Rob J Hyndman
Citations
Many of the citations below have been collected in an experimental project, CitEc, where a more detailed citation analysis can be found. These are citations from works listed in RePEc that could be analyzed mechanically. So far, only a minority of all works could be analyzed. See under "Corrections" how you can help improve the citation analysis.Blog mentions
As found by EconAcademics.org, the blog aggregator for Economics research:- Econometrics Reading List for September
by Dave Giles in Econometrics Beat: Dave Giles' Blog on 2017-09-10 18:54:00
Mentioned in:
RePEc Biblio mentions
As found on the RePEc Biblio, the curated bibliography of Economics:- Hyndman, Rob J. & Booth, Heather, 2008.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Rob J Hyndman & Heather Booth, 2006. "Stochastic population forecasts using functional data models for mortality, fertility and migration," Monash Econometrics and Business Statistics Working Papers 14/06, Monash University, Department of Econometrics and Business Statistics.
Mentioned in:
Wikipedia or ReplicationWiki mentions
(Only mentions on Wikipedia that link back to a page on a RePEc service)- Jeff Racine & Rob Hyndman, 2002.
"Using R to teach econometrics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 175-189.
- Racine, J & Hyndman, R.J., 2001. "Using R to Teach Econometrics," Monash Econometrics and Business Statistics Working Papers 10/01, Monash University, Department of Econometrics and Business Statistics.
Mentioned in:
- Using R to teach econometrics (Journal of Applied Econometrics 2002) in ReplicationWiki ()
Working papers
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023.
"Forecast Reconciliation: A Review,"
Monash Econometrics and Business Statistics Working Papers
8/23, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Rotem Zelingher, 2024. "Democratising Agricultural Commodity Price Forecasting: The AGRICAF Approach," Papers 2410.20363, arXiv.org, revised Nov 2024.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023.
"Cross-temporal Probabilistic Forecast Reconciliation,"
Monash Econometrics and Business Statistics Working Papers
6/23, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Sakai Ando & Taehoon Kim, 2024. "Systematizing Macroframework Forecasting: High-Dimensional Conditional Forecasting with Accounting Identities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(4), pages 1386-1410, December.
- Katherine Tierney, 2022. "The Future of Assisted Reproductive Technology Live Births in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 2289-2309, October.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Huosong Xia & Xiaoyu Hou & Justin Zuopeng Zhang & Mohammad Zoynul Abedin, 2025. "A new probability forecasting model for cotton yarn futures price volatility with explainable AI and big data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 112-135, January.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Pablo Montero-Manso & Rob J Hyndman, 2020.
"Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality,"
Monash Econometrics and Business Statistics Working Papers
45/20, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
Cited by:
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Sonnleitner, Benedikt & Stapf, Jelena & Wulff, Kai, 2024. "Benchmarking short term forecasts of regional banknote lodgements and withdrawals," Discussion Papers 39/2024, Deutsche Bundesbank.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Li Li & Yanfei Kang & Fotios Petropoulos & Feng Li, 2022. "Feature-based intermittent demand forecast combinations: bias, accuracy and inventory implications," Papers 2204.08283, arXiv.org, revised Aug 2022.
- Amedeo Buonanno & Martina Caliano & Antonino Pontecorvo & Gianluca Sforza & Maria Valenti & Giorgio Graditi, 2022. "Global vs. Local Models for Short-Term Electricity Demand Prediction in a Residential/Lodging Scenario," Energies, MDPI, vol. 15(6), pages 1-18, March.
- Fildes, Robert & Kolassa, Stephan & Ma, Shaohui, 2022. "Post-script—Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1319-1324.
- Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
- Stephanie R. Clark & Dan Pagendam & Louise Ryan, 2022. "Forecasting Multiple Groundwater Time Series with Local and Global Deep Learning Networks," IJERPH, MDPI, vol. 19(9), pages 1-31, April.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Mashlakov, Aleksei & Kuronen, Toni & Lensu, Lasse & Kaarna, Arto & Honkapuro, Samuli, 2021. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting," Applied Energy, Elsevier, vol. 285(C).
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Zhang, Guowei & Zhang, Yi & Wang, Hui & Liu, Da & Cheng, Runkun & Yang, Di, 2024. "Short-term wind speed forecasting based on adaptive secondary decomposition and robust temporal convolutional network," Energy, Elsevier, vol. 288(C).
- Januschowski, Tim & Wang, Yuyang & Torkkola, Kari & Erkkilä, Timo & Hasson, Hilaf & Gasthaus, Jan, 2022. "Forecasting with trees," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1473-1481.
- Ankitha Nandipura Prasanna & Priscila Grecov & Angela Dieyu Weng & Christoph Bergmeir, 2022. "Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand," Papers 2209.08885, arXiv.org, revised Oct 2022.
- Li, Xixi & Yuan, Jingsong, 2024. "DeepTVAR: Deep learning for a time-varying VAR model with extension to integrated VAR," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1123-1133.
- Bandara, Kasun & Hewamalage, Hansika & Godahewa, Rakshitha & Gamakumara, Puwasala, 2022. "A fast and scalable ensemble of global models with long memory and data partitioning for the M5 forecasting competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1400-1404.
- Filip Stanv{e}k, 2024. "Designing Time-Series Models With Hypernetworks & Adversarial Portfolios," Papers 2407.20352, arXiv.org.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020.
"Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand,"
Monash Econometrics and Business Statistics Working Papers
41/20, Monash University, Department of Econometrics and Business Statistics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
Cited by:
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
Cited by:
- Coughlan de Perez, Erin & Stephens, Elisabeth & van Aalst, Maarten & Bazo, Juan & Fournier-Tombs, Eleonore & Funk, Sebastian & Hess, Jeremy J. & Ranger, Nicola & Lowe, Rachel, 2022. "Epidemiological versus meteorological forecasts: Best practice for linking models to policymaking," International Journal of Forecasting, Elsevier, vol. 38(2), pages 521-526.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020.
"Distributed ARIMA Models for Ultra-long Time Series,"
Monash Econometrics and Business Statistics Working Papers
29/20, Monash University, Department of Econometrics and Business Statistics.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023. "Distributed ARIMA models for ultra-long time series," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
Cited by:
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Ramsebner, J. & Haas, R. & Auer, H. & Ajanovic, A. & Gawlik, W. & Maier, C. & Nemec-Begluk, S. & Nacht, T. & Puchegger, M., 2021. "From single to multi-energy and hybrid grids: Historic growth and future vision," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
- Sommerfeldt, Nelson & Pearce, Joshua M., 2023. "Can grid-tied solar photovoltaics lead to residential heating electrification? A techno-economic case study in the midwestern U.S," Applied Energy, Elsevier, vol. 336(C).
- Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).
- Islam, M.S. & Das, Barun K. & Das, Pronob & Rahaman, Md Habibur, 2021. "Techno-economic optimization of a zero emission energy system for a coastal community in Newfoundland, Canada," Energy, Elsevier, vol. 220(C).
- Şenol, Halil & Çolak, Emre & Oda, Volkan, 2024. "Forecasting of biogas potential using artificial neural networks and time series models for Türkiye to 2035," Energy, Elsevier, vol. 302(C).
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 23/20, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Fiaschi, Davide & Tealdi, Cristina, 2023.
"The attachment of adult women to the Italian labour market in the shadow of COVID-19,"
Labour Economics, Elsevier, vol. 83(C).
- Davide Fiaschi & Cristina Tealdi, 2022. "The attachment of adult women to the Italian labour market in the shadow of COVID-19," Papers 2202.13317, arXiv.org, revised May 2023.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Nesvold, Erik & Bratvold, Reidar B., 2022. "Debiasing probabilistic oil production forecasts," Energy, Elsevier, vol. 258(C).
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022.
"Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates,"
Working Papers
22-06, Federal Reserve Bank of Cleveland.
- Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
- Sakai Ando & Taehoon Kim, 2024. "Systematizing Macroframework Forecasting: High-Dimensional Conditional Forecasting with Accounting Identities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(4), pages 1386-1410, December.
- Katherine Tierney, 2022. "The Future of Assisted Reproductive Technology Live Births in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 2289-2309, October.
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022. "Using hierarchical aggregation constraints to nowcast regional economic aggregates," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2022-04, Economic Statistics Centre of Excellence (ESCoE).
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Fiaschi, Davide & Tealdi, Cristina, 2022. "Scarring Effects of the COVID-19 Pandemic on the Italian Labour Market," IZA Discussion Papers 15102, Institute of Labor Economics (IZA).
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Earo Wang & Dianne Cook & Rob J Hyndman, 2019.
"A New Tidy Data Structure to Support Exploration and Modeling of Temporal Data,"
Monash Econometrics and Business Statistics Working Papers
12/19, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Gao, Yi, 2021. "What is the busiest time at an airport? Clustering U.S. hub airports based on passenger movements," Journal of Transport Geography, Elsevier, vol. 90(C).
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019.
"Seasonal Functional Autoregressive Models,"
Monash Econometrics and Business Statistics Working Papers
16/19, Monash University, Department of Econometrics and Business Statistics.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
Cited by:
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019.
"Forecasting Swiss Exports using Bayesian Forecast Reconciliation,"
KOF Working papers
19-457, KOF Swiss Economic Institute, ETH Zurich.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2022.
"Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates,"
Working Papers
22-06, Federal Reserve Bank of Cleveland.
- Koop, Gary & McIntyre, Stuart & Mitchell, James & Poon, Aubrey, 2024. "Using stochastic hierarchical aggregation constraints to nowcast regional economic aggregates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 626-640.
- Ye, Yuan & Lu, Yonggang & Robinson, Powell & Narayanan, Arunachalam, 2022. "An empirical Bayes approach to incorporating demand intermittency and irregularity into inventory control," European Journal of Operational Research, Elsevier, vol. 303(1), pages 255-272.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019.
"Hierarchical Forecasting,"
Monash Econometrics and Business Statistics Working Papers
2/19, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019.
"A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors,"
Monash Econometrics and Business Statistics Working Papers
1/19, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Shanika L Wickramasuriya & Berwin A Turlach & Rob J Hyndman, 2019.
"Optimal Non-negative Forecast Reconciliation,"
Monash Econometrics and Business Statistics Working Papers
15/19, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Rob J Hyndman, 2019.
"A Brief History of Forecasting Competitions,"
Monash Econometrics and Business Statistics Working Papers
3/19, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
Cited by:
- Galvão, Ana Beatriz & Garratt, Anthony & Mitchell, James, 2021. "Does judgment improve macroeconomic density forecasts?," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1247-1260.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Ozancan Ozdemir & Ceylan Yozgatligil, 2024. "Forecasting performance of machine learning, time series, and hybrid methods for low‐ and high‐frequency time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 441-474, May.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- K. K. Furmanov & Yu. V. Turovets, 2024. "Assessing the Impact of External Shocks on the Development of the Manufacturing Industry," Studies on Russian Economic Development, Springer, vol. 35(5), pages 697-706, October.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Yashon O. Ouma & Ditiro B. Moalafhi & George Anderson & Boipuso Nkwae & Phillimon Odirile & Bhagabat P. Parida & Jiaguo Qi, 2022. "Dam Water Level Prediction Using Vector AutoRegression, Random Forest Regression and MLP-ANN Models Based on Land-Use and Climate Factors," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
- Erick Inácio Ferreira & Igor Viveiros Melo Souza, 2023. "Time series forecasting : a test of automated econometric methods," Textos para Discussão Cedeplar-UFMG 661, Cedeplar, Universidade Federal de Minas Gerais.
- Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Romanus, Eduardo E. & Silva, Eugênio & Goldschmidt, Ronaldo R., 2024. "Empirical probabilistic forecasting: An approach solely based on deterministic explanatory variables for the selection of past forecast errors," International Journal of Forecasting, Elsevier, vol. 40(1), pages 184-201.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Ioanna Karantza & Michael Chrissos Anestis & Sotirios Vlachakis, 2022. "Crisis mapping in the “senses” arena narratives," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 19(4), pages 649-673, December.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Wellens, Arnoud P. & Udenio, Maxi & Boute, Robert N., 2022. "Transfer learning for hierarchical forecasting: Reducing computational efforts of M5 winning methods," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1482-1491.
- Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Mamonov, Nikolay & Golubyatnikov, Evgeny & Kanevskiy, Daniel & Gusakov, Igor, 2022. "GoodsForecast second-place solution in M5 Uncertainty track: Combining heterogeneous models for a quantile estimation task," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1434-1441.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Erol Eğrioğlu & Robert Fildes, 2022. "A New Bootstrapped Hybrid Artificial Neural Network Approach for Time Series Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 59(4), pages 1355-1383, April.
- Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
- Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018.
"On normalization and algorithm selection for unsupervised outlier detection,"
Monash Econometrics and Business Statistics Working Papers
16/18, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Mohamad Alissa & Kevin Sim & Emma Hart, 2023. "Automated Algorithm Selection: from Feature-Based to Feature-Free Approaches," Journal of Heuristics, Springer, vol. 29(1), pages 1-38, February.
- Sevvandi Kandanaarachchi & Rob J Hyndman, 2019. "Dimension Reduction For Outlier Detection Using DOBIN," Monash Econometrics and Business Statistics Working Papers 17/19, Monash University, Department of Econometrics and Business Statistics.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018.
"Meta-learning how to forecast time series,"
Monash Econometrics and Business Statistics Working Papers
6/18, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Allison Koenecke & Amita Gajewar, 2019. "Curriculum Learning in Deep Neural Networks for Financial Forecasting," Papers 1904.12887, arXiv.org, revised Jul 2019.
- Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020.
"FFORMA: Feature-based forecast model averaging,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
- Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.
- Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018.
"FFORMA: Feature-based forecast model averaging,"
Monash Econometrics and Business Statistics Working Papers
19/18, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020. "FFORMA: Feature-based forecast model averaging," International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
Cited by:
- Pablo Montero-Manso & Rob J Hyndman, 2020.
"Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality,"
Monash Econometrics and Business Statistics Working Papers
45/20, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Canaydin, Ada & Fu, Chun & Balint, Attila & Khalil, Mohamad & Miller, Clayton & Kazmi, Hussain, 2024. "Interpretable domain-informed and domain-agnostic features for supervised and unsupervised learning on building energy demand data," Applied Energy, Elsevier, vol. 360(C).
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2023. "Measuring the model uncertainty of shadow economy estimates," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 30(4), pages 1069-1106, August.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Alexander Dokumentov & Rob J. Hyndman, 2022. "STR: Seasonal-Trend Decomposition Using Regression," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- José V. Segura-Heras & José D. Bermúdez & Ana Corberán-Vallet & Enriqueta Vercher, 2022. "Analysis of Weighting Strategies for Improving the Accuracy of Combined Forecasts," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
- Piotr Dybka, 2020. "One model or many? Exchange rates determinants and their predictive capabilities," KAE Working Papers 2020-053, Warsaw School of Economics, Collegium of Economic Analysis.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- De Bock, Koen W. & Coussement, Kristof & Caigny, Arno De & Słowiński, Roman & Baesens, Bart & Boute, Robert N. & Choi, Tsan-Ming & Delen, Dursun & Kraus, Mathias & Lessmann, Stefan & Maldonado, Sebast, 2024. "Explainable AI for Operational Research: A defining framework, methods, applications, and a research agenda," European Journal of Operational Research, Elsevier, vol. 317(2), pages 249-272.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Bennett, Donyetta & Mekelburg, Erik & Strauss, Jack & Williams, T.H., 2024. "Unlocking the black box of sentiment and cryptocurrency: What, which, why, when and how?," Global Finance Journal, Elsevier, vol. 60(C).
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- Koen W. de Bock & Kristof Coussement & Arno De Caigny & Roman Slowiński & Bart Baesens & Robert N Boute & Tsan-Ming Choi & Dursun Delen & Mathias Kraus & Stefan Lessmann & Sebastián Maldonado & David , 2023. "Explainable AI for Operational Research: A Defining Framework, Methods, Applications, and a Research Agenda," Post-Print hal-04219546, HAL.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Ulrich, Matthias & Jahnke, Hermann & Langrock, Roland & Pesch, Robert & Senge, Robin, 2022. "Classification-based model selection in retail demand forecasting," International Journal of Forecasting, Elsevier, vol. 38(1), pages 209-223.
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020.
"Focused Bayesian Prediction,"
Monash Econometrics and Business Statistics Working Papers
1/20, Monash University, Department of Econometrics and Business Statistics.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Sarmas, Elissaios & Spiliotis, Evangelos & Stamatopoulos, Efstathios & Marinakis, Vangelis & Doukas, Haris, 2023. "Short-term photovoltaic power forecasting using meta-learning and numerical weather prediction independent Long Short-Term Memory models," Renewable Energy, Elsevier, vol. 216(C).
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Lars Lien Ankile & Kjartan Krange, 2022. "Deep Learning and Linear Programming for Automated Ensemble Forecasting and Interpretation," Papers 2201.00426, arXiv.org, revised Nov 2022.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Piotr Dybka & Bartosz Olesiński & Marek Rozkrut & Andrzej Torój, 2020. "Measuring the uncertainty of shadow economy estimates using Bayesian and frequentist model averaging," KAE Working Papers 2020-046, Warsaw School of Economics, Collegium of Economic Analysis.
- Yolanda S. Stander, 2023. "The Governance and Disclosure of IFRS 9 Economic Scenarios," JRFM, MDPI, vol. 16(1), pages 1-27, January.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Roberto Casado-Vara & Angel Martin del Rey & Daniel Pérez-Palau & Luis de-la-Fuente-Valentín & Juan M. Corchado, 2021. "Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Januschowski, Tim & Wang, Yuyang & Torkkola, Kari & Erkkilä, Timo & Hasson, Hilaf & Gasthaus, Jan, 2022. "Forecasting with trees," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1473-1481.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Puwasala Gamakumara & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman, 2018.
"Probabilisitic forecasts in hierarchical time series,"
Monash Econometrics and Business Statistics Working Papers
11/18, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Giancarlo Aquila & Lucas Barros Scianni Morais & Victor Augusto Durães de Faria & José Wanderley Marangon Lima & Luana Medeiros Marangon Lima & Anderson Rodrigo de Queiroz, 2023. "An Overview of Short-Term Load Forecasting for Electricity Systems Operational Planning: Machine Learning Methods and the Brazilian Experience," Energies, MDPI, vol. 16(21), pages 1-35, November.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Yanfei Kang & Rob J Hyndman & Feng Li, 2018.
"Efficient generation of time series with diverse and controllable characteristics,"
Monash Econometrics and Business Statistics Working Papers
15/18, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles & Sevvandi Kandanaarachchi & Mario A Munoz, 2018.
"Anomaly detection in streaming nonstationary temporal data,"
Monash Econometrics and Business Statistics Working Papers
4/18, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Miguel Flores & Salvador Naya & Rubén Fernández-Casal & Sonia Zaragoza & Paula Raña & Javier Tarrío-Saavedra, 2020. "Constructing a Control Chart Using Functional Data," Mathematics, MDPI, vol. 8(1), pages 1-26, January.
- Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
- Priyanga Dilini Talagala & Rob J Hyndman & Catherine Leigh & Kerrie Mengersen & Kate Smith-Miles, 2019. "A Feature-Based Framework for Detecting Technical Outliers in Water-Quality Data from In Situ Sensors," Monash Econometrics and Business Statistics Working Papers 1/19, Monash University, Department of Econometrics and Business Statistics.
- Timur Behlul & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman & Farshid Vahid, 2017.
"The Australian Macro Database: An online resource for macroeconomic research in Australia,"
CAMA Working Papers
2017-15, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Timur Behlul & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman & Farshid Vahid, 2017. "The Australian Macro Database: An online resource for macroeconomic research in Australia," Monash Econometrics and Business Statistics Working Papers 1/17, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017.
"Macroeconomic forecasting for Australia using a large number of predictors,"
Monash Econometrics and Business Statistics Working Papers
2/17, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019. "Macroeconomic forecasting for Australia using a large number of predictors," International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
Cited by:
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Hartigan, Luke & Morley, James, 2019.
"A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting,"
Working Papers
2019-10, University of Sydney, School of Economics, revised Nov 2019.
- Luke Hartigan & James Morley, 2020. "A Factor Model Analysis of the Australian Economy and the Effects of Inflation Targeting," The Economic Record, The Economic Society of Australia, vol. 96(314), pages 271-293, September.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- De Gooijer, Jan G. & Zerom, Dawit, 2019. "Semiparametric quantile averaging in the presence of high-dimensional predictors," International Journal of Forecasting, Elsevier, vol. 35(3), pages 891-909.
- Fereydooni, Ali & Barak, Sasan & Asaad Sajadi, Seyed Mehrzad, 2024. "A novel online portfolio selection approach based on pattern matching and ESG factors," Omega, Elsevier, vol. 123(C).
- Zhang, Bo & Nguyen, Bao H., 2020. "Real-time forecasting of the Australian macroeconomy using Bayesian VARs," Working Papers 2020-12, University of Tasmania, Tasmanian School of Business and Economics.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Christiana Anaxagorou & Nicoletta Pashourtidou, 2022. "Forecasting economic activity using preselected predictors: the case of Cyprus," Cyprus Economic Policy Review, University of Cyprus, Economics Research Centre, vol. 16(1), pages 11-36, June.
- Luke Hartigan & Tom Rosewall, 2024.
"Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator,"
Working Papers
2024-15, University of Sydney, School of Economics.
- Luke Hartigan & Tom Rosewall, 2024. "Nowcasting Quarterly GDP Growth during the COVID-19 Crisis Using a Monthly Activity Indicator," RBA Research Discussion Papers rdp2024-04, Reserve Bank of Australia.
