stephane Bonhomme & Azeem M. Shaikh, 2017. "Keeping the ECON in Econometrics: (Micro-)Econometrics in the Journal of Political Economy," Journal of Political Economy, University of Chicago Press, vol. 125(6), pages 1846-1853.
    17. Victor Chernozhukov & Denis Chetverikov & Kengo Kato & Yuta Koike, 2019. "Improved Central Limit Theorem and bootstrap approximations in high dimensions," Papers 1912.10529, arXiv.org, revised May 2022.
    18. Chamberlain, Gary & Rothschild, Michael, 1983. "Arbitrage, Factor Structure, and Mean-Variance Analysis on Large Asset Markets," Econometrica, Econometric Society, vol. 51(5), pages 1281-1304, September.
    19. Joachim Freyberger & Andreas Neuhierl & Michael Weber, 2020. "Dissecting Characteristics Nonparametrically," The Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    20. John H. Cochrane, 2011. "Presidential Address: Discount Rates," Journal of Finance, American Finance Association, vol. 66(4), pages 1047-1108, August.
    21. Jianqing Fan & Alex Furger & Dacheng Xiu, 2016. "Incorporating Global Industrial Classification Standard Into Portfolio Allocation: A Simple Factor-Based Large Covariance Matrix Estimator With High-Frequency Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(4), pages 489-503, October.
    22. Capistrán, Carlos & Timmermann, Allan, 2009. "Forecast Combination With Entry and Exit of Experts," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 428-440.
    23. Yacine Aït-Sahalia & Jean Jacod & Dacheng Xiu, 2020. "Inference on Risk Premia in Continuous-Time Asset Pricing Models," NBER Working Papers 28140, National Bureau of Economic Research, Inc.
    24. Ferson, Wayne E & Harvey, Campbell R, 1991. "The Variation of Economic Risk Premiums," Journal of Political Economy, University of Chicago Press, vol. 99(2), pages 385-415, April.
    25. Shanken, Jay, 1992. "On the Estimation of Beta-Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 5(1), pages 1-33.
    26. Cochrane, John H, 1996. "A Cross-Sectional Test of an Investment-Based Asset Pricing Model," Journal of Political Economy, University of Chicago Press, vol. 104(3), pages 572-621, June.
    27. Joachim Freyberger & Andreas Neuhierl & Michael Weber & Andrew KarolyiEditor, 2020. "Dissecting Characteristics Nonparametrically," Review of Financial Studies, Society for Financial Studies, vol. 33(5), pages 2326-2377.
    28. Carhart, Mark M, 1997. "On Persistence in Mutual Fund Performance," Journal of Finance, American Finance Association, vol. 52(1), pages 57-82, March.
    29. Shanken, Jay, 1985. "Multivariate tests of the zero-beta CAPM," Journal of Financial Economics, Elsevier, vol. 14(3), pages 327-348, September.
    30. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    31. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    32. Gu, Shihao & Kelly, Bryan & Xiu, Dacheng, 2021. "Autoencoder asset pricing models," Journal of Econometrics, Elsevier, vol. 222(1), pages 429-450.
    33. Al-Najjar, Nabil Ibraheem, 1995. "Decomposition and Characterization of Risk with a Continuum of Random Variables," Econometrica, Econometric Society, vol. 63(5), pages 1195-1224, September.
    34. Aït-Sahalia, Yacine & Xiu, Dacheng, 2017. "Using principal component analysis to estimate a high dimensional factor model with high-frequency data," Journal of Econometrics, Elsevier, vol. 201(2), pages 384-399.
    35. Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
    36. G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
    37. Lin William Cong & Guanhao Feng & Jingyu He & Xin He, 2022. "Growing the Efficient Frontier on Panel Trees," NBER Working Papers 30805, National Bureau of Economic Research, Inc.
    38. Ming Yuan & Yi Lin, 2006. "Model selection and estimation in regression with grouped variables," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(1), pages 49-67, February.
    39. Doron Avramov & Tarun Chordia, 2006. "Asset Pricing Models and Financial Market Anomalies," The Review of Financial Studies, Society for Financial Studies, vol. 19(3), pages 1001-1040.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neuhierl, Andreas & Tang, Xiaoxiao & Varneskov, Rasmus Tangsgaard & Zhou, Guofu, 2022. "Option characteristics as cross-sectional predictors," LawFin Working Paper Series 37, Goethe University, Center for Advanced Studies on the Foundations of Law and Finance (LawFin).
