IDEAS home Printed from https://ideas.repec.org/p/ags/nccc09/53052.html
   My bibliography  Save this paper

Do Composite Procedures Really Improve the Accuracy of Outlook Forecasts?

Author

Listed:
  • Colino, Evelyn V.
  • Irwin, Scott H.
  • Garcia, Philip

Abstract

This paper investigates whether the accuracy of outlook hog price forecasts can be improved using composite forecasts in an out-of-sample context. Price forecasts from four wellrecognized outlook programs are combined with futures-based forecasts, ARIMA, and unrestricted Vector Autoregressive (VAR) models. Quarterly data are available from 1975.I through 2007.IV, which allow for a relatively long out-of-sample evaluation period after permitting model specification and appropriate composite-weight training periods. Results show that futures and numerous composite procedures outperform outlook forecasts. At intermediate horizons, OLS composite procedures perform rather well. The superiority of futures and composite forecasts decreases at longer horizons except for an equal-weighted approach. Importantly, with just few exceptions, nothing outperforms the equal-weight approach significantly in any program or horizon. Overall, findings favor the usage of equal-weighted composites, a result that is consistent with previous empirical findings and recent theoretical papers.

Suggested Citation

  • Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2009. "Do Composite Procedures Really Improve the Accuracy of Outlook Forecasts?," 2009 Conference, April 20-21, 2009, St. Louis, Missouri 53052, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
  • Handle: RePEc:ags:nccc09:53052
    DOI: 10.22004/ag.econ.53052
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/53052/files/confp18-09.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.53052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.
    2. Issler, João Victor & Lima, Luiz Renato, 2009. "A panel data approach to economic forecasting: The bias-corrected average forecast," Journal of Econometrics, Elsevier, vol. 152(2), pages 153-164, October.
    3. Henriksson, Roy D & Merton, Robert C, 1981. "On Market Timing and Investment Performance. II. Statistical Procedures for Evaluating Forecasting Skills," The Journal of Business, University of Chicago Press, vol. 54(4), pages 513-533, October.
    4. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    5. Fang, Yue, 2003. "Forecasting combination and encompassing tests," International Journal of Forecasting, Elsevier, vol. 19(1), pages 87-94.
    6. Granger, C. W. J. & Newbold, Paul, 1986. "Forecasting Economic Time Series," Elsevier Monographs, Elsevier, edition 2, number 9780122951831 edited by Shell, Karl.
    7. Evelyn V. Colino & Scott H. Irwin, 2010. "Outlook vs. Futures: Three Decades of Evidence in Hog and Cattle Markets," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(1), pages 1-15.
    8. Diebold, Francis X. & Pauly, Peter, 1990. "The use of prior information in forecast combination," International Journal of Forecasting, Elsevier, vol. 6(4), pages 503-508, December.
    9. McIntosh, Christopher S. & Bessler, David A., 1988. "Forecasting Agricultural Prices Using A Bayesian Composite Approach," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 20(2), pages 1-8, December.
    10. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    11. Timmermann, Allan, 2006. "Forecast Combinations," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 4, pages 135-196, Elsevier.
    12. Ashley, Richard, 2003. "Statistically significant forecasting improvements: how much out-of-sample data is likely necessary?," International Journal of Forecasting, Elsevier, vol. 19(2), pages 229-239.
    13. Allen, P. Geoffrey, 1994. "Economic forecasting in agriculture," International Journal of Forecasting, Elsevier, vol. 10(1), pages 81-135, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ferris, John N., 2010. "The USDA/Land Grant Extension Outlook Program -- A History and Assessment," 2010 Annual Meeting, July 25-27, 2010, Denver, Colorado 101723, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip & Etienne, Xiaoli, 2012. "Composite and Outlook Forecast Accuracy," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 37(2), pages 1-19, August.
    2. Xiaojie Xu, 2020. "Corn Cash Price Forecasting," American Journal of Agricultural Economics, John Wiley & Sons, vol. 102(4), pages 1297-1320, August.
    3. Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    4. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    5. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    6. Henzel, Steffen R. & Mayr, Johannes, 2013. "The mechanics of VAR forecast pooling—A DSGE model based Monte Carlo study," The North American Journal of Economics and Finance, Elsevier, vol. 24(C), pages 1-24.
    7. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    8. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2017. "How to Estimate Beta?," Hannover Economic Papers (HEP) dp-617, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    9. Xiaojie Xu, 2017. "Short-run price forecast performance of individual and composite models for 496 corn cash markets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(14), pages 2593-2620, October.
    10. Hollstein, Fabian & Prokopczuk, Marcel & Wese Simen, Chardin, 2019. "Estimating beta: Forecast adjustments and the impact of stock characteristics for a broad cross-section," Journal of Financial Markets, Elsevier, vol. 44(C), pages 91-118.
    11. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    12. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    13. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    14. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    15. Duncan, Roberto & Martínez-García, Enrique, 2019. "New perspectives on forecasting inflation in emerging market economies: An empirical assessment," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1008-1031.
    16. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    17. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    18. Conflitti, Cristina & De Mol, Christine & Giannone, Domenico, 2015. "Optimal combination of survey forecasts," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1096-1103.
    19. Clements, Michael P. & Harvey, David I., 2011. "Combining probability forecasts," International Journal of Forecasting, Elsevier, vol. 27(2), pages 208-223.
    20. Diebold, Francis X. & Shin, Minchul, 2019. "Machine learning for regularized survey forecast combination: Partially-egalitarian LASSO and its derivatives," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1679-1691.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:nccc09:53052. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/dauiuus.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.