- Chenghan Hou & Bao Nguyen & Bo Zhang, 2023. "Real‐time forecasting of the Australian macroeconomy using flexible Bayesian VARs," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 418-451, March.
- George Milunovich, 2020. "Forecasting Australia's real house price index: A comparison of time series and machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1098-1118, November.
- Bantis, Evripidis & Clements, Michael P. & Urquhart, Andrew, 2023. "Forecasting GDP growth rates in the United States and Brazil using Google Trends," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1909-1924.
- Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
- Jan G. De Gooijer, 2023. "Penalized Averaging of Quantile Forecasts from GARCH Models with Many Exogenous Predictors," Computational Economics, Springer;Society for Computational Economics, vol. 62(1), pages 407-424, June.
- De Gooijer Jan G. & Zerom Dawit, 2020. "Penalized Averaging of Parametric and Non-Parametric Quantile Forecasts," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-15, January.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
Cited by:
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Sakai Ando & Taehoon Kim, 2024. "Systematizing Macroframework Forecasting: High-Dimensional Conditional Forecasting with Accounting Identities," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 72(4), pages 1386-1410, December.
- Zeda Li & William W. S. Wei, 2024. "Measuring the advantages of contemporaneous aggregation in forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1308-1320, August.
- Aljuneidi, Tariq & Punia, Sushil & Jebali, Aida & Nikolopoulos, Konstantinos, 2024. "Forecasting and planning for a critical infrastructure sector during a pandemic: Empirical evidence from a food supply chain," European Journal of Operational Research, Elsevier, vol. 317(3), pages 936-952.
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Paul Ghelasi & Florian Ziel, 2023. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," Papers 2305.16255, arXiv.org.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Katherine Tierney, 2022. "The Future of Assisted Reproductive Technology Live Births in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 2289-2309, October.
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Ghelasi, Paul & Ziel, Florian, 2024. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 581-596.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Sali, Mustapha & Ghrab, Yahya & Chatras, Clément, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," International Journal of Production Economics, Elsevier, vol. 263(C).
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Mahsa Ashouri & Rob J Hyndman & Galit Shmueli, 2019. "Fast Forecast Reconciliation Using Linear Models," Monash Econometrics and Business Statistics Working Papers 29/19, Monash University, Department of Econometrics and Business Statistics.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Sarah Friedrich & Gerd Antes & Sigrid Behr & Harald Binder & Werner Brannath & Florian Dumpert & Katja Ickstadt & Hans A. Kestler & Johannes Lederer & Heinz Leitgöb & Markus Pauly & Ansgar Steland & A, 2022. "Is there a role for statistics in artificial intelligence?," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(4), pages 823-846, December.
- Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Sakai Ando & Futoshi Narita, 2024. "An Alternative Proof of Minimum Trace Reconciliation," Forecasting, MDPI, vol. 6(2), pages 1-6, June.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- George Athanasopoulos & Rob J Hyndman & Mitchell O'Hara-Wild, 2021. "The Road to Recovery from COVID-19 for Australian Tourism," Monash Econometrics and Business Statistics Working Papers 1/21, Monash University, Department of Econometrics and Business Statistics.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017.
"Coherent Probabilistic Forecasts for Hierarchical Time Series,"
Monash Econometrics and Business Statistics Working Papers
3/17, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Gary Koop & Stuart McIntyre & James Mitchell & Aubrey Poon, 2020. "Regional output growth in the United Kingdom: More timely and higher frequency estimates from 1970," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(2), pages 176-197, March.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- Ziel, Florian, 2019. "Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1400-1408.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Rob J Hyndman, 2016.
"Grouped functional time series forecasting: An application to age-specific mortality rates,"
Monash Econometrics and Business Statistics Working Papers
4/16, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016.
"Visualising forecasting Algorithm Performance using Time Series Instance Spaces,"
Monash Econometrics and Business Statistics Working Papers
10/16, Monash University, Department of Econometrics and Business Statistics.
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
Cited by:
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020.
"FFORMA: Feature-based forecast model averaging,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
- Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Yanfei Kang & Rob J Hyndman & Feng Li, 2018. "Efficient generation of time series with diverse and controllable characteristics," Monash Econometrics and Business Statistics Working Papers 15/18, Monash University, Department of Econometrics and Business Statistics.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Petropoulos, Fotios & Spiliotis, Evangelos & Panagiotelis, Anastasios, 2023. "Model combinations through revised base rates," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1477-1492.
- Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles, 2019. "Anomaly Detection in High Dimensional Data," Monash Econometrics and Business Statistics Working Papers 20/19, Monash University, Department of Econometrics and Business Statistics.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- You-Shyang Chen & Arun Kumar Sangaiah & Yu-Pei Lin, 2024. "Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management," Annals of Operations Research, Springer, vol. 342(1), pages 215-264, November.
- Sevvandi Kandanaarachchi & Mario A Munoz & Rob J Hyndman & Kate Smith-Miles, 2018. "On normalization and algorithm selection for unsupervised outlier detection," Monash Econometrics and Business Statistics Working Papers 16/18, Monash University, Department of Econometrics and Business Statistics.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Li Li & Yanfei Kang & Fotios Petropoulos & Feng Li, 2022. "Feature-based intermittent demand forecast combinations: bias, accuracy and inventory implications," Papers 2204.08283, arXiv.org, revised Aug 2022.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Priyanga Dilini Talagala & Rob J Hyndman & Kate Smith-Miles & Sevvandi Kandanaarachchi & Mario A Munoz, 2018. "Anomaly detection in streaming nonstationary temporal data," Monash Econometrics and Business Statistics Working Papers 4/18, Monash University, Department of Econometrics and Business Statistics.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Theodorou, Evangelos & Wang, Shengjie & Kang, Yanfei & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2022. "Exploring the representativeness of the M5 competition data," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1500-1506.
- Thomas Url & Rob J. Hyndman & Alexander Dokumentov, 2016.
"Long-term Forecasts of Age-specific Labour Market Participation Rates with Functional Data Models,"
WIFO Working Papers
510, WIFO.
Cited by:
- Sandra Bilek-Steindl & Christian Glocker & Serguei Kaniovski & Thomas Url, 2016. "Austria 2025 – The Effect of Human Capital Accumulation on Output Growth," WIFO Studies, WIFO, number 59175, January.
- Karl Aiginger & Marcus Scheiblecker, 2016. "Österreich 2025 – Eine Agenda für mehr Dynamik, sozialen Ausgleich und ökologische Nachhaltigkeit. Fortschrittsbericht," WIFO Studies, WIFO, number 58885, January.
- Thomas Url & Rob J Hyndman & Alexander Dokumentov, 2016. "Long-term forecasts of age-specific participation rates with functional data models," Monash Econometrics and Business Statistics Working Papers 3/16, Monash University, Department of Econometrics and Business Statistics.
- Thomas Url, 2016. "Langfristige Prognose des Aufwands für Langzeitpflege," WIFO Studies, WIFO, number 58844, January.
- Thomas Url & Rob J Hyndman & Alexander Dokumentov, 2016.
"Long-term forecasts of age-specific participation rates with functional data models,"
Monash Econometrics and Business Statistics Working Papers
3/16, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Sandra Bilek-Steindl & Christian Glocker & Serguei Kaniovski & Thomas Url, 2016. "Austria 2025 – The Effect of Human Capital Accumulation on Output Growth," WIFO Studies, WIFO, number 59175, January.
- Bækgaard, Hans & Helsø, Anne-Line Koch, 2023. "Labour Force Participation and Education," Nationaløkonomisk tidsskrift, Nationaløkonomisk Forening, vol. 2023(1), pages 1-23.
- Thomas Url & Rob J. Hyndman & Alexander Dokumentov, 2016. "Long-term Forecasts of Age-specific Labour Market Participation Rates with Functional Data Models," WIFO Working Papers 510, WIFO.
- Karl Aiginger & Marcus Scheiblecker, 2016. "Österreich 2025 – Eine Agenda für mehr Dynamik, sozialen Ausgleich und ökologische Nachhaltigkeit. Fortschrittsbericht," WIFO Studies, WIFO, number 58885, January.
- Thomas Url, 2016. "Langfristige Prognose des Aufwands für Langzeitpflege," WIFO Studies, WIFO, number 58844, January.
- Alexander Dokumentov & Rob J. Hyndman, 2015.
"STR: A Seasonal-Trend Decomposition Procedure Based on Regression,"
Monash Econometrics and Business Statistics Working Papers
13/15, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Fataneh Dabaghi-Zarandi & Vahid Behjat & Michel Gauvin & Patrick Picher & Hassan Ezzaidi & Issouf Fofana, 2024. "Using Deep Learning to Detect Anomalies in On-Load Tap Changer Based on Vibro-Acoustic Signal Features," Energies, MDPI, vol. 17(7), pages 1-20, March.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Fang Han & Fei Zhao & Fuxing Li & Xiaoli Shi & Qiang Wei & Weimiao Li & Wei Wang, 2023. "Improvement of Monitoring Production Status of Iron and Steel Factories Based on Thermal Infrared Remote Sensing," Sustainability, MDPI, vol. 15(11), pages 1-17, May.
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
- Amirhossein Sohrabbeig & Omid Ardakanian & Petr Musilek, 2023. "Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess," Forecasting, MDPI, vol. 5(4), pages 1-13, December.
- Seyma Gozuyilmaz & O. Erhun Kundakcioglu, 2021. "Mathematical optimization for time series decomposition," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 733-758, September.
- Christoph Bergmeir & Rob J Hyndman & Bonsoo Koo, 2015.
"A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction,"
Monash Econometrics and Business Statistics Working Papers
10/15, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
- Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018.
"Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks,"
Risks, MDPI, vol. 6(1), pages 1-20, March.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Post-Print hal-02055155, HAL.
- Ferlito, S. & Adinolfi, G. & Graditi, G., 2017. "Comparative analysis of data-driven methods online and offline trained to the forecasting of grid-connected photovoltaic plant production," Applied Energy, Elsevier, vol. 205(C), pages 116-129.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023.
"Granger Causality Testing in High-Dimensional VARs: A Post-Double-Selection Procedure,"
Journal of Financial Econometrics, Oxford University Press, vol. 21(3), pages 915-958.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2019. "Granger Causality Testing in High-Dimensional VARs: a Post-Double-Selection Procedure," Papers 1902.10991, arXiv.org, revised Dec 2020.
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
Cited by:
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Emilio Carrizosa & Cristina Molero-Río & Dolores Romero Morales, 2021. "Mathematical optimization in classification and regression trees," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 5-33, April.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
- Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
- Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.
