Tracking the Ups and Downs in Indonesia’s Economic Activity During COVID-19 Using Mobility Index: Evidence from Provinces in Java and Bali
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Doz, Catherine & Giannone, Domenico & Reichlin, Lucrezia, 2011.
"A two-step estimator for large approximate dynamic factor models based on Kalman filtering,"
Journal of Econometrics, Elsevier, vol. 164(1), pages 188-205, September.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2006. "A Two-step estimator for large approximate dynamic factor models based on Kalman filtering," THEMA Working Papers 2006-23, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," PSE-Ecole d'économie de Paris (Postprint) hal-00638009, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-00638009, HAL.
- Catherine Doz & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00844811, HAL.
- Catherine Doz & Domenico Giannone & Lucrezia Reichlin, 2011. "A two-step estimator for large approximate dynamic factor models based on Kalman filtering," Post-Print hal-00638009, HAL.
- Reichlin, Lucrezia & Doz, Catherine & Giannone, Domenico, 2007. "A Two-Step Estimator for Large Approximate Dynamic Factor Models Based on Kalman Filtering," CEPR Discussion Papers 6043, C.E.P.R. Discussion Papers.
- Giovanni Bonaccorsi & Francesco Pierri & Matteo Cinelli & Andrea Flori & Alessandro Galeazzi & Francesco Porcelli & Ana Lucia Schmidt & Carlo Michele Valensise & Antonio Scala & Walter Quattrociocchi , 2020. "Economic and social consequences of human mobility restrictions under COVID-19," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(27), pages 15530-15535, July.
- Nano Prawoto & Eko Priyo Purnomo & Abitassha Az Zahra, 2020. "The Impacts of Covid-19 Pandemic on Socio-Economic Mobility in Indonesia," International Journal of Economics & Business Administration (IJEBA), International Journal of Economics & Business Administration (IJEBA), vol. 0(3), pages 57-71.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2013.
"Should Macroeconomic Forecasters Use Daily Financial Data and How?,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(2), pages 240-251, April.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should macroeconomic forecasters use daily financial data and how?," University of Cyprus Working Papers in Economics 09-2010, University of Cyprus Department of Economics.
- Eric Ghysels & Andros Kourtellos & Elena Andreou, 2012. "Should macroeconomic forecasters use daily financial data and how?," 2012 Meeting Papers 1196, Society for Economic Dynamics.
- Elena Andreou & Eric Ghysels & Andros Kourtellos, 2010. "Should Macroeconomic Forecasters Use Daily Financial Data and How?," Working Paper series 42_10, Rimini Centre for Economic Analysis.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2018.
"Macroeconomic Nowcasting and Forecasting with Big Data,"
Annual Review of Economics, Annual Reviews, vol. 10(1), pages 615-643, August.
- Brandyn Bok & Daniele Caratelli & Domenico Giannone & Argia M. Sbordone & Andrea Tambalotti, 2017. "Macroeconomic nowcasting and forecasting with big data," Staff Reports 830, Federal Reserve Bank of New York.
- Giannone, Domenico & Tambalotti, Andrea & Sbordone, Argia & Bok, Brandyn & Caratelli, Daniele, 2018. "Macroeconomic Nowcasting and Forecasting with Big Data," CEPR Discussion Papers 12589, C.E.P.R. Discussion Papers.
- Ozili, Peterson & Arun, Thankom, 2020. "Spillover of COVID-19: Impact on the Global Economy," MPRA Paper 99317, University Library of Munich, Germany.
- Aruoba, S. BoraÄŸan & Diebold, Francis X. & Scotti, Chiara, 2009.
"Real-Time Measurement of Business Conditions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 417-427.
- Chiara Scotti & S.Boragan Aruoba & Francis X. Diebold & University of Maryland, 2006. "Real-Time Measurement of Business Conditions," Computing in Economics and Finance 2006 387, Society for Computational Economics.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-Time Measurement of Business Conditions," NBER Working Papers 14349, National Bureau of Economic Research, Inc.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-Time Measurement of Business Conditions," PIER Working Paper Archive 07-028, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2008. "Real-time measurement of business conditions," Working Papers 08-19, Federal Reserve Bank of Philadelphia.
