IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v79y2022ics0301420722004184.html
   My bibliography  Save this article

A non-ferrous metal price ensemble prediction system based on innovative combined kernel extreme learning machine and chaos theory

Author

Listed:
  • Guo, Honggang
  • Wang, Jianzhou
  • Li, Zhiwu
  • Lu, Haiyan
  • Zhang, Linyue

Abstract

Non-ferrous metal futures, as a significant component of the financial market, are complementary and coordinated with other financial elements, which has been a key area of research in recent years. However, given the apparent volatility and chaotic nature of the non-ferrous metal price sequence, forecasting it remains a difficult challenge. While prior research employed a variety of methodologies to forecast metal prices, they overlooked the critical role of chaos feature analysis and the necessity of error analysis, severely limiting prediction accuracy. This paper designs a novel non-ferrous metal price ensemble prediction system that incorporates data decomposition, phase space reconstruction, multi-objective optimization, point prediction, and interval prediction. A combined kernel extreme learning machine based on the improved multi-objective lion swarm optimization algorithm is developed and theoretically explained to improve prediction accuracy and reliability. Additionally, the appropriate creation of the prediction interval based on the best-fit distribution of the point prediction error enabled the examination of various levels of uncertainty. In an empirical experiment using copper and aluminum prices from the London Metal Exchange, the proposed system demonstrated benefits in point and interval prediction, providing decision makers with useful prediction references.