- de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Konstantinos Nikolopoulos & Fotios Petropoulos & Vasco Sanchez Rodrigues & Stephen Pettit & Anthony Beresford, 2019. "A risk-mitigation model driven from the level of forecastability of Black Swans: prepare and respond to major Earthquakes through a dynamic Temporal and Spatial Aggregation forecasting framework," Working Papers 19017, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2019. "Improving the forecasting performance of temporal hierarchies," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-21, October.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Puwasala Gamakumara & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman, 2018. "Probabilisitic forecasts in hierarchical time series," Monash Econometrics and Business Statistics Working Papers 11/18, Monash University, Department of Econometrics and Business Statistics.
- Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Kim C. Raath & Katherine B. Ensor, 2023. "Wavelet-L2E Stochastic Volatility Models: an Application to the Water-Energy Nexus," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 85(1), pages 150-176, May.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Petropoulos, Fotios & Svetunkov, Ivan, 2020. "A simple combination of univariate models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 110-115.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015.
"Forecasting hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
15/15, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014.
"Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation,"
Monash Econometrics and Business Statistics Working Papers
11/14, Monash University, Department of Econometrics and Business Statistics.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016. "Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation," International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
Cited by:
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Keren Li & Sergey Utyuzhnikov, 2024. "Prediction of wind energy with the use of tensor‐train based higher order dynamic mode decomposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(7), pages 2434-2447, November.
- Duarte, Cláudia & Rodrigues, Paulo M.M. & Rua, António, 2017. "A mixed frequency approach to the forecasting of private consumption with ATM/POS data," International Journal of Forecasting, Elsevier, vol. 33(1), pages 61-75.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Junran Dong & Desheng Wu & Jingxiu Song & Jie Lu, 2022. "Gauging the environmental efficiency with ecological compensation in presence of missing data using data envelopment analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5451-5472, April.
- Karol Szafranek, 2017.
"Bagged artificial neural networks in forecasting inflation: An extensive comparison with current modelling frameworks,"
NBP Working Papers
262, Narodowy Bank Polski.
- Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Jun Hao & Xiaolei Sun & Qianqian Feng, 2020. "A Novel Ensemble Approach for the Forecasting of Energy Demand Based on the Artificial Bee Colony Algorithm," Energies, MDPI, vol. 13(3), pages 1-25, January.
- Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
- Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
- Daniel Roash & Tanya Suhoy, 2019. "Sentiment Indicators Based on a Short Business Tendency Survey," Bank of Israel Working Papers 2019.11, Bank of Israel.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- João A. Bastos, 2019.
"Forecasting the capacity of mobile networks,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 231-242, October.
- Bastos, João A., 2019. "Forecasting the capacity of mobile networks," MPRA Paper 92727, University Library of Munich, Germany.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Sroka Łukasz, 2022. "Applying Block Bootstrap Methods in Silver Prices Forecasting," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 26(2), pages 15-29, June.
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
- Yang, Kun & Cheng, Zishu & Li, Mingchen & Wang, Shouyang & Wei, Yunjie, 2024. "Fortify the investment performance of crude oil market by integrating sentiment analysis and an interval-based trading strategy," Applied Energy, Elsevier, vol. 353(PA).
- Dimitrios Sarris & Evangelos Spiliotis & Vassilios Assimakopoulos, 2020. "Exploiting resampling techniques for model selection in forecasting: an empirical evaluation using out-of-sample tests," Operational Research, Springer, vol. 20(2), pages 701-721, June.
- Seong, Byeongchan, 2020. "Smoothing and forecasting mixed-frequency time series with vector exponential smoothing models," Economic Modelling, Elsevier, vol. 91(C), pages 463-468.
- Xu, Guangyue & Chen, Yaqiang & Yang, Mengge & Li, Shuang & Marma, Kyaw Jaw Sine, 2023. "An outlook analysis on China's natural gas consumption forecast by 2035: Applying a seasonal forecasting method," Energy, Elsevier, vol. 284(C).
- de Oliveira, Erick Meira & Cyrino Oliveira, Fernando Luiz, 2018. "Forecasting mid-long term electric energy consumption through bagging ARIMA and exponential smoothing methods," Energy, Elsevier, vol. 144(C), pages 776-788.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
- Xu, Li & Ou, Yanxia & Cai, Jingjing & Wang, Jin & Fu, Yang & Bian, Xiaoyan, 2023. "Offshore wind speed assessment with statistical and attention-based neural network methods based on STL decomposition," Renewable Energy, Elsevier, vol. 216(C).
- Bojer, Casper Solheim, 2022. "Understanding machine learning-based forecasting methods: A decomposition framework and research opportunities," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1555-1561.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Guan, Bo & Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed, 2022. "Forecasting tourism growth with State-Dependent Models," Annals of Tourism Research, Elsevier, vol. 94(C).
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
- Kitova, Olga & Savinova, Victoria, 2021. "Development of an Ensemble of Models for Predicting Socio-Economic Indicators of the Russian Federation using IRT-Theory and Bagging Methods," MPRA Paper 110824, University Library of Munich, Germany.
- Lourenço, Nuno & Rua, António, 2021. "The Daily Economic Indicator: tracking economic activity daily during the lockdown," Economic Modelling, Elsevier, vol. 100(C).
- Zhao, Jiandong & Yu, Zhixin & Yang, Xin & Gao, Ziyou & Liu, Wenhui, 2022. "Short term traffic flow prediction of expressway service area based on STL-OMS," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Lu, Emiao & Handl, Julia & Xu, Dong-ling, 2018. "Determining analogies based on the integration of multiple information sources," International Journal of Forecasting, Elsevier, vol. 34(3), pages 507-528.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018.
"“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”,"
AQR Working Papers
201802, University of Barcelona, Regional Quantitative Analysis Group, revised Apr 2018.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“A regional perspective on the accuracy of machine learning forecasts of tourism demand based on data characteristics”," IREA Working Papers 201805, University of Barcelona, Research Institute of Applied Economics, revised Mar 2018.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
- Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
- Alexander Dokumentov & Rob J Hyndman, 2014.
"Low-dimensional decomposition, smoothing and forecasting of sparse functional data,"
Monash Econometrics and Business Statistics Working Papers
16/14, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
- Gillard, Jonathan & Usevich, Konstantin, 2018. "Structured low-rank matrix completion for forecasting in time series analysis," International Journal of Forecasting, Elsevier, vol. 34(4), pages 582-597.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Monash Econometrics and Business Statistics Working Papers
17/14, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
Cited by:
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
- Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Zech, Matthias & von Bremen, Lueder, 2024. "End-to-end learning of representative PV capacity factors from aggregated PV feed-ins," Applied Energy, Elsevier, vol. 361(C).
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
- Romanus, Eduardo E. & Silva, Eugênio & Goldschmidt, Ronaldo R., 2024. "Empirical probabilistic forecasting: An approach solely based on deterministic explanatory variables for the selection of past forecast errors," International Journal of Forecasting, Elsevier, vol. 40(1), pages 184-201.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- Richard Bean, 2023. "Forecasting the Monash Microgrid for the IEEE-CIS Technical Challenge," Energies, MDPI, vol. 16(3), pages 1-23, January.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- Tian-Shyug Lee & I-Fei Chen & Ting-Jen Chang & Chi-Jie Lu, 2020. "Forecasting Weekly Influenza Outpatient Visits Using a Two-Dimensional Hierarchical Decision Tree Scheme," IJERPH, MDPI, vol. 17(13), pages 1-15, July.
- Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
- Ingrida Steponavice & Rob J Hyndman & Kate Smith-Miles & Laura Villanova, 2014.
"Efficient Identification of the Pareto Optimal Set,"
Monash Econometrics and Business Statistics Working Papers
12/14, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Ingrida Steponavičė & Rob J. Hyndman & Kate Smith-Miles & Laura Villanova, 2017. "Dynamic algorithm selection for pareto optimal set approximation," Journal of Global Optimization, Springer, vol. 67(1), pages 263-282, January.
- Souhaib Ben Taieb & Rob J Hyndman, 2014.
"Boosting multi-step autoregressive forecasts,"
Monash Econometrics and Business Statistics Working Papers
13/14, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Kauppi, Heikki & Virtanen, Timo, 2021. "Boosting nonlinear predictability of macroeconomic time series," International Journal of Forecasting, Elsevier, vol. 37(1), pages 151-170.
- Heikki Kauppi & Timo Virtanen, 2018. "Boosting Non-linear Predictabilityof Macroeconomic Time Series," Discussion Papers 124, Aboa Centre for Economics.
- Jing Zeng, 2014. "Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?," Working Paper Series of the Department of Economics, University of Konstanz 2014-20, Department of Economics, University of Konstanz.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Alexander Dokumentov & Rob J Hyndman, 2013.
"Two-dimensional smoothing of mortality rates,"
Monash Econometrics and Business Statistics Working Papers
26/13, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
- Souhaib Ben Taieb & Rob J Hyndman, 2012.
"Recursive and direct multi-step forecasting: the best of both worlds,"
Monash Econometrics and Business Statistics Working Papers
19/12, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Manuel Paquette-Dupuis & Dalibor Stevanovic & Rachidi Kotchoni, 2019. "Prévisions de l’activité économique en temps de crise," CIRANO Project Reports 2019rp-04, CIRANO.
- Eran Raviv, 2013. "Prediction Bias Correction for Dynamic Term Structure Models," Tinbergen Institute Discussion Papers 13-041/III, Tinbergen Institute.
- Houben, Nikolaus & Cosic, Armin & Stadler, Michael & Mansoor, Muhammad & Zellinger, Michael & Auer, Hans & Ajanovic, Amela & Haas, Reinhard, 2023. "Optimal dispatch of a multi-energy system microgrid under uncertainty: A renewable energy community in Austria," Applied Energy, Elsevier, vol. 337(C).
- Meenakshi Narayan & Ann Majewicz Fey, 2020. "Developing a novel force forecasting technique for early prediction of critical events in robotics," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-34, May.
- Bartłomiej Gaweł & Andrzej Paliński, 2024. "Global and Local Approaches for Forecasting of Long-Term Natural Gas Consumption in Poland Based on Hierarchical Short Time Series," Energies, MDPI, vol. 17(2), pages 1-25, January.
- Ding, Lin & Bai, Yulong & Liu, Ming-De & Fan, Man-Hong & Yang, Jie, 2022. "Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network," Energy, Elsevier, vol. 244(PA).
- Amirhossein Sohrabbeig & Omid Ardakanian & Petr Musilek, 2023. "Decompose and Conquer: Time Series Forecasting with Multiseasonal Trend Decomposition Using Loess," Forecasting, MDPI, vol. 5(4), pages 1-13, December.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011.
"Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models,"
Working Papers
201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Shen, Yuewen & Wen, Lihong & Shen, Chaowen, 2024. "Based on hypernetworks and multifractals: Deep distribution feature fusion for multidimensional nonstationary time series prediction," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
- Camerer, Colin F. & Ho, Teck-Hua, 2015. "Behavioral Game Theory Experiments and Modeling," Handbook of Game Theory with Economic Applications,, Elsevier.
