IDEAS home Printed from https://ideas.repec.org/a/wly/jforec/v39y2020i6p966-985.html
   My bibliography  Save this article

Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages

Author

Listed:
  • Oguzhan Cepni
  • Rangan Gupta
  • I. Ethem Güney
  • M. Yilmaz

Abstract

In this paper, we forecast local currency debt of five major emerging market countries (Brazil, Indonesia, Mexico, South Africa, and Turkey) over the period January 2010 to January 2019 (with an in‐sample period: March 2005 to December 2009). We exploit information from a large set of economic and financial time series to assess the importance not only of “own‐country” factors (derived from principal component and partial least squares approaches), but also create “global” predictors by combining the country‐specific variables across the five emerging economies. We find that, while information on own‐country factors can outperform the historical average model, global factors tend to produce not only greater statistical and economic gains, but also enhance market timing ability of investors, especially when we use the target variable (bond premium) approach under the partial least squares method to extract our factors. Our results have important implications not only for fund managers but also for policymakers.

Suggested Citation

  • Oguzhan Cepni & Rangan Gupta & I. Ethem Güney & M. Yilmaz, 2020. "Forecasting local currency bond risk premia of emerging markets: The role of cross‐country macrofinancial linkages," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(6), pages 966-985, September.
  • Handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:966-985
    DOI: 10.1002/for.2669
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/for.2669
    Download Restriction: no