Suggested Citation

  • Guo, Honggang & Wang, Jianzhou & Li, Zhiwu & Lu, Haiyan & Zhang, Linyue, 2022. "A non-ferrous metal price ensemble prediction system based on innovative combined kernel extreme learning machine and chaos theory," Resources Policy, Elsevier, vol. 79(C).
  • Handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004184
    DOI: 10.1016/j.resourpol.2022.102975
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301420722004184
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2022.102975?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Ying & Wang, Jianzhou & Li, Zhiwu & Yang, Hufang & Li, Hongmin, 2021. "Design of a combined system based on two-stage data preprocessing and multi-objective optimization for wind speed prediction," Energy, Elsevier, vol. 231(C).
    2. Zhu, Bangzhu & Huang, Liqing & Yuan, Lili & Ye, Shunxin & Wang, Ping, 2020. "Exploring the risk spillover effects between carbon market and electricity market: A bidimensional empirical mode decomposition based conditional value at risk approach," International Review of Economics & Finance, Elsevier, vol. 67(C), pages 163-175.
    3. Whitney K. Newey & Kenneth D. West, 1994. "Automatic Lag Selection in Covariance Matrix Estimation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 61(4), pages 631-653.
    4. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    5. Fenghua Wen & Xin Yang & Xu Gong & Kin Keung Lai, 2017. "Multi-Scale Volatility Feature Analysis and Prediction of Gold Price," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 16(01), pages 205-223, January.
    6. Wang, Jianzhou & Niu, Xinsong & Zhang, Lifang & Liu, Zhenkun & Wei, Danxiang, 2022. "The influence of international oil prices on the exchange rates of oil exporting countries: Based on the hybrid copula function," Resources Policy, Elsevier, vol. 77(C).
    7. He, Kaijian & Chen, Yanhui & Tso, Geoffrey K.F., 2017. "Price forecasting in the precious metal market: A multivariate EMD denoising approach," Resources Policy, Elsevier, vol. 54(C), pages 9-24.
    8. Xu Gong & Boqiang Lin, 2018. "Structural breaks and volatility forecasting in the copper futures market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 38(3), pages 290-339, March.
    9. Auer, Benjamin R., 2016. "On the performance of simple trading rules derived from the fractal dynamics of gold and silver price fluctuations," Finance Research Letters, Elsevier, vol. 16(C), pages 255-267.
    10. Pesaran, M Hashem & Timmermann, Allan, 1992. "A Simple Nonparametric Test of Predictive Performance," Journal of Business & Economic Statistics, American Statistical Association, vol. 10(4), pages 561-565, October.
    11. Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
    12. Pincheira Brown, Pablo & Hardy, Nicolás, 2019. "Forecasting base metal prices with the Chilean exchange rate," Resources Policy, Elsevier, vol. 62(C), pages 256-281.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Jain, Anshul & Ghosh, Sajal, 2013. "Dynamics of global oil prices, exchange rate and precious metal prices in India," Resources Policy, Elsevier, vol. 38(1), pages 88-93.
    15. Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
    16. Newey, Whitney K & West, Kenneth D, 1987. "Hypothesis Testing with Efficient Method of Moments Estimation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 28(3), pages 777-787, October.
    17. Andrews, Donald W K & Monahan, J Christopher, 1992. "An Improved Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 60(4), pages 953-966, July.
    18. Wu, Chunying & Wang, Jianzhou & Hao, Yan, 2022. "Deterministic and uncertainty crude oil price forecasting based on outlier detection and modified multi-objective optimization algorithm," Resources Policy, Elsevier, vol. 77(C).
    19. Li, Ranran & Hu, Yucai & Heng, Jiani & Chen, Xueli, 2021. "A novel multiscale forecasting model for crude oil price time series," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    20. Hu, Yan & Ni, Jian & Wen, Liu, 2020. "A hybrid deep learning approach by integrating LSTM-ANN networks with GARCH model for copper price volatility prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 557(C).
    21. Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
    22. Alameer, Zakaria & Elaziz, Mohamed Abd & Ewees, Ahmed A. & Ye, Haiwang & Jianhua, Zhang, 2019. "Forecasting gold price fluctuations using improved multilayer perceptron neural network and whale optimization algorithm," Resources Policy, Elsevier, vol. 61(C), pages 250-260.
    23. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    24. Ciner, Cetin, 2017. "Predicting white metal prices by a commodity sensitive exchange rate," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 309-315.
    25. Chen, Yun & Yang, Hui, 2012. "Multiscale recurrence analysis of long-term nonlinear and nonstationary time series," Chaos, Solitons & Fractals, Elsevier, vol. 45(7), pages 978-987.
    26. Wang, Jianzhou & Niu, Tong & Lu, Haiyan & Guo, Zhenhai & Yang, Wendong & Du, Pei, 2018. "An analysis-forecast system for uncertainty modeling of wind speed: A case study of large-scale wind farms," Applied Energy, Elsevier, vol. 211(C), pages 492-512.
    27. Zhong, Meirui & He, Ruifang & Chen, Jinyu & Huang, Jianbai, 2019. "Time-varying effects of international nonferrous metal price shocks on China’s industrial economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 528(C).
