IDEAS home Printed from https://ideas.repec.org/a/kap/compec/v45y2015i1p49-89.html
   My bibliography  Save this article

Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates

Author

Listed:

Abstract

Our proposed prediction and learning method is a hybrid referred to as MKL-GA, which combines multiple kernel learning (MKL) for regression (MKR) and a genetic algorithm (GA) to construct the trading rules. In this study, we demonstrate that the evaluation criteria used to examine the effectiveness of a financial market price forecasting method should be the profit and profit-risk ratio, rather than errors in prediction. Thus, it is necessary to use a price prediction method and a trading rules learning method. We tested the proposed method on the foreign exchange market for the USD/JPY currency pair, where the features used for prediction were extracted from the trading history of the three main currency pairs with three different short-term horizons. MKR is essential for utilizing the information contained in many of the features derived from different information sources and for various representations of the same information source. The GA is essential for generating trading rules, which are described using a mixture of discrete structures and continuous parameters. First, the MKR predicts the change in the exchange rate based on technical indicators such as the moving average convergence and divergence of the three currency pairs. Next, the GA generates a trading rule by combining the results of the MKR with several commonly used overbought/oversold technical indicators. The experimental results show that the proposed hybrid method outperforms other baseline methods in terms of the returns and return-risk ratio. In addition, the kernel weights employed for different currency pairs and the different time horizons used in the MKR step, as well as the trading strategy generated in the GA step, should be beneficial during actual trading. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
  • Handle: RePEc:kap:compec:v:45:y:2015:i:1:p:49-89
    DOI: 10.1007/s10614-013-9407-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10614-013-9407-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10614-013-9407-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Park, Cheol-Ho & Irwin, Scott H., 2004. "The Profitability of Technical Analysis: A Review," AgMAS Project Research Reports 37487, University of Illinois at Urbana-Champaign, Department of Agricultural and Consumer Economics.
    2. Bonilla, Claudio A. & Romero-Meza, Rafael & Maquieira, Carlos, 2011. "Nonlinearities And Garch Inadequacy For Modeling Stock Market Returns: Empirical Evidence From Latin America," Macroeconomic Dynamics, Cambridge University Press, vol. 15(5), pages 713-724, November.
    3. Barnett, William A. & Gallant, A. Ronald & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1997. "A single-blind controlled competition among tests for nonlinearity and chaos," Journal of Econometrics, Elsevier, vol. 82(1), pages 157-192.
    4. Wu, Ming-Chya, 2007. "Phase correlation of foreign exchange time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 375(2), pages 633-642.
    5. Minsoo Lee, 2003. "Common Trend and Common Currency: Australiaand New Zealand," International Journal of Business and Economics, School of Management Development, Feng Chia University, Taichung, Taiwan, vol. 2(2), pages 155-165, August.
    6. Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
    7. Meese, Richard A. & Rogoff, Kenneth, 1983. "Empirical exchange rate models of the seventies : Do they fit out of sample?," Journal of International Economics, Elsevier, vol. 14(1-2), pages 3-24, February.
    8. William A. Barnett & A. Ronald Gallant & Melvin J. Hinich & Jochen A. Jungeilges & Daniel T. Kaplan, 2004. "A Single-Blind Controlled Competition Among Tests for Nonlinearity and Chaos," Contributions to Economic Analysis, in: Functional Structure and Approximation in Econometrics, pages 581-615, Emerald Group Publishing Limited.