    File URL: https://libkey.io/10.1002/for.2669?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Ivo Welch & Amit Goyal, 2008. "A Comprehensive Look at The Empirical Performance of Equity Premium Prediction," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1455-1508, July.
    2. Cepni, Oguzhan & Gul, Selcuk & Gupta, Rangan, 2020. "Local currency bond risk premia of emerging markets: The role of local and global factors," Finance Research Letters, Elsevier, vol. 33(C).
    3. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    4. Diebold, Francis X. & Li, Canlin, 2006. "Forecasting the term structure of government bond yields," Journal of Econometrics, Elsevier, vol. 130(2), pages 337-364, February.
    5. Antonio Gargano & Davide Pettenuzzo & Allan Timmermann, 2019. "Bond Return Predictability: Economic Value and Links to the Macroeconomy," Management Science, INFORMS, vol. 65(2), pages 508-540, February.
    6. Sowmya, Subramaniam & Prasanna, Krishna & Bhaduri, Saumitra, 2016. "Linkages in the term structure of interest rates across sovereign bond markets," Emerging Markets Review, Elsevier, vol. 27(C), pages 118-139.
    7. Buncic, Daniel & Tischhauser, Martin, 2017. "Macroeconomic factors and equity premium predictability," International Review of Economics & Finance, Elsevier, vol. 51(C), pages 621-644.
    8. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    9. Boivin, Jean & Ng, Serena, 2006. "Are more data always better for factor analysis?," Journal of Econometrics, Elsevier, vol. 132(1), pages 169-194, May.
    10. Vedat Akgiray & Sayad Baronyan & Emrah Sener & Osman Yılmaz, 2016. "Predictability of Emerging Market Local Currency Bond Risk Premia," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 52(7), pages 1627-1646, July.
    11. Miyajima, Ken & Mohanty, M.S. & Chan, Tracy, 2015. "Emerging market local currency bonds: Diversification and stability," Emerging Markets Review, Elsevier, vol. 22(C), pages 126-139.
    12. John Y. Campbell, 2008. "Viewpoint: Estimating the equity premium," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 41(1), pages 1-21, February.
    13. Jeff Fleming & Chris Kirby & Barbara Ostdiek, 2001. "The Economic Value of Volatility Timing," Journal of Finance, American Finance Association, vol. 56(1), pages 329-352, February.
    14. Gadanecz, Blaise & Miyajima, Ken & Shu, Chang, 2018. "Emerging market local currency sovereign bond yields: The role of exchange rate risk," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 371-401.
    15. Daniele Bianchi & Matthias Büchner & Andrea Tamoni, 2021. "Bond Risk Premiums with Machine Learning [Quadratic term structure models: Theory and evidence]," The Review of Financial Studies, Society for Financial Studies, vol. 34(2), pages 1046-1089.
    16. John H. Cochrane & Monika Piazzesi, 2005. "Bond Risk Premia," American Economic Review, American Economic Association, vol. 95(1), pages 138-160, March.
    17. Ferreira, Miguel A. & Santa-Clara, Pedro, 2011. "Forecasting stock market returns: The sum of the parts is more than the whole," Journal of Financial Economics, Elsevier, vol. 100(3), pages 514-537, June.
    18. John Y. Campbell, 2007. "Estimating the Equity Premium," NBER Working Papers 13423, National Bureau of Economic Research, Inc.
    19. Clark, Todd E. & West, Kenneth D., 2007. "Approximately normal tests for equal predictive accuracy in nested models," Journal of Econometrics, Elsevier, vol. 138(1), pages 291-311, May.
    20. Zhu, Xiaoneng, 2015. "Out-of-sample bond risk premium predictions: A global common factor," Journal of International Money and Finance, Elsevier, vol. 51(C), pages 155-173.
    21. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    22. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    23. Bunda, Irina & Hamann, A. Javier & Lall, Subir, 2009. "Correlations in emerging market bonds: The role of local and global factors," Emerging Markets Review, Elsevier, vol. 10(2), pages 67-96, June.
    24. Laborda, Ricardo & Olmo, Jose, 2014. "Investor sentiment and bond risk premia," Journal of Financial Markets, Elsevier, vol. 18(C), pages 206-233.
    25. Groen, Jan J.J. & Kapetanios, George, 2016. "Revisiting useful approaches to data-rich macroeconomic forecasting," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 221-239.
    26. Kelly, Bryan & Pruitt, Seth, 2015. "The three-pass regression filter: A new approach to forecasting using many predictors," Journal of Econometrics, Elsevier, vol. 186(2), pages 294-316.
    27. Cepni, Oguzhan & Güney, I. Ethem & Swanson, Norman R., 2019. "Nowcasting and forecasting GDP in emerging markets using global financial and macroeconomic diffusion indexes," International Journal of Forecasting, Elsevier, vol. 35(2), pages 555-572.
    28. Çepni, Oğguzhan & Demirer, Riza & Gupta, Rangan & Pierdzioch, Christian, 2020. "Time-varying risk aversion and the predictability of bond premia," Finance Research Letters, Elsevier, vol. 34(C).
    29. Sydney C. Ludvigson & Serena Ng, 2009. "Macro Factors in Bond Risk Premia," The Review of Financial Studies, Society for Financial Studies, vol. 22(12), pages 5027-5067, December.
    30. John Y. Campbell & Samuel B. Thompson, 2008. "Predicting Excess Stock Returns Out of Sample: Can Anything Beat the Historical Average?," The Review of Financial Studies, Society for Financial Studies, vol. 21(4), pages 1509-1531, July.
    31. Cepni, Oguzhan & Güney, I.Ethem, 2019. "Local currency bond risk premia: A panel evidence on emerging markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 182-196.
    32. Michiel de Pooter & Martin Martens & Dick van Dijk, 2008. "Predicting the Daily Covariance Matrix for S&P 100 Stocks Using Intraday Data—But Which Frequency to Use?," Econometric Reviews, Taylor & Francis Journals, vol. 27(1-3), pages 199-229.
    33. Keim, Donald B. & Stambaugh, Robert F., 1986. "Predicting returns in the stock and bond markets," Journal of Financial Economics, Elsevier, vol. 17(2), pages 357-390, December.