    28. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    29. Pablo Pincheira & Nicolas Hardy & Andrea Bentancor, 2022. "A Simple Out-of-Sample Test of Predictability against the Random Walk Benchmark," Mathematics, MDPI, vol. 10(2), pages 1-20, January.
    30. Liu, Weiping & Wang, Chengzhu & Li, Yonggang & Liu, Yishun & Huang, Keke, 2021. "Ensemble forecasting for product futures prices using variational mode decomposition and artificial neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Zhirui & Gai, Mei, 2023. "A novel hybrid wind speed prediction framework based on multi-strategy improved optimizer and new data pre-processing system with feedback mechanism," Energy, Elsevier, vol. 281(C).
    2. He, Zhichao & Huang, Jianhua, 2023. "A novel non-ferrous metal price hybrid forecasting model based on data preprocessing and error correction," Resources Policy, Elsevier, vol. 86(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hardy, Nicolás & Ferreira, Tiago & Quinteros, Maria J. & Magner, Nicolás S., 2023. "“Watch your tone!”: Forecasting mining industry commodity prices with financial report tone," Resources Policy, Elsevier, vol. 86(PA).
    2. Nicolas S. Magner & Nicolás Hardy & Tiago Ferreira & Jaime F. Lavin, 2023. "“Agree to Disagree”: Forecasting Stock Market Implied Volatility Using Financial Report Tone Disagreement Analysis," Mathematics, MDPI, vol. 11(7), pages 1-16, March.
    3. Nicolás Magner & Nicolás Hardy, 2022. "Cryptocurrency Forecasting: More Evidence of the Meese-Rogoff Puzzle," Mathematics, MDPI, vol. 10(13), pages 1-27, July.
    4. Zhou, Jianguo & Xu, Zhongtian, 2023. "A novel three-stage hybrid learning paradigm based on a multi-decomposition strategy, optimized relevance vector machine, and error correction for multi-step forecasting of precious metal prices," Resources Policy, Elsevier, vol. 80(C).
    5. Kwas, Marek & Paccagnini, Alessia & Rubaszek, Michał, 2021. "Common factors and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 74(C).
    6. Du, Pei & Wang, Jianzhou & Yang, Wendong & Niu, Tong, 2020. "Point and interval forecasting for metal prices based on variational mode decomposition and an optimized outlier-robust extreme learning machine," Resources Policy, Elsevier, vol. 69(C).
    7. Pincheira, Pablo & Hardy, Nicolás & Muñoz, Felipe, 2021. ""Go wild for a while!": A new asymptotically Normal test for forecast evaluation in nested models," MPRA Paper 105368, University Library of Munich, Germany.
    8. Pablo Pincheira-Brown & Nicolás Hardy & Cristobal Henrriquez & Ignacio Tapia & Andrea Bentancor, 2023. "Forecasting Base Metal Prices with an International Stock Index," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 73(3), pages 277-302, October.
    9. Pablo Pincheira & Nicolás Hardy & Felipe Muñoz, 2021. "“Go Wild for a While!”: A New Test for Forecast Evaluation in Nested Models," Mathematics, MDPI, vol. 9(18), pages 1-28, September.
    10. Ozdemir, Ali Can & Buluş, Kurtuluş & Zor, Kasım, 2022. "Medium- to long-term nickel price forecasting using LSTM and GRU networks," Resources Policy, Elsevier, vol. 78(C).
    11. Pincheira, Pablo & Hardy, Nicolás, 2021. "Forecasting aluminum prices with commodity currencies," Resources Policy, Elsevier, vol. 73(C).
    12. Liu, Qing & Liu, Min & Zhou, Hanlu & Yan, Feng, 2022. "A multi-model fusion based non-ferrous metal price forecasting," Resources Policy, Elsevier, vol. 77(C).
    13. Pincheira-Brown, Pablo & Neumann, Federico, 2020. "Can we beat the Random Walk? The case of survey-based exchange rate forecasts in Chile," Finance Research Letters, Elsevier, vol. 37(C).
    14. Rubaszek, Michał & Karolak, Zuzanna & Kwas, Marek, 2020. "Mean-reversion, non-linearities and the dynamics of industrial metal prices. A forecasting perspective," Resources Policy, Elsevier, vol. 65(C).
    15. Vigne, Samuel A. & Lucey, Brian M. & O’Connor, Fergal A. & Yarovaya, Larisa, 2017. "The financial economics of white precious metals — A survey," International Review of Financial Analysis, Elsevier, vol. 52(C), pages 292-308.
    16. Wang, Jianzhou & Niu, Xinsong & Zhang, Linyue & Lv, Mengzheng, 2021. "Point and interval prediction for non-ferrous metals based on a hybrid prediction framework," Resources Policy, Elsevier, vol. 73(C).
    17. Huang, Yu-ting & Bai, Yu-long & Yu, Qing-he & Ding, Lin & Ma, Yong-jie, 2022. "Application of a hybrid model based on the Prophet model, ICEEMDAN and multi-model optimization error correction in metal price prediction," Resources Policy, Elsevier, vol. 79(C).
    18. Pablo Pincheira Brown & Nicolás Hardy, 2023. "Forecasting base metal prices with exchange rate expectations," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2341-2362, December.
    19. Pincheira-Brown, Pablo & Bentancor, Andrea & Hardy, Nicolás & Jarsun, Nabil, 2022. "Forecasting fuel prices with the Chilean exchange rate: Going beyond the commodity currency hypothesis," Energy Economics, Elsevier, vol. 106(C).
    20. Du, Pei & Guo, Ju’e & Sun, Shaolong & Wang, Shouyang & Wu, Jing, 2021. "Multi-step metal prices forecasting based on a data preprocessing method and an optimized extreme learning machine by marine predators algorithm," Resources Policy, Elsevier, vol. 74(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:79:y:2022:i:c:s0301420722004184. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.