    2. Ardia, David & Barras, Laurent & Gagliardini, Patrick & Scaillet, Olivier, 2024. "Is it alpha or beta? Decomposing hedge fund returns when models are misspecified," Journal of Financial Economics, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "Estimation of large dimensional conditional factor models in finance," Working Papers unige:125031, University of Geneva, Geneva School of Economics and Management.
    2. Chaieb, Ines & Langlois, Hugues & Scaillet, Olivier, 2021. "Factors and risk premia in individual international stock returns," Journal of Financial Economics, Elsevier, vol. 141(2), pages 669-692.
    3. repec:gnv:wpaper:unige:76321 is not listed on IDEAS
    4. Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "Time‐Varying Risk Premium in Large Cross‐Sectional Equity Data Sets," Econometrica, Econometric Society, vol. 84, pages 985-1046, May.
    5. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    6. Wolfgang Drobetz & Tizian Otto, 2021. "Empirical asset pricing via machine learning: evidence from the European stock market," Journal of Asset Management, Palgrave Macmillan, vol. 22(7), pages 507-538, December.
    7. Alessi, Lucia & Ossola, Elisa & Panzica, Roberto, 2023. "When do investors go green? Evidence from a time-varying asset-pricing model," International Review of Financial Analysis, Elsevier, vol. 90(C).
    8. Stefano Giglio & Dacheng Xiu, 2017. "Inference on Risk Premia in the Presence of Omitted Factors," NBER Working Papers 23527, National Bureau of Economic Research, Inc.
    9. Clarke, Charles, 2022. "The level, slope, and curve factor model for stocks," Journal of Financial Economics, Elsevier, vol. 143(1), pages 159-187.
    10. Amit Goyal, 2012. "Empirical cross-sectional asset pricing: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 26(1), pages 3-38, March.
    11. Sun, Chuanping, 2024. "Factor correlation and the cross section of asset returns: A correlation-robust machine learning approach," Journal of Empirical Finance, Elsevier, vol. 77(C).
    12. Ma, Tian & Leong, Wen Jun & Jiang, Fuwei, 2023. "A latent factor model for the Chinese stock market," International Review of Financial Analysis, Elsevier, vol. 87(C).
    13. Doron Avramov & Si Cheng & Lior Metzker & Stefan Voigt, 2023. "Integrating Factor Models," Journal of Finance, American Finance Association, vol. 78(3), pages 1593-1646, June.
    14. Svetlana Bryzgalova & Jiantao Huang & Christian Julliard, 2023. "Bayesian Solutions for the Factor Zoo: We Just Ran Two Quadrillion Models," Journal of Finance, American Finance Association, vol. 78(1), pages 487-557, February.
    15. Adrian, Tobias & Crump, Richard K. & Moench, Emanuel, 2015. "Regression-based estimation of dynamic asset pricing models," Journal of Financial Economics, Elsevier, vol. 118(2), pages 211-244.
    16. Kim, Soohun & Skoulakis, Georgios, 2018. "Ex-post risk premia estimation and asset pricing tests using large cross sections: The regression-calibration approach," Journal of Econometrics, Elsevier, vol. 204(2), pages 159-188.
    17. Haixiang Yao & Shenghao Xia & Hao Liu, 2024. "Return predictability via an long short‐term memory‐based cross‐section factor model: Evidence from Chinese stock market," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 1770-1794, September.
    18. Francisco Peñaranda & Enrique Sentana, 2024. "Portfolio management with big data," Working Papers wp2024_2411, CEMFI.
    19. Yan, Jingda & Yu, Jialin, 2023. "Cross-stock momentum and factor momentum," Journal of Financial Economics, Elsevier, vol. 150(2).
    20. Doron Avramov & Si Cheng & Lior Metzker, 2023. "Machine Learning vs. Economic Restrictions: Evidence from Stock Return Predictability," Management Science, INFORMS, vol. 69(5), pages 2587-2619, May.
    21. Cakici, Nusret & Fieberg, Christian & Metko, Daniel & Zaremba, Adam, 2023. "Machine learning goes global: Cross-sectional return predictability in international stock markets," Journal of Economic Dynamics and Control, Elsevier, vol. 155(C).

    More about this item

    Keywords

    two-pass regression; predictive modeling; large panel; factor model; LASSO penalization.;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chf:rpseri:rp2109. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ridima Mittal (email available below). General contact details of provider: https://edirc.repec.org/data/fameech.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.