    34. Fama, Eugene F. & French, Kenneth R., 1989. "Business conditions and expected returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 25(1), pages 23-49, November.
    35. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    36. Stock, James H & Watson, Mark W, 2002. "Macroeconomic Forecasting Using Diffusion Indexes," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(2), pages 147-162, April.
    37. Jennie Bai, 2010. "Equity premium predictions with adaptive macro indexes," Staff Reports 475, Federal Reserve Bank of New York.
    38. Eric Ghysels & Casidhe Horan & Emanuel Moench, 2018. "Forecasting through the Rearview Mirror: Data Revisions and Bond Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 31(2), pages 678-714.
    39. Fama, Eugene F & Bliss, Robert R, 1987. "The Information in Long-Maturity Forward Rates," American Economic Review, American Economic Association, vol. 77(4), pages 680-692, September.
    40. Bai, Jushan & Ng, Serena, 2008. "Large Dimensional Factor Analysis," Foundations and Trends(R) in Econometrics, now publishers, vol. 3(2), pages 89-163, June.
    41. Stock J.H. & Watson M.W., 2002. "Forecasting Using Principal Components From a Large Number of Predictors," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 1167-1179, December.
    42. Leitch, Gordon & Tanner, J Ernest, 1991. "Economic Forecast Evaluation: Profits versus the Conventional Error Measures," American Economic Review, American Economic Association, vol. 81(3), pages 580-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lien, Donald & Zhang, Jiewen & Yu, Xiaojian, 2022. "Effects of economic policy uncertainty: A regime switching connectedness approach," Economic Modelling, Elsevier, vol. 113(C).
    2. Ge, Futing & Zhang, Weiguo, 2022. "The determinants of cross-border bond risk premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giovannelli, Alessandro & Massacci, Daniele & Soccorsi, Stefano, 2021. "Forecasting stock returns with large dimensional factor models," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 252-269.
    2. Çepni, Oğuzhan & Guney, I. Ethem & Gupta, Rangan & Wohar, Mark E., 2020. "The role of an aligned investor sentiment index in predicting bond risk premia of the U.S," Journal of Financial Markets, Elsevier, vol. 51(C).
    3. Bouri, Elie & Demirer, Riza & Gupta, Rangan & Wohar, Mark E., 2021. "Gold, platinum and the predictability of bond risk premia," Finance Research Letters, Elsevier, vol. 38(C).
    4. Çakmaklı, Cem & van Dijk, Dick, 2016. "Getting the most out of macroeconomic information for predicting excess stock returns," International Journal of Forecasting, Elsevier, vol. 32(3), pages 650-668.
    5. Haase, Felix & Neuenkirch, Matthias, 2023. "Predictability of bull and bear markets: A new look at forecasting stock market regimes (and returns) in the US," International Journal of Forecasting, Elsevier, vol. 39(2), pages 587-605.
    6. Balcilar, Mehmet & Gupta, Rangan & Wang, Shixuan & Wohar, Mark E., 2020. "Oil price uncertainty and movements in the US government bond risk premia," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    7. Dai, Zhifeng & Kang, Jie, 2021. "Bond yield and crude oil prices predictability," Energy Economics, Elsevier, vol. 97(C).
    8. Cem Cakmakli & Dick van Dijk, 2010. "Getting the Most out of Macroeconomic Information for Predicting Stock Returns and Volatility," Tinbergen Institute Discussion Papers 10-115/4, Tinbergen Institute.
    9. Bätje, Fabian & Menkhoff, Lukas, 2016. "Predicting the equity premium via its components," VfS Annual Conference 2016 (Augsburg): Demographic Change 145789, Verein für Socialpolitik / German Economic Association.
    10. Rapach, David & Zhou, Guofu, 2013. "Forecasting Stock Returns," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 328-383, Elsevier.
    11. Dichtl, Hubert, 2020. "Forecasting excess returns of the gold market: Can we learn from stock market predictions?," Journal of Commodity Markets, Elsevier, vol. 19(C).
    12. Daniel Borup & Jonas N. Eriksen & Mads M. Kjær & Martin Thyrsgaard, 2024. "Predicting Bond Return Predictability," Management Science, INFORMS, vol. 70(2), pages 931-951, February.
    13. Oguzhan Cepni & Rangan Gupta & Mark E. Wohar, 2019. "Variants of Consumption-Wealth Ratios and Predictability of U.S. Government Bond Risk Premia: Old is still Gold," Working Papers 201912, University of Pretoria, Department of Economics.
    14. Mykola Babiak & Jozef Barunik, 2020. "Deep Learning, Predictability, and Optimal Portfolio Returns," CERGE-EI Working Papers wp677, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    15. Thomadakis, Apostolos, 2016. "Do Combination Forecasts Outperform the Historical Average? Economic and Statistical Evidence," MPRA Paper 71589, University Library of Munich, Germany.
    16. Hai Lin & Chunchi Wu & Guofu Zhou, 2018. "Forecasting Corporate Bond Returns with a Large Set of Predictors: An Iterated Combination Approach," Management Science, INFORMS, vol. 64(9), pages 4218-4238, September.
    17. Zhang, Yaojie & Ma, Feng & Wang, Yudong, 2019. "Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?," Journal of Empirical Finance, Elsevier, vol. 54(C), pages 97-117.
    18. Yi, Yongsheng & Ma, Feng & Zhang, Yaojie & Huang, Dengshi, 2019. "Forecasting stock returns with cycle-decomposed predictors," International Review of Financial Analysis, Elsevier, vol. 64(C), pages 250-261.
    19. Hammerschmid, Regina & Lohre, Harald, 2018. "Regime shifts and stock return predictability," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 138-160.
    20. Zhang, Han & Fan, Xiaoyun & Guo, Bin & Zhang, Wei, 2019. "Reexamining time-varying bond risk premia in the post-financial crisis era," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).

    More about this item

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:jforec:v:39:y:2020:i:6:p:966-985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www3.interscience.wiley.com/cgi-bin/jhome/2966 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.