- Nhan Huynh & Mike Ludkovski, 2021. "Joint Models for Cause-of-Death Mortality in Multiple Populations," Papers 2111.06631, arXiv.org.
- de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
- Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
- Rebecca F. Gleditsch & Adrian F. Rogne & Astri Syse & Michael Thomas, 2021. "The accuracy of Statistics Norway’s national population projections," Discussion Papers 948, Statistics Norway, Research Department.
- Yahia Salhi & Pierre-Emmanuel Thérond & Julien Tomas, 2016. "A Credibility Approach of the Makeham Mortality Law," Post-Print hal-01232683, HAL.
- Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
- Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.
- Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015.
"Bayesian Poisson log-bilinear models for mortality projections with multiple populations,"
BAFFI CAREFIN Working Papers
1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- David Blake & Nicole El Karoui & Stéphane Loisel & Richard Macminn, 2018.
"Longevity risk and capital markets: The 2015–16 update,"
Post-Print
hal-01995778, HAL.
- Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
- Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
- Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
- Qian Lu & Katja Hanewald & Xiaojun Wang, 2021. "Subnational Mortality Modelling: A Bayesian Hierarchical Model with Common Factors," Risks, MDPI, vol. 9(11), pages 1-21, November.
- David Blake & Marco Morales & Wenjun Zhu & Ken Seng Tan & Chou-Wen Wang, 2017.
"Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference,"
Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 477-493, April.
- David Blake & Marco Morales, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 273-277, April.
- David Blake & Marco Morales & Hua Chen & Richard D. MacMinn & Tao Sun, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 393-415, April.
- David Blake & Marco Morales & Hong Li & Anja Waegenaere & Bertrand Melenberg, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 459-475, April.
- David Blake & Marco Morales & Kenneth Q. Zhou & Johnny Siu-Hang Li, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 417-437, April.
- David Blake & Marco Morales & Jing Ai & Patrick L. Brockett & Linda L. Golden & Wei Zhu, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 319-343, April.
- David Blake & Marco Morales & Yijia Lin & Richard D. MacMinn & Ruilin Tian & Jifeng Yu, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 345-365, April.
- David Blake & Marco Morales & Richard D. MacMinn & Nan Zhu, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 439-458, April.
- David Blake & Marco Morales & David Blake & Marco Morales, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 279-297, April.
- David Blake & Marco Morales & Andreas Milidonis & Maria Efthymiou, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 495-514, April.
- David Blake & Marco Morales & Richard MacMinn & Patrick Brockett, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 299-317, April.
- David Blake & Marco Morales & Yijia Lin & Tianxiang Shi & Ayşe Arik, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 367-392, April.
- David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
- Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
- Deschermeier Philipp, 2014. "Prognose der Anzahl der Erwerbspersonen: Eine Vorausberechnung auf Basis der Funktionalen Datenanalyse am Beispiel der Metropolregion Rhein-Neckar," ZFW – Advances in Economic Geography, De Gruyter, vol. 58(1), pages 50-65, October.
- Sizhe Chen & Han Lin Shang & Yang Yang, 2025. "Is the age pension in Australia sustainable and fair? Evidence from forecasting the old-age dependency ratio using the Hamilton-Perry model," Journal of Population Research, Springer, vol. 42(1), pages 1-27, March.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
- Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
- Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
- Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
- FLICI, Farid & SENOUCI, Khadidja & HANNANI, Yasmine, 2017. "Tables de mortalité d’expérience incorporant une échelle de projection : adaptation aux cas des retraités en Algérie [Experience life tables incorporating a projection scale : adaptation to the cas," MPRA Paper 91918, University Library of Munich, Germany.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Jackie Li & Leonie Tickle & Nick Parr, 2016. "A multi-population evaluation of the Poisson common factor model for projecting mortality jointly for both sexes," Journal of Population Research, Springer, vol. 33(4), pages 333-360, December.
- Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
- Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
- Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
- Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
- Samuel H. Cox & Yijia Lin & Ruilin Tian & Luis F. Zuluaga, 2013. "Mortality Portfolio Risk Management," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(4), pages 853-890, December.
- Sedar Olmez & Akhil Ahmed & Keith Kam & Zhe Feng & Alan Tua, 2023. "Exploring the Dynamics of the Specialty Insurance Market Using a Novel Discrete Event Simulation Framework: a Lloyd's of London Case Study," Papers 2307.05581, arXiv.org.
- Chen, An & Li, Hong & Schultze, Mark, 2022. "Collective longevity swap: A novel longevity risk transfer solution and its economic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 227-249.
- Nico Keilman & Dinh Q. Pham & Astri Syse, 2018. "Mortality shifts and mortality compression. The case of Norway, 1900-2060," Discussion Papers 884, Statistics Norway, Research Department.
- Flici, Farid, 2020. "Muti-Scenarios Population Projection for Algeria using R," MPRA Paper 119600, University Library of Munich, Germany.
- Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
- Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
- Snorre Jallbjørn & Søren Fiig Jarner, 2022. "Sex Differential Dynamics in Coherent Mortality Models," Forecasting, MDPI, vol. 4(4), pages 1-26, September.
- Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
- FLICI, Farid, 2016. "The future of longevity and life annuities pricing in Algeria: comparison of mortality models," SocArXiv 2tdgm, Center for Open Science.
- Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
- Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.
- Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
- Søren Kjærgaard & Yunus Emre Ergemen & Marie-Pier Bergeron Boucher & Jim Oeppen & Malene Kallestrup-Lamb, 2019. "Longevity forecasting by socio-economic groups using compositional data analysis," CREATES Research Papers 2019-08, Department of Economics and Business Economics, Aarhus University.
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Gleditsch Rebecca Folkman & Syse Astri & Thomas Michael J., 2021. "Fertility Projections in a European Context: A Survey of Current Practices among Statistical Agencies," Journal of Official Statistics, Sciendo, vol. 37(3), pages 547-568, September.
- Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
- Vanella, Patrizio & Deschermeier, Philipp, 2017. "Ein stochastisches Prognosemodell internationaler Migration in Deutschland," Hannover Economic Papers (HEP) dp-605, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Pascariu, Marius D. & Canudas-Romo, Vladimir & Vaupel, James W., 2018. "The double-gap life expectancy forecasting model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 339-350.
- Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Hong Li & Yang Lu, 2016.
"Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach,"
Post-Print
halshs-02418954, HAL.
- Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
- Flici, Farid, 2020. "Population projections using R, including graphical dynamic presentations," MPRA Paper 119599, University Library of Munich, Germany.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
- Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
- Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
- Yigang Wei & Zhichao Wang & Huiwen Wang & Yan Li & Zhenyu Jiang, 2019. "Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-42, April.
- Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
- Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
- Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
- Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
- Dorina Lazar & Anuta Buiga & Adela Deaconu, 2016. "Common Stochastic Trends in European Mortality Levels: Testing and Consequences for Modeling Longevity Risk in Insurance," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 152-168, June.
- Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
- Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
- Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Zhang, Xuanming & Huang, Fei & Hui, Francis K.C. & Haberman, Steven, 2023. "Cause-of-death mortality forecasting using adaptive penalized tensor decompositions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 193-213.
- Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
- Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
- Rizzi, Silvia & Kjærgaard, Søren & Bergeron Boucher, Marie-Pier & Camarda, Carlo Giovanni & Lindahl-Jacobsen, Rune & Vaupel, James W., 2021. "Killing off cohorts: Forecasting mortality of non-extinct cohorts with the penalized composite link model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 95-104.
- Li, Hong & Porth, Lysa & Tan, Ken Seng & Zhu, Wenjun, 2021. "Improved index insurance design and yield estimation using a dynamic factor forecasting approach," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 208-221.
- Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
- Phillip A. Jang & David S. Matteson, 2023. "Spatial correlation in weather forecast accuracy: a functional time series approach," Computational Statistics, Springer, vol. 38(3), pages 1215-1229, September.
- Syazreen Shair & Sachi Purcal & Nick Parr, 2017. "Evaluating Extensions to Coherent Mortality Forecasting Models," Risks, MDPI, vol. 5(1), pages 1-20, March.
- de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
- Wang, Hong & Koo, Bonsoo & O'Hare, Colin, 2016. "Retirement planning in the light of changing demographics," Economic Modelling, Elsevier, vol. 52(PB), pages 749-763.
- Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
- Péter Vékás, 2020. "Rotation of the age pattern of mortality improvements in the European Union," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1031-1048, September.
- Farid Flici & Frédéric Planchet, 2019. "Experience Prospective Life-Tables for the Algerian Retirees," Risks, MDPI, vol. 7(2), pages 1-21, April.
- Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
- Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
- George Athanasopoulos & Rob J Hyndman, 2011.
"The value of feedback in forecasting competitions,"
Monash Econometrics and Business Statistics Working Papers
3/11, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849, July.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849.
Cited by:
- Erhan Bilal & Janusz Dutkowski & Justin Guinney & In Sock Jang & Benjamin A Logsdon & Gaurav Pandey & Benjamin A Sauerwine & Yishai Shimoni & Hans Kristian Moen Vollan & Brigham H Mecham & Oscar M Rue, 2013. "Improving Breast Cancer Survival Analysis through Competition-Based Multidimensional Modeling," PLOS Computational Biology, Public Library of Science, vol. 9(5), pages 1-16, May.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Rob J Hyndman, 2011.
"The value of feedback in forecasting competitions,"
Monash Econometrics and Business Statistics Working Papers
3/11, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849, July.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Rianne Legerstee & Philip Hans Franses, 2014.
"Do Experts’ SKU Forecasts Improve after Feedback?,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 33(1), pages 69-79, January.
- Rianne Legerstee & Philip Hans Franses, 2011. "Do Experts' SKU Forecasts improve after Feedback?," Tinbergen Institute Discussion Papers 11-135/4, Tinbergen Institute.
- Legerstee, R. & Franses, Ph.H.B.F., 2011. "Do experts' SKU forecasts improve after feedback?," Econometric Institute Research Papers EI2011-31, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Garcia Martinez, Marian, 2015. "Solver engagement in knowledge sharing in crowdsourcing communities: Exploring the link to creativity," Research Policy, Elsevier, vol. 44(8), pages 1419-1430.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Li, Libo & Yu, Huan & Kunc, Martin, 2024. "The impact of forum content on data science open innovation performance: A system dynamics-based causal machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Shu Fan & Rob Hyndman, 2010.
"Short-term load forecasting based on a semi-parametric additive model,"
Monash Econometrics and Business Statistics Working Papers
17/10, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Eichler, M. & Grothe, O. & Manner, H. & Türk, D.D.T., 2012. "Modeling spike occurrences in electricity spot prices for forecasting," Research Memorandum 029, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nedellec, Raphael & Cugliari, Jairo & Goude, Yannig, 2014. "GEFCom2012: Electric load forecasting and backcasting with semi-parametric models," International Journal of Forecasting, Elsevier, vol. 30(2), pages 375-381.
- Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
- Roman Frigg & Seamus Bradley & Hailiang Du & Leonard A. Smith, "undated". "Laplace�s Demon and Climate Change," GRI Working Papers 103, Grantham Research Institute on Climate Change and the Environment.