- S. Boragan Aruoba & Francis X. Diebold & Chiara Scotti, 2007. "Real-time measurement of business conditions," International Finance Discussion Papers 901, Board of Governors of the Federal Reserve System (U.S.).
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2018.
"Nowcasting Indonesia,"
Empirical Economics, Springer, vol. 55(2), pages 597-619, September.
- Luciani, Matteo & Pundit, Madhavi & Ramayandi, Arief & Veronese , Giovanni, 2015. "Nowcasting Indonesia," ADB Economics Working Paper Series 471, Asian Development Bank.
- Matteo Luciani & Madhavi Pundit & Arief Ramayandi & Giovanni Veronese, 2015. "Nowcasting Indonesia," Finance and Economics Discussion Series 2015-100, Board of Governors of the Federal Reserve System (U.S.).
- Eric Ghysels & Arthur Sinko & Rossen Valkanov, 2007. "MIDAS Regressions: Further Results and New Directions," Econometric Reviews, Taylor & Francis Journals, vol. 26(1), pages 53-90.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanovic, Dalibor, 2022.
"Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis,"
International Journal of Forecasting, Elsevier, vol. 38(2), pages 596-612.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the COVID-19 recession and recovery: Lessons from the financial crisis," Working Papers 20-14, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Nov 2020.
- Marcellino, Massimiliano & Foroni, Claudia & Stevanovic, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: Lessons from the financial crisis," CEPR Discussion Papers 15114, C.E.P.R. Discussion Papers.
- Claudia Foroni & Massimiliano Marcellino & Dalibor Stevanovic, 2020. "Forecasting the Covid-19 Recession and Recovery: Lessons from the Financial Crisis," CIRANO Working Papers 2020s-32, CIRANO.
- Foroni, Claudia & Marcellino, Massimiliano & Stevanović, Dalibor, 2020. "Forecasting the Covid-19 recession and recovery: lessons from the financial crisis," Working Paper Series 2468, European Central Bank.
- Ghysels, Eric & Santa-Clara, Pedro & Valkanov, Rossen, 2004.
"The MIDAS Touch: Mixed Data Sampling Regression Models,"
University of California at Los Angeles, Anderson Graduate School of Management
qt9mf223rs, Anderson Graduate School of Management, UCLA.
- Eric Ghysels & Pedro Santa-Clara & Rossen Valkanov, 2004. "The MIDAS Touch: Mixed Data Sampling Regression Models," CIRANO Working Papers 2004s-20, CIRANO.
- G. Elliott & C. Granger & A. Timmermann (ed.), 2006. "Handbook of Economic Forecasting," Handbook of Economic Forecasting, Elsevier, edition 1, volume 1, number 1.
- Kim, Hyun Hak & Swanson, Norman R., 2014.
"Forecasting financial and macroeconomic variables using data reduction methods: New empirical evidence,"
Journal of Econometrics, Elsevier, vol. 178(P2), pages 352-367.
- Huyn Hak Kim & Norman R. Swanson, 2011. "Forecasting Financial and Macroeconomic Variables Using Data Reduction Methods: New Empirical Evidence," Departmental Working Papers 201119, Rutgers University, Department of Economics.
- Jennie Bai & Eric Ghysels & Jonathan H. Wright, 2013. "State Space Models and MIDAS Regressions," Econometric Reviews, Taylor & Francis Journals, vol. 32(7), pages 779-813, October.
- Sumedha Gupta & Laura Montenovo & Thuy Nguyen & Felipe Lozano‐Rojas & Ian Schmutte & Kosali Simon & Bruce A. Weinberg & Coady Wing, 2023.
"Effects of social distancing policy on labor market outcomes,"
Contemporary Economic Policy, Western Economic Association International, vol. 41(1), pages 166-193, January.
- Sumedha Gupta & Laura Montenovo & Thuy D. Nguyen & Felipe Lozano Rojas & Ian M. Schmutte & Kosali I. Simon & Bruce A. Weinberg & Coady Wing, 2020. "Effects of Social Distancing Policy on Labor Market Outcomes," NBER Working Papers 27280, National Bureau of Economic Research, Inc.