    9. Olson, Dennis, 2004. "Have trading rule profits in the currency markets declined over time?," Journal of Banking & Finance, Elsevier, vol. 28(1), pages 85-105, January.
    10. Schulmeister, Stephan, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, Elsevier, vol. 18(4), pages 190-201, October.
    11. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    12. Neely, C. J. & Weller, P. A., 2003. "Intraday technical trading in the foreign exchange market," Journal of International Money and Finance, Elsevier, vol. 22(2), pages 223-237, April.
    13. Pesaran, M Hashem & Timmermann, Allan, 1995. "Predictability of Stock Returns: Robustness and Economic Significance," Journal of Finance, American Finance Association, vol. 50(4), pages 1201-1228, September.
    14. M. A. H. Dempster & C. M. Jones, 2002. "Can channel pattern trading be profitably automated?," The European Journal of Finance, Taylor & Francis Journals, vol. 8(3), pages 275-301.
    15. Jaroslaw Kwapien & Sylwia Gworek & Stanislaw Drozdz & Andrzej Gorski, 2009. "Analysis of a network structure of the foreign currency exchange market," Papers 0906.0480, arXiv.org.
    16. Thomas Gehrig & Lukas Menkhoff, 2006. "Extended evidence on the use of technical analysis in foreign exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 11(4), pages 327-338.
    17. Gencay, Ramazan & Dacorogna, Michel & Olsen, Richard & Pictet, Olivier, 2003. "Foreign exchange trading models and market behavior," Journal of Economic Dynamics and Control, Elsevier, vol. 27(6), pages 909-935, April.
    18. S. Drożdż & A. Z. Górski & J. Kwapień, 2007. "World currency exchange rate cross-correlations," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 58(4), pages 499-502, August.
    19. Jarosław Kwapień & Sylwia Gworek & Stanisław Drożdż & Andrzej Górski, 2009. "Analysis of a network structure of the foreign currency exchange market," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 4(1), pages 55-72, June.
    20. Allen, Franklin & Karjalainen, Risto, 1999. "Using genetic algorithms to find technical trading rules," Journal of Financial Economics, Elsevier, vol. 51(2), pages 245-271, February.
    21. Mizuno, Takayuki & Takayasu, Hideki & Takayasu, Misako, 2006. "Correlation networks among currencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 364(C), pages 336-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ha Che-Ngoc & Nga Do-Thi & Thao Nguyen-Trang, 2023. "Profitability of Ichimoku-Based Trading Rule in Vietnam Stock Market in the Context of the COVID-19 Outbreak," Computational Economics, Springer;Society for Computational Economics, vol. 62(4), pages 1781-1799, December.
    2. Das, Sudeepa & Sahu, Tirath Prasad & Janghel, Rekh Ram, 2022. "Oil and gold price prediction using optimized fuzzy inference system based extreme learning machine," Resources Policy, Elsevier, vol. 79(C).
    3. Day, Min-Yuh & Ni, Yensen, 2023. "Be greedy when others are fearful: Evidence from a two-decade assessment of the NDX 100 and S&P 500 indexes," International Review of Financial Analysis, Elsevier, vol. 90(C).
    4. Zhengxin Joseph Ye & Bjorn W. Schuller, 2020. "Capturing dynamics of post-earnings-announcement drift using genetic algorithm-optimised supervised learning," Papers 2009.03094, arXiv.org.
    5. Heng-Li Yang & Han-Chou Lin, 2017. "Applying the Hybrid Model of EMD, PSR, and ELM to Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 49(1), pages 99-116, January.
    6. Tai Vo-Van & Ha Che-Ngoc & Nghiep Le-Dai & Thao Nguyen-Trang, 2022. "A New Strategy for Short-Term Stock Investment Using Bayesian Approach," Computational Economics, Springer;Society for Computational Economics, vol. 59(2), pages 887-911, February.
    7. Konstandinos Chourmouziadis & Dimitra K. Chourmouziadou & Prodromos D. Chatzoglou, 2021. "Embedding Four Medium-Term Technical Indicators to an Intelligent Stock Trading Fuzzy System for Predicting: A Portfolio Management Approach," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1183-1216, April.
