IDEAS home Printed from https://ideas.repec.org/p/chb/bcchwp/931.html
   My bibliography  Save this paper

Nowcasting Chilean household consumption with electronic payment data

Author

Listed:
  • Marcus P. A. Cobb

Abstract

When economies are hit by relevant shocks, the need to be able to follow developments in real-time increases for policymakers and private agents alike. When an event of this type is underway, the situation can change dramatically in a matter of days. The COVID pandemic is only the latest example. Electronic payment data is available with virtually no time lag and could therefore contribute to increasing the speed at which assessments are made. This paper makes use of a novel database to track Chilean household consumption in real time during the pandemic and compares the results to those of standard nowcasting methods used at the Central Bank of Chile. The results suggest that payment data is most useful as the shocks occur, when traditional models may have a harder time interpreting the information. The gain in more stable times is less obvious. The results also show, as one might expect, that the relationship between this naturally-occurring data and the variable of interest can be affected by its own shocks. In this case at least, electronic payments showed sudden shifts in intensity that needed to be accounted for in order to produce the final forecasts. All in all, the models based on payment data appear to be a relevant addition to the forecasting toolkit.

Suggested Citation

  • Marcus P. A. Cobb, 2021. "Nowcasting Chilean household consumption with electronic payment data," Working Papers Central Bank of Chile 931, Central Bank of Chile.
  • Handle: RePEc:chb:bcchwp:931
    as

    Download full text from publisher

    File URL: https://www.bcentral.cl/documents/33528/133326/DTBC_931.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Veronica Guerrieri & Guido Lorenzoni & Ludwig Straub & Iván Werning, 2022. "Macroeconomic Implications of COVID-19: Can Negative Supply Shocks Cause Demand Shortages?," American Economic Review, American Economic Association, vol. 112(5), pages 1437-1474, May.
    2. Stark, Tom & Croushore, Dean, 2002. "Forecasting with a real-time data set for macroeconomists," Journal of Macroeconomics, Elsevier, vol. 24(4), pages 507-531, December.
    3. Aiolfi, Marco & Timmermann, Allan, 2006. "Persistence in forecasting performance and conditional combination strategies," Journal of Econometrics, Elsevier, vol. 135(1-2), pages 31-53.
    4. Carlos Conesa & Leonardo Gambacorta & Sergio Gorjon & Marco J. Lombardi, 2015. "The use of payment systems data as early indicators of economic activity," Applied Economics Letters, Taylor & Francis Journals, vol. 22(8), pages 646-650, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carlomagno, Guillermo & Eterovic, Nicolás & Hernández-Román, Luis G., 2024. "Disentangling demand and supply inflation shocks from electronic payments data," Economic Modelling, Elsevier, vol. 141(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nikolsko-Rzhevskyy, Alex, 2008. "Monetary Policy Evaluation in Real Time: Forward-Looking Taylor Rules Without Forward-Looking Data," MPRA Paper 11352, University Library of Munich, Germany.
    2. Alex Nikolsko-Rzhevskyy, 2011. "Monetary Policy Estimation in Real Time: Forward-Looking Taylor Rules without Forward-Looking Data," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 43(5), pages 871-897, August.
    3. Knut Are Aastveit & Karsten R. Gerdrup & Anne Sofie Jore & Leif Anders Thorsrud, 2014. "Nowcasting GDP in Real Time: A Density Combination Approach," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 48-68, January.
    4. Liebermann, Joelle, 2012. "Real-time forecasting in a data-rich environment," Research Technical Papers 07/RT/12, Central Bank of Ireland.
    5. Rossi, Barbara, 2013. "Advances in Forecasting under Instability," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1203-1324, Elsevier.
    6. Gibbs, Christopher G. & Vasnev, Andrey L., 2024. "Conditionally optimal weights and forward-looking approaches to combining forecasts," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1734-1751.
    7. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    8. Mukoyama, Toshihiko, 2021. "MIT shocks imply market incompleteness," Economics Letters, Elsevier, vol. 198(C).
    9. Orphanides, Athanasios & Williams, John C., 2008. "Learning, expectations formation, and the pitfalls of optimal control monetary policy," Journal of Monetary Economics, Elsevier, vol. 55(Supplemen), pages 80-96, October.
    10. Charles A.E. Goodhart & Dimitrios P. Tsomocos & Xuan Wang, 2023. "Support for small businesses amid COVID‐19," Economica, London School of Economics and Political Science, vol. 90(358), pages 612-652, April.
    11. Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
    12. Frederick H. Wallace & Gary L. Shelley & Luis F. Cabrera Castellanos, 2004. "Pruebas de la neutralidad monetaria a largo plazo: el caso de Nicaragua," Monetaria, CEMLA, vol. 0(4), pages 407-418, octubre-d.
    13. Ginters Bušs & Patrick Grüning, 2023. "Fiscal DSGE model for Latvia," Baltic Journal of Economics, Baltic International Centre for Economic Policy Studies, vol. 23(1), pages 2173915-217.
    14. David Baqaee & Emmanuel Farhi, 2020. "Nonlinear Production Networks with an Application to the Covid-19 Crisis," NBER Working Papers 27281, National Bureau of Economic Research, Inc.
    15. Graham, James & Ozbilgin, Murat, 2021. "Age, industry, and unemployment risk during a pandemic lockdown," Journal of Economic Dynamics and Control, Elsevier, vol. 133(C).
    16. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    17. Carlos Madeira, 2022. "The double impact of deep social unrest and a pandemic: Evidence from Chile," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 55(S1), pages 135-171, February.
    18. Chuliá, Helena & Garrón, Ignacio & Uribe, Jorge M., 2024. "Daily growth at risk: Financial or real drivers? The answer is not always the same," International Journal of Forecasting, Elsevier, vol. 40(2), pages 762-776.
    19. Clements, Michael P. & Beatriz Galvao, Ana, 2010. "Real-time Forecasting of Inflation and Output Growth in the Presence of Data Revisions," Economic Research Papers 270771, University of Warwick - Department of Economics.
    20. Todd E. Clark & Michael W. McCracken, 2010. "Averaging forecasts from VARs with uncertain instabilities," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 5-29, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:chb:bcchwp:931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alvaro Castillo (email available below). General contact details of provider: https://edirc.repec.org/data/bccgvcl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.