- repec:hal:journl:peer-00844811 is not listed on IDEAS
- repec:idn:journl:v:20:y:2018:i:3:p:1-30 is not listed on IDEAS
- Sampi Bravo,James Robert Ezequiel & Jooste,Charl, 2020. "Nowcasting Economic Activity in Times of COVID-19 : An Approximation from the Google Community Mobility Report," Policy Research Working Paper Series 9247, The World Bank.
- Michelle T. Armesto & Kristie M. Engemann & Michael T. Owyang, 2010. "Forecasting with mixed frequencies," Review, Federal Reserve Bank of St. Louis, vol. 92(Nov), pages 521-536.
- Ligang Song & Yixiao Zhou, 2020. "The COVID‐19 Pandemic and Its Impact on the Global Economy: What Does It Take to Turn Crisis into Opportunity?," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 28(4), pages 1-25, July.
- Liu, Chengxi & Susilo, Yusak O. & Karlström, Anders, 2014. "Examining the impact of weather variability on non-commuters’ daily activity–travel patterns in different regions of Sweden," Journal of Transport Geography, Elsevier, vol. 39(C), pages 36-48.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024.
"Reservoir computing for macroeconomic forecasting with mixed-frequency data,"
International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022. "Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data," Papers 2211.00363, arXiv.org, revised Jan 2024.
- Raul Ibarra & Luis M. Gomez-Zamudio, 2017.
"Are Daily Financial Data Useful for Forecasting GDP? Evidence from Mexico,"
Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 173-203, April.
- Gómez-Zamudio, Luis M. & Ibarra, Raúl, 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," LSE Research Online Documents on Economics 123310, London School of Economics and Political Science, LSE Library.
- Ibarra-Ramírez Raúl & Gómez-Zamudio Luis M., 2017. "Are daily financial data useful for forecasting GDP? Evidence from Mexico," Working Papers 2017-17, Banco de México.
- Deschamps, Bruno & Ioannidis, Christos & Ka, Kook, 2020. "High-frequency credit spread information and macroeconomic forecast revision," International Journal of Forecasting, Elsevier, vol. 36(2), pages 358-372.
- Zhang, Yue-Jun & Wang, Jin-Li, 2019. "Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models," Energy Economics, Elsevier, vol. 78(C), pages 192-201.
- Schumacher, Christian, 2016. "A comparison of MIDAS and bridge equations," International Journal of Forecasting, Elsevier, vol. 32(2), pages 257-270.
- Foroni, Claudia & Guérin, Pierre & Marcellino, Massimiliano, 2015.
"Markov-switching mixed-frequency VAR models,"
International Journal of Forecasting, Elsevier, vol. 31(3), pages 692-711.
- Marcellino, Massimiliano & Foroni, Claudia, 2014. "Markov-Switching Mixed-Frequency VAR Models," CEPR Discussion Papers 9815, C.E.P.R. Discussion Papers.
- Zhao, Xin & Han, Meng & Ding, Lili & Kang, Wanglin, 2018. "Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS," Applied Energy, Elsevier, vol. 216(C), pages 132-141.
- Konstantin Kuck & Karsten Schweikert, 2021. "Forecasting Baden‐Württemberg's GDP growth: MIDAS regressions versus dynamic mixed‐frequency factor models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(5), pages 861-882, August.
- Qian Chen & Xiang Gao & Shan Xie & Li Sun & Shuairu Tian & Shigeyuki Hamori, 2021. "On the Predictability of China Macro Indicator with Carbon Emissions Trading," Energies, MDPI, vol. 14(5), pages 1-24, February.
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020.
"Nowcasting East German GDP growth: a MIDAS approach,"
Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
- Claudio, João C. & Heinisch, Katja & Holtemöller, Oliver, 2019. "Nowcasting East German GDP growth: A MIDAS approach," IWH Discussion Papers 24/2019, Halle Institute for Economic Research (IWH).
- Ferrara, Laurent & Marsilli, Clément & Ortega, Juan-Pablo, 2014.
"Forecasting growth during the Great Recession: is financial volatility the missing ingredient?,"
Economic Modelling, Elsevier, vol. 36(C), pages 44-50.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," EconomiX Working Papers 2013-19, University of Paris Nanterre, EconomiX.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2014. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Post-Print hal-01385941, HAL.
- Ferrara, L. & Marsilli, C. & Ortega, J-P., 2013. "Forecasting growth during the Great Recession: is financial volatility the missing ingredient?," Working papers 454, Banque de France.
- Laurent Ferrara & Clément Marsilli & Juan-Pablo Ortega, 2013. "Forecasting US growth during the Great Recession: Is the financial volatility the missing ingredient?," Working Papers hal-04141198, HAL.
- Baumeister, Christiane & Guérin, Pierre, 2021.
"A comparison of monthly global indicators for forecasting growth,"
International Journal of Forecasting, Elsevier, vol. 37(3), pages 1276-1295.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," NBER Working Papers 28014, National Bureau of Economic Research, Inc.
- Baumeister, Christiane & Guerin, Pierre, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CEPR Discussion Papers 15403, C.E.P.R. Discussion Papers.
- Christiane Baumeister & Pierre Guérin, 2020. "A comparison of monthly global indicators for forecasting growth," CAMA Working Papers 2020-93, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Christiane Baumeister & Pierre Guérin, 2020. "A Comparison of Monthly Global Indicators for Forecasting Growth," CESifo Working Paper Series 8656, CESifo.
- Peter Fuleky & Carl S. Bonham, 2013.
"Forecasting with Mixed Frequency Samples: The Case of Common Trends,"
Working Papers
201305, University of Hawaii at Manoa, Department of Economics.
- Peter Fuleky & Carl, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 2013-5, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Peter Fuleky & Carl S. Bonham, 2013. "Forecasting with Mixed Frequency Samples: The Case of Common Trends," Working Papers 201316, University of Hawaii at Manoa, Department of Economics.
- Roy Verbaan & Wilko Bolt & Carin van der Cruijsen, 2017. "Using debit card payments data for nowcasting Dutch household consumption," DNB Working Papers 571, Netherlands Central Bank, Research Department.
- Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2019.
"Mixed-Frequency Models for Tracking Short-Term Economic Developments in Switzerland,"
International Journal of Central Banking, International Journal of Central Banking, vol. 15(2), pages 151-178, June.
- Alain Galli & Christian Hepenstrick & Rolf Scheufele, 2017. "Mixed-frequency models for tracking short-term economic developments in Switzerland," Working Papers 2017-02, Swiss National Bank.
- Marc Francke & Alex Van De Minne, 2022. "Daily appraisal of commercial real estate a new mixed frequency approach," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 50(5), pages 1257-1281, September.
- Tóth, Peter, 2014.
"Malý dynamický faktorový model na krátkodobé prognózovanie slovenského HDP [A Small Dynamic Factor Model for the Short-Term Forecasting of Slovak GDP],"
MPRA Paper
63713, University Library of Munich, Germany.
- Tóth, Peter, 2017. "Nowcasting Slovak GDP by a Small Dynamic Factor Model," MPRA Paper 77245, University Library of Munich, Germany.
- Barsoum, Fady & Stankiewicz, Sandra, 2015.
"Forecasting GDP growth using mixed-frequency models with switching regimes,"
International Journal of Forecasting, Elsevier, vol. 31(1), pages 33-50.
- Fady Barsoum & Sandra Stankiewicz, 2013. "Forecasting GDP Growth Using Mixed-Frequency Models With Switching Regimes," Working Paper Series of the Department of Economics, University of Konstanz 2013-10, Department of Economics, University of Konstanz.
- Ghysels, Eric & Ozkan, Nazire, 2015. "Real-time forecasting of the US federal government budget: A simple mixed frequency data regression approach," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1009-1020.
More about this item
Keywords
COVID-19; nowcasting; GDP; mobility; Mixed-frequency;All these keywords.
JEL classification:
- C20 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - General
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- R11 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General Regional Economics - - - Regional Economic Activity: Growth, Development, Environmental Issues, and Changes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-08-09 (Big Data)
- NEP-ISF-2021-08-09 (Islamic Finance)
- NEP-MAC-2021-08-09 (Macroeconomics)
- NEP-SEA-2021-08-09 (South East Asia)
- NEP-URE-2021-08-09 (Urban and Real Estate Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:era:wpaper:dp-2021-18. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ranti Amelia The email address of this maintainer does not seem to be valid anymore. Please ask Ranti Amelia to update the entry or send us the correct address (email available below). General contact details of provider: https://edirc.repec.org/data/eriadid.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.