- Bidong Liu & Jakub Nowotarski & Tao Hong & Rafal Weron, 2015. "Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts," HSC Research Reports HSC/15/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Lintao Yang & Honggeng Yang, 2019. "Analysis of Different Neural Networks and a New Architecture for Short-Term Load Forecasting," Energies, MDPI, vol. 12(8), pages 1-23, April.
- Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010.
"Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach,"
Working Papers
2010.06, School of Economics, La Trobe University.
- Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010. "Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach," Working Papers 2010.06, School of Economics, La Trobe University.
Cited by:
- Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
- Galip Altinay & A. Talha Yalta, 2016. "Estimating the evolution of elasticities of natural gas demand: the case of Istanbul, Turkey," Empirical Economics, Springer, vol. 51(1), pages 201-220, August.
- A. Talha Yalta, 2013. "The Dynamics of Road Energy Demand and Illegal Fuel Activity in Turkey: A Rolling Window Analysis," Working Papers 1304, TOBB University of Economics and Technology, Department of Economics, revised Jul 2013.
- Yalta, A. Talha & Yalta, A. Yasemin, 2016. "The dynamics of fuel demand and illegal fuel activity in Turkey," Energy Economics, Elsevier, vol. 54(C), pages 144-158.
- Mario Arturo Ruiz Estrada & Evangelos Koutronas & Ross Knippenberg, 2016. "The Mega Distributed Lag Model," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 10(2), June.
- Han Lin Shang & Rob J Hyndman & Heather Booth, 2010.
"A comparison of ten principal component methods for forecasting mortality rates,"
Monash Econometrics and Business Statistics Working Papers
8/10, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Hendrik Hansen, 2013. "The forecasting performance of mortality models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 11-31, January.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Shu Fan & Rob Hyndman, 2010.
"The price elasticity of electricity demand in South Australia,"
Monash Econometrics and Business Statistics Working Papers
16/10, Monash University, Department of Econometrics and Business Statistics.
- Fan, Shu & Hyndman, Rob J., 2011. "The price elasticity of electricity demand in South Australia," Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
Cited by:
- Silvester Van Koten, 2020.
"The Forward Premium in Electricity Markets: An Experimental Study,"
CERGE-EI Working Papers
wp656, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- van Koten, Silvester, 2021. "The forward premium in electricity markets: An experimental study," Energy Economics, Elsevier, vol. 94(C).
- Azevedo, I. & Leal, V., 2021. "A new model for ex-post quantification of the effects of local actions for climate change mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Dorothée Charlier & Sondès Kahouli, 2018. "Fuel poverty and residential energy demand: how fuel-poor households react to energy price fluctuations," Post-Print halshs-01957771, HAL.
- Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
- Li, Xiao & Liu, Pan & Wang, Yibo & Yang, Zhikai & Gong, Yu & An, Rihui & Huang, Kangdi & Wen, Yan, 2022. "Derivation of operating rule curves for cascade hydropower reservoirs considering the spot market: A case study of the China's Qing River cascade-reservoir system," Renewable Energy, Elsevier, vol. 182(C), pages 1028-1038.
- Shimon ELBAZ & Adriana ZAIȚ, 2018. "Factors Decreasing Household Electricity Demand – A Qualitative Approach," SEA - Practical Application of Science, Romanian Foundation for Business Intelligence, Editorial Department, issue 16, pages 59-67, May.
- Dorothée Charlier & Sondès Kahouli, 2018.
"From residential energy demand to fuel poverty: income-induced non-linearities in the reactions of households to energy price fluctuations,"
Working Papers
2018.11, FAERE - French Association of Environmental and Resource Economists.
- Dorothee Charlier and Sondes Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
- Dorothée Charlier & Sondès Kahouli, 2019. "From Residential Energy Demand to Fuel Poverty: Income-induced Non-linearities in the Reactions of Households to Energy Price Fluctuations," The Energy Journal, , vol. 40(2), pages 101-138, March.
- Dorothée Charlier & Sondès Kahouli, 2018. "From residential energy demand to fuel poverty: income-induced non-linearities in the reactions of households to energy price fluctuations," Policy Papers 2018.06, FAERE - French Association of Environmental and Resource Economists.
- Bakaloglou, Salomé & Charlier, Dorothée, 2021. "The role of individual preferences in explaining the energy performance gap," Energy Economics, Elsevier, vol. 104(C).
- Wilkinson, Sam & Maticka, Martin J. & Liu, Yue & John, Michele, 2021. "The duck curve in a drying pond: The impact of rooftop PV on the Western Australian electricity market transition," Utilities Policy, Elsevier, vol. 71(C).
- Hocheol Jeon, 2019. "The Impact of Climate Change on Passenger Vehicle Fuel Consumption: Evidence from U.S. Panel Data," Energies, MDPI, vol. 12(23), pages 1-15, November.
- Fais, Birgit & Blesl, Markus & Fahl, Ulrich & Voß, Alfred, 2014. "Comparing different support schemes for renewable electricity in the scope of an energy systems analysis," Applied Energy, Elsevier, vol. 131(C), pages 479-489.
- Apergis, Nicholas & Pan, Wei-Fong & Reade, James & Wang, Shixuan, 2023. "Modelling Australian electricity prices using indicator saturation," Energy Economics, Elsevier, vol. 120(C).
- Boqiang Lin & Michael Adu Okyere, 2020. "Multidimensional Energy Poverty and Mental Health: Micro-Level Evidence from Ghana," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
- Inha Oh & Yeongjun Yeo & Jeong-Dong Lee, 2015. "Efficiency versus Equality: Comparing Design Options for Indirect Emissions Accounting in the Korean Emissions Trading Scheme," Sustainability, MDPI, vol. 7(11), pages 1-21, November.
- Koltsaklis, Nikolaos E. & Liu, Pei & Georgiadis, Michael C., 2015. "An integrated stochastic multi-regional long-term energy planning model incorporating autonomous power systems and demand response," Energy, Elsevier, vol. 82(C), pages 865-888.
- Stephen Poletti & Julian Wright, 2020. "Real‐Time Pricing and Imperfect Competition in Electricity Markets," Journal of Industrial Economics, Wiley Blackwell, vol. 68(1), pages 93-135, March.
- Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
- Bianca Peters & Stephanie F. McWhinnie, 2018.
"On the rebound: estimating direct rebound effects for Australian households,"
Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), pages 65-82, January.
- Bianca Peters & Stephanie F. McWhinnie, 2015. "On the Rebound: Estimating Direct Rebound Effects for Australian Households," School of Economics and Public Policy Working Papers 2015-18, University of Adelaide, School of Economics and Public Policy.
- Peters, Bianca & McWhinnie, Stephanie F., 2018. "On the rebound: estimating direct rebound effects for Australian households," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 62(1), January.
- Salari, Mahmoud & Javid, Roxana J., 2017. "Modeling household energy expenditure in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 822-832.
- Jieyi Kang & David Reiner, 2021.
"Machine Learning on residential electricity consumption: Which households are more responsive to weather?,"
Working Papers
EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Kang, J. & Reiner, D., 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Cambridge Working Papers in Economics 2142, Faculty of Economics, University of Cambridge.
- Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2014. "Time-varying Long-run Income and Output Elasticities of Electricity Demand with an Application to Korea," Energy Economics, Elsevier, vol. 46(C), pages 334-347.
- Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
- Chai, Andreas & Ratnasiri, Shyama & Wagner, Liam, 2021. "The impact of rising energy prices on energy poverty in Queensland: A microsimulation exercise," Economic Analysis and Policy, Elsevier, vol. 71(C), pages 57-72.
- Chesser, Michael & Hanly, Jim & Cassells, Damien & Apergis, Nicholas, 2018. "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, Elsevier, vol. 122(C), pages 36-44.
- Heindl, Peter & Löschel, Andreas, 2015.
"Social implications of green growth policies from the perspective of energy sector reform and its impact on households,"
ZEW Discussion Papers
15-012, ZEW - Leibniz Centre for European Economic Research.
- Heindl, Peter & Löschel, Andreas, 2015. "Social implications of green growth policies from the perspective of energy sector reform and its impact on households," CAWM Discussion Papers 81, University of Münster, Münster Center for Economic Policy (MEP).
- Silva, Hendrigo Batista da & Santiago, Leonardo P., 2018. "On the trade-off between real-time pricing and the social acceptability costs of demand response," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1513-1521.
- Salisu, Afees A. & Ayinde, Taofeek O., 2016. "Modeling energy demand: Some emerging issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1470-1480.
- Adom, Philip Kofi, 2016. "Electricity Supply and System losses in Ghana. What is the red line? Have we crossed over?," MPRA Paper 74559, University Library of Munich, Germany, revised 11 Nov 2016.
- Farrell, Niall, 2021. "The increasing cost of ignoring Coase: Inefficient electricity tariffs, welfare loss and welfare-reducing technological change," Energy Economics, Elsevier, vol. 97(C).
- Salomé Bakaloglou & Dorothée Charlier, 2018.
"Energy Consumption in the French Residential Sector: How Much Do Individual Preferences Matter?,"
Working Papers
1803, Chaire Economie du climat.
- Salomé Bakaloglou & Dorothée Charlier, 2018. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," Post-Print halshs-01961638, HAL.
- Salomé Bakaloglou & Dorothée Charlier, 2018. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," Working Papers 2018.05, FAERE - French Association of Environmental and Resource Economists.
- Salomé Bakaloglou and Dorothée Charlier, 2019. "Energy Consumption in the French Residential Sector: How Much do Individual Preferences Matter?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
- Faria, P. & Vale, Z., 2011. "Demand response in electrical energy supply: An optimal real time pricing approach," Energy, Elsevier, vol. 36(8), pages 5374-5384.
- Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
- Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015.
"Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories,"
Energy Economics, Elsevier, vol. 49(C), pages 182-191.
- Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun J. & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and Regionally-uniform Electricity Pricing Policies Compared across Four Usage Categories," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204324, Agricultural and Applied Economics Association.
- Philip, Thara & Whitehead, Jake & Prato, Carlo G., 2023. "Adoption of electric vehicles in a laggard, car-dependent nation: Investigating the potential influence of V2G and broader energy benefits on adoption," Transportation Research Part A: Policy and Practice, Elsevier, vol. 167(C).
- Yoosoon Chang & Chang Sik Kim & J. Isaac Miller & Joon Y. Park & Sungkeun Park, 2015.
"A New Approach to Modeling the Effects of Temperature Fluctuations on Monthly Electricity Demand,"
Working Papers
1512, Department of Economics, University of Missouri.
- Chang, Yoosoon & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2016. "A new approach to modeling the effects of temperature fluctuations on monthly electricity demand," Energy Economics, Elsevier, vol. 60(C), pages 206-216.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Han PHOUMIN & Shigeru KIMURA, 2014. "Analysis on Price Elasticity of Energy Demand in East Asia: Empirical Evidence and Policy Implications for ASEAN and East Asia," Working Papers DP-2014-05, Economic Research Institute for ASEAN and East Asia (ERIA).