    8. Leandro Maciel & Rosangela Ballini, 2021. "Functional Fuzzy Rule-Based Modeling for Interval-Valued Data: An Empirical Application for Exchange Rates Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 743-771, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukas Menkhoff & Mark P. Taylor, 2007. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
    2. Stephan Schulmeister, 2009. "Technical Trading and Trends in the Dollar-Euro Exchange Rate," WIFO Studies, WIFO, number 37582.
    3. Schulmeister, Stephan, 2006. "The interaction between technical currency trading and exchange rate fluctuations," Finance Research Letters, Elsevier, vol. 3(3), pages 212-233, September.
    4. Stephan Schulmeister, 2007. "Performance of Technical Trading Systems in the Yen/Dollar Market," WIFO Working Papers 291, WIFO.
    5. Stephan Schulmeister, 2007. "The Interaction Between the Aggregate Behaviour of Technical Trading Systems and Stock Price Dynamics," WIFO Working Papers 290, WIFO.
    6. Marcin Wk{a}torek & Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Ludovico Minati & Pawe{l} O'swik{e}cimka & Marek Stanuszek, 2020. "Multiscale characteristics of the emerging global cryptocurrency market," Papers 2010.15403, arXiv.org, revised Mar 2021.
    7. Manahov, Viktor & Hudson, Robert & Gebka, Bartosz, 2014. "Does high frequency trading affect technical analysis and market efficiency? And if so, how?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 28(C), pages 131-157.
    8. Stephan Schulmeister, 2009. "Profitability of technical stock trading: Has it moved from daily to intraday data?," Review of Financial Economics, John Wiley & Sons, vol. 18(4), pages 190-201, October.
    9. Mansooreh Kazemilari & Maman Abdurachman Djauhari & Zuhaimy Ismail, 2016. "Foreign Exchange Market Performance: Evidence from Bivariate Time Series Approach," Papers 1608.07694, arXiv.org.
    10. Hassanniakalager, Arman & Sermpinis, Georgios & Stasinakis, Charalampos, 2021. "Trading the foreign exchange market with technical analysis and Bayesian Statistics," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 230-251.
    11. Marshall, Ben R. & Cahan, Rochester H. & Cahan, Jared M., 2008. "Does intraday technical analysis in the U.S. equity market have value?," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 199-210, March.
    12. Cheol‐Ho Park & Scott H. Irwin, 2007. "What Do We Know About The Profitability Of Technical Analysis?," Journal of Economic Surveys, Wiley Blackwell, vol. 21(4), pages 786-826, September.
    13. Theodore Panagiotidis, 2010. "Market efficiency and the Euro: the case of the Athens stock exchange," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 37(3), pages 237-251, July.
    14. Marisa Faggini, 2011. "Chaotic Time Series Analysis in Economics: Balance and Perspectives," Working papers 25, Former Department of Economics and Public Finance "G. Prato", University of Torino.
    15. Adrian Pagan & Hashem Pesaran, 2007. "Econometric Analysis of Structural Systems with Permanent and Transitory Shocks. Working paper #7," NCER Working Paper Series 7, National Centre for Econometric Research.
    16. Maxime Charlebois & Stephen Sapp, 2007. "Temporal Patterns in Foreign Exchange Returns and Options," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(2-3), pages 443-470, March.
    17. Danau, Daniel, 2020. "Prudence and preference for flexibility gain," European Journal of Operational Research, Elsevier, vol. 287(2), pages 776-785.
    18. Tan T. M. Le & Franck Martin & Duc K. Nguyen, 2018. "Dynamic connectedness of global currencies: a conditional Granger-causality approach," Economics Working Paper Archive (University of Rennes & University of Caen) 2018-04, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    19. Stan Hurn & Ralf Becker, 2009. "Testing for Nonlinearity in Mean in the Presence of Heteroskedasticity," Economic Analysis and Policy, Elsevier, vol. 39(2), pages 311-326, September.
    20. Guanqing Liu, 2019. "Technical Trading Behaviour: Evidence from Chinese Rebar Futures Market," Computational Economics, Springer;Society for Computational Economics, vol. 54(2), pages 669-704, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:45:y:2015:i:1:p:49-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.