- Lorraine Conway & David Prentice, 2020.
"How Much do Households Respond to Electricity Prices? Evidence from Australia and Abroad,"
Economic Papers, The Economic Society of Australia, vol. 39(3), pages 290-311, September.
- Lorraine Conway & David Prentice, 2019. "How much do households repond to electricity prices? Evidence from Australia and abroad," Technical papers 201901, Infrastructure Victoria.
- Paulo Oliveira & Margarida Vaz Pato, 2014. "Time-Of-Use Electricity Tariffs With Smart Meters," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(2), pages 59-74.
- Bruce Mountain & Kelly Burns, 2021. "Loyalty taxes in retail electricity markets: not as they seem?," Journal of Regulatory Economics, Springer, vol. 59(1), pages 1-24, February.
- Adewuyi, Adeolu O., 2016. "Determinants of import demand for non-renewable energy (petroleum) products: Empirical evidence from Nigeria," Energy Policy, Elsevier, vol. 95(C), pages 73-93.
- Walsh, Darragh & Malaguzzi Valeri, Laura & Di Cosmo, Valeria, 2016. "Strategic bidding, wind ownership and regulation in a decentralised electricity market," MPRA Paper 71502, University Library of Munich, Germany.
- Tilov, Ivan & Farsi, Mehdi & Volland, Benjamin, 2020. "From frugal Jane to wasteful John: A quantile regression analysis of Swiss households’ electricity demand," Energy Policy, Elsevier, vol. 138(C).
- Emily Hope & Bruno Gagnon & Vanja Avdić, 2020. "Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
- Damien, Paul & Fuentes-García, Ruth & Mena, Ramsés H. & Zarnikau, Jay, 2019. "Impacts of day-ahead versus real-time market prices on wholesale electricity demand in Texas," Energy Economics, Elsevier, vol. 81(C), pages 259-272.
- Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 41(C), pages 374-392.
- Kim, Hyungkwan & Preckel, Paul V. & Eales, James S. & Gotham, Douglas & Liu, Andrew L., 2015. "Impact Assessment of Time of Use Pricing for Electricity: Evidence from a Natural Experiment in Ontario," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205262, Agricultural and Applied Economics Association.
- Shao, Changzheng & Ding, Yi & Wang, Jianhui, 2019. "A low-carbon economic dispatch model incorporated with consumption-side emission penalty scheme," Applied Energy, Elsevier, vol. 238(C), pages 1084-1092.
- Ghaith, Ahmad F. & Epplin, Francis M., 2017. "Consequences of a carbon tax on household electricity use and cost, carbon emissions, and economics of household solar and wind," Energy Economics, Elsevier, vol. 67(C), pages 159-168.
- Jose Antonio Hernandez & Camilo Koch, 2015. "An Assessment of Energy Consumption and Price Responsiveness: Evidence from Dominican Republic," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 1(6), pages 81-87, May.
- Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
- Mirnezami, Seyed Reza, 2014. "Electricity inequality in Canada: Should pricing reforms eliminate subsidies to encourage efficient usage?," Utilities Policy, Elsevier, vol. 31(C), pages 36-43.
- De Stercke, Simon & Mijic, Ana & Buytaert, Wouter & Chaturvedi, Vaibhav, 2018. "Modelling the dynamic interactions between London’s water and energy systems from an end-use perspective," Applied Energy, Elsevier, vol. 230(C), pages 615-626.
- Konstantina Valogianni & Wolfgang Ketter & John Collins & Dmitry Zhdanov, 2020. "Sustainable Electric Vehicle Charging using Adaptive Pricing," Production and Operations Management, Production and Operations Management Society, vol. 29(6), pages 1550-1572, June.
- O'Gorman, Marianna & Jotzo, Frank, 2014.
"Impact of the carbon price on Australia’s electricity demand, supply and emissions,"
Working Papers
249493, Australian National University, Centre for Climate Economics & Policy.
- Marianna O'Gorman & Frank Jotzo, 2014. "Impact of the Carbon Price on Australia's Electricity Demand, Supply and Emissions," CCEP Working Papers 1411, Centre for Climate & Energy Policy, Crawford School of Public Policy, The Australian National University.
- Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
- Lim, Kyoung-Min & Lim, Seul-Ye & Yoo, Seung-Hoon, 2014. "Short- and long-run elasticities of electricity demand in the Korean service sector," Energy Policy, Elsevier, vol. 67(C), pages 517-521.
- Maria P. Pablo-Romero & Antonio Sánchez-Braza & Javier Sánchez-Rivas, 2017. "Relationships between Hotel and Restaurant Electricity Consumption and Tourism in 11 European Union Countries," Sustainability, MDPI, vol. 9(11), pages 1-14, November.
- Steinhäuser, J. Micha & Eisenack, Klaus, 2020. "How market design shapes the spatial distribution of power plant curtailment costs," Energy Policy, Elsevier, vol. 144(C).
- Derya Eryilmaz, Timothy M. Smith, and Frances R. Homans, 2017. "Price Responsiveness in Electricity Markets: Implications for Demand Response in the Midwest," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
- Adom, Philip Kofi, 2017. "The long-run price sensitivity dynamics of industrial and residential electricity demand: The impact of deregulating electricity prices," Energy Economics, Elsevier, vol. 62(C), pages 43-60.
- Guzman, Ivan & Salazar, Ricardo, 2017. "Estimación de la Elasticidad-Precio de Corto Plazo de la Demanda de Electricidad en República Dominicana [An Estimation of the Short-Run Price Elasticity of Electricity Demand in the Dominican Repu," MPRA Paper 92083, University Library of Munich, Germany.
- Desiderio Romero-Jordán & Pablo del Río & Cristina Peñasco, 2014. "Household electricity demand in Spanish regions. Public policy implications," Working Papers 2014/24, Institut d'Economia de Barcelona (IEB).
- Wang, Nan & Mogi, Gento, 2017. "Industrial and residential electricity demand dynamics in Japan: How did price and income elasticities evolve from 1989 to 2014?," Energy Policy, Elsevier, vol. 106(C), pages 233-243.
- Walsh, Darragh & Malaguzzi Valeri, Laura, 2014. "Gaming in the Irish Single Electricity Market and Potential Effects on Wholesale Prices," Papers WP488, Economic and Social Research Institute (ESRI).
- Angelopoulos, Dimitrios & Siskos, Yannis & Psarras, John, 2019. "Disaggregating time series on multiple criteria for robust forecasting: The case of long-term electricity demand in Greece," European Journal of Operational Research, Elsevier, vol. 275(1), pages 252-265.
- Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
- Huang, Yongfu, 2014. "Drivers of rising global energy demand: The importance of spatial lag and error dependence," Energy, Elsevier, vol. 76(C), pages 254-263.
- Heshmati, Almas, 2012. "Survey of Models on Demand, Customer Base-Line and Demand Response and Their Relationships in the Power Market," IZA Discussion Papers 6637, Institute of Labor Economics (IZA).
- Awaworyi Churchill, Sefa & Smyth, Russell & Farrell, Lisa, 2020. "Fuel poverty and subjective wellbeing," Energy Economics, Elsevier, vol. 86(C).
- J. Micha Steinhäuser & Klaus Eisenack, 2015. "Spatial incidence of large-scale power plant curtailment costs," Working Papers V-379-15, University of Oldenburg, Department of Economics, revised Jul 2015.
- Farrell, Niall & Humes, Harry, 2022. "Diminishing deadweight loss through energy subsidy cost recovery," Papers WP727, Economic and Social Research Institute (ESRI).
- Nnaemeka Vincent Emodi & Taha Chaiechi & ABM Rabiul Alam Beg, 2018. "The impact of climate change on electricity demand in Australia," Energy & Environment, , vol. 29(7), pages 1263-1297, November.
- Liu, Youbo & Zuo, Kunyu & Liu, Xueqin (Amy) & Liu, Junyong & Kennedy, Jason M., 2018. "Dynamic pricing for decentralized energy trading in micro-grids," Applied Energy, Elsevier, vol. 228(C), pages 689-699.
- María del P. Pablo-Romero ,, & Rafael Pozo-Barajas & Javier Sánchez-Rivas, 2017. "Relationships between Tourism and Hospitality Sector Electricity Consumption in Spanish Provinces (1999–2013)," Sustainability, MDPI, vol. 9(4), pages 1-12, March.
- Almas Heshmati, 2014. "Demand, Customer Base-Line And Demand Response In The Electricity Market: A Survey," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 862-888, December.
- Yanrong Li & Lai Wei & Wei Jiang, 2021. "A Two-stage Pricing Strategy Considering Learning Effects and Word-of-Mouth," Papers 2110.11581, arXiv.org.
- Antonio Gabaldón & Carlos Álvarez & María Del Carmen Ruiz-Abellón & Antonio Guillamón & Sergio Valero-Verdú & Roque Molina & Ana García-Garre, 2018. "Integration of Methodologies for the Evaluation of Offer Curves in Energy and Capacity Markets through Energy Efficiency and Demand Response," Sustainability, MDPI, vol. 10(2), pages 1-27, February.
- Krishnamurthy, Chandra Kiran B. & Kriström, Bengt, 2015. "A cross-country analysis of residential electricity demand in 11 OECD-countries," Resource and Energy Economics, Elsevier, vol. 39(C), pages 68-88.
- Ma, Yiqun, 2016. "Demand Response Potential of Electricity End-users Facing Real Time Pricing," Research Report 16019-EEF, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Paul Simshauser, 2019. "On the Stability of Energy-Only Markets with Government-Initiated Contracts-for-Differences," Energies, MDPI, vol. 12(13), pages 1-24, July.
- Alysha M De Livera & Rob J Hyndman, 2009.
"Forecasting time series with complex seasonal patterns using exponential smoothing,"
Monash Econometrics and Business Statistics Working Papers
15/09, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Luis Fernando Melo Velandia & Daniel Parra Amado, 2014.
"Efectos calendario sobre la producción industrial en Colombia,"
Borradores de Economia
820, Banco de la Republica de Colombia.
- Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Efectos calendario sobre la producción industrial en Colombia," Borradores de Economia 11241, Banco de la Republica.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015.
"Forecasting the price of gold,"
Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2014. "Forecasting the Price of Gold," Working Papers 201428, University of Pretoria, Department of Economics.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Andrew Harvey & Alessandra Luati, 2014.
"Filtering With Heavy Tails,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
- Harvey, A. & Luati, A., 2012. "Filtering with heavy tails," Cambridge Working Papers in Economics 1255, Faculty of Economics, University of Cambridge.
- Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
- Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
- Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
- Alan J. Auerbach & Yuriy Gorodnichenko, 2015.
"Effects of Fiscal Shocks in a Globalized World,"
NBER Working Papers
21100, National Bureau of Economic Research, Inc.
- Alan J Auerbach & Yuriy Gorodnichenko, 2016. "Effects of Fiscal Shocks in a Globalized World," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 64(1), pages 177-215, May.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
- Luis Fernando Melo Velandia & Daniel Parra Amado, 2014.
"Efectos calendario sobre la producción industrial en Colombia,"
Borradores de Economia
820, Banco de la Republica de Colombia.
- Han Lin Shang & Rob J Hyndman, 2009.
"Nonparametric time series forecasting with dynamic updating,"
Monash Econometrics and Business Statistics Working Papers
8/09, Monash University, Department of Econometrics and Business Statistics.
- Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
Cited by:
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Acal, C. & Aguilera, A.M. & Alonso, F.J. & Ruiz-Castro, J.E. & Roldán, J.B., 2024. "Different PCA approaches for vector functional time series with applications to resistive switching processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 288-298.
- Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
- Paul Ghelasi & Florian Ziel, 2023. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," Papers 2305.16255, arXiv.org.
- Ghelasi, Paul & Ziel, Florian, 2024. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 581-596.
- Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Antoniadis, Anestis & Brossat, Xavier & Cugliari, Jairo & Poggi, Jean-Michel, 2016. "A prediction interval for a function-valued forecast model: Application to load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 939-947.
- J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- Han Lin Shang, 2011.
"A survey of functional principal component analysis,"
Monash Econometrics and Business Statistics Working Papers
6/11, Monash University, Department of Econometrics and Business Statistics.
- Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
- Rob J Hyndman & Shu Fan, 2008.
"Density forecasting for long-term peak electricity demand,"
Monash Econometrics and Business Statistics Working Papers
6/08, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Simon Pezzutto & Gianluca Grilli & Stefano Zambotti & Stefan Dunjic, 2018. "Forecasting Electricity Market Price for End Users in EU28 until 2020—Main Factors of Influence," Energies, MDPI, vol. 11(6), pages 1-18, June.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- López Cabrera, Brenda & Schulz, Franziska, 2014.
"Forecasting generalized quantiles of electricity demand: A functional data approach,"
SFB 649 Discussion Papers
2014-030, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Brenda López Cabrera & Franziska Schulz, 2017. "Forecasting Generalized Quantiles of Electricity Demand: A Functional Data Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(517), pages 127-136, January.
- Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Luigi Cirocco & Martin Belusko & Frank Bruno & John Boland & Peter Pudney, 2014. "Optimisation of Storage for Concentrated Solar Power Plants," Challenges, MDPI, vol. 5(2), pages 1-31, December.
- Tao Hong & Jason Wilson & Jingrui Xie, 2013. "Long term probabilistic load forecasting and normalization with hourly information," HSC Research Reports HSC/13/13, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Tao Hong & Pierre Pinson & Shu Fan, 2013.
"Global Energy Forecasting Competition 2012,"
HSC Research Reports
HSC/13/16, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
- Fan, Shu & Hyndman, Rob J., 2011.
"The price elasticity of electricity demand in South Australia,"
Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
- Shu Fan & Rob Hyndman, 2010. "The price elasticity of electricity demand in South Australia," Monash Econometrics and Business Statistics Working Papers 16/10, Monash University, Department of Econometrics and Business Statistics.
- Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
- Jing Liu & Yongping Li & Guohe Huang & Cai Suo & Shuo Yin, 2017. "An Interval Fuzzy-Stochastic Chance-Constrained Programming Based Energy-Water Nexus Model for Planning Electric Power Systems," Energies, MDPI, vol. 10(11), pages 1-23, November.
- Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
- Trotter, Ian Michael & Féres, José Gustavo & Bolkesjø, Torjus Folsland & de Hollanda, Lavínia Rocha, 2015. "Simulating Brazilian Electricity Demand Under Climate Change Scenarios," Working Papers in Applied Economics 208689, Universidade Federal de Vicosa, Departamento de Economia Rural.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015.
"Improving short term load forecast accuracy via combining sister forecasts,"
HSC Research Reports
HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
- Bidong Liu & Jakub Nowotarski & Tao Hong & Rafal Weron, 2015. "Probabilistic load forecasting via Quantile Regression Averaging on sister forecasts," HSC Research Reports HSC/15/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nyoni, Thabani, 2019. "Modeling and forecasting demand for electricity in Zimbabwe using the Box-Jenkins ARIMA technique," MPRA Paper 96903, University Library of Munich, Germany.
- Dutta, Goutam & Mitra, Krishnendranath, 2015. "Dynamic Pricing of Electricity: A Survey of Related Research," IIMA Working Papers WP2015-08-03, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
- Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Javier Sanjuán & Álvaro González & Jaime Lloret, 2013. "Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment," Energies, MDPI, vol. 6(9), pages 1-19, August.
- Guzman, Ivan & Salazar, Ricardo, 2017. "Estimación de la Elasticidad-Precio de Corto Plazo de la Demanda de Electricidad en República Dominicana [An Estimation of the Short-Run Price Elasticity of Electricity Demand in the Dominican Repu," MPRA Paper 92083, University Library of Munich, Germany.
- José-Fernán Martínez & Jesús Rodríguez-Molina & Pedro Castillejo & Rubén De Diego, 2013. "Middleware Architectures for the Smart Grid: Survey and Challenges in the Foreseeable Future," Energies, MDPI, vol. 6(7), pages 1-29, July.
- Tao Hong & Katarzyna Maciejowska & Jakub Nowotarski & Rafal Weron, 2014. "Probabilistic load forecasting via Quantile Regression Averaging of independent expert forecasts," HSC Research Reports HSC/14/10, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008.
"Monitoring Processes with Changing Variances,"
Monash Econometrics and Business Statistics Working Papers
4/08, Monash University, Department of Econometrics and Business Statistics.
- Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
- J. Keith Ord, 2008. "Monitoring Processes with Changing Variances," Working Papers 2008-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
Cited by:
- Chen, Yikai & Corr, David J. & Durango-Cohen, Pablo L., 2014. "Analysis of common-cause and special-cause variation in the deterioration of transportation infrastructure: A field application of statistical process control for structural health monitoring," Transportation Research Part B: Methodological, Elsevier, vol. 59(C), pages 96-116.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
Cited by:
- Carl Bonham & Peter Fuleky & James Jones & Ashley Hirashima, 2015.
"Nowcasting Tourism Industry Performance Using High Frequency Covariates,"
Working Papers
2015-13R, University of Hawaii Economic Research Organization, University of Hawaii at Manoa, revised Jul 2016.
- Ashley Hirashima & James Jones & Carl S. Bonham & Peter Fuleky, 2016. "Nowcasting Tourism Industry Performance Using High Frequency Covariates," Working Papers 201611, University of Hawaii at Manoa, Department of Economics.
- Carl Bonham & Peter Fuleky & James Jones & Ashley Hirashima, 2015. "Nowcasting Tourism Industry Performance Using High Frequency Covariates," Working Papers 2015-3, University of Hawaii Economic Research Organization, University of Hawaii at Manoa.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Villegas, Marco A. & Pedregal, Diego J., 2019. "Automatic selection of unobserved components models for supply chain forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 157-169.
- George Athanasopoulos & Rob J Hyndman, 2011.
"The value of feedback in forecasting competitions,"
Monash Econometrics and Business Statistics Working Papers
3/11, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849, July.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Anyu Liu & Laura Vici & Vicente Ramos & Sauveur Giannoni & Adam Blake, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Post-Print hal-04653783, HAL.
- F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
- Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
- Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011.
"Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
- Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting","
IREA Working Papers
201701, University of Barcelona, Research Institute of Applied Economics, revised Jan 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "“Regional tourism demand forecasting with machine learning models: Gaussian process regression vs. neural network models in a multiple-input multiple-output setting”," AQR Working Papers 201701, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2017.
- Lourenço, Nuno & Gouveia, Carlos Melo & Rua, António, 2021. "Forecasting tourism with targeted predictors in a data-rich environment," Economic Modelling, Elsevier, vol. 96(C), pages 445-454.
- Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Salim Jibrin Danbatta & Asaf Varol, 2022. "ANN–polynomial–Fourier series modeling and Monte Carlo forecasting of tourism data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 920-932, August.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Is there a Golden Rule?," Journal of Business Research, Elsevier, vol. 68(8), pages 1742-1745.
- Musara Chipumuro & Delson Chikobvu & Tendai Makoni, 2024. "Statistical Analysis of Overseas Tourist Arrivals to South Africa in Assessing the Impact of COVID-19 on Sustainable Development," Sustainability, MDPI, vol. 16(13), pages 1-17, July.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
- Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- Xu, Shilin & Liu, Yang & Jin, Chun, 2023. "Forecasting daily tourism demand with multiple factors," Annals of Tourism Research, Elsevier, vol. 103(C).
- Havranek, Tomas & Zeynalov, Ayaz, 2018. "Forecasting Tourist Arrivals with Google Trends and Mixed Frequency Data," EconStor Preprints 187420, ZBW - Leibniz Information Centre for Economics.
- Havranek, Tomas & Zeynalov, Ayaz, 2018.
"Forecasting Tourist Arrivals: Google Trends Meets Mixed Frequency Data,"
MPRA Paper
90205, University Library of Munich, Germany.
- Tomas Havranek & Ayaz Zeynalov, 2021. "Forecasting tourist arrivals: Google Trends meets mixed-frequency data," Tourism Economics, , vol. 27(1), pages 129-148, February.
- Liu, Anyu & Vici, Laura & Ramos, Vicente & Giannoni, Sauveur & Blake, Adam, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Annals of Tourism Research, Elsevier, vol. 88(C).
- Tao Hong & Pierre Pinson & Shu Fan, 2013.
"Global Energy Forecasting Competition 2012,"
HSC Research Reports
HSC/13/16, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.
- Liu, Ying & Wen, Long & Liu, Han & Song, Haiyan, 2024. "Predicting tourism recovery from COVID-19: A time-varying perspective," Economic Modelling, Elsevier, vol. 135(C).
- Liu, Yuan-Yuan & Tseng, Fang-Mei & Tseng, Yi-Heng, 2018. "Big Data analytics for forecasting tourism destination arrivals with the applied Vector Autoregression model," Technological Forecasting and Social Change, Elsevier, vol. 130(C), pages 123-134.
- Andrea Saayman & Jacques de Klerk, 2019. "Forecasting tourist arrivals using multivariate singular spectrum analysis," Tourism Economics, , vol. 25(3), pages 330-354, May.
- Zeynalov, Ayaz, 2014. "Nowcasting Tourist Arrivals to Prague: Google Econometrics," MPRA Paper 60945, University Library of Munich, Germany.
- Zeynalov, Ayaz, 2017. "Forecasting Tourist Arrivals in Prague: Google Econometrics," MPRA Paper 83268, University Library of Munich, Germany.
- Stephen Snudden, 2024. "Don’t Ruin the Surprise: Temporal Aggregation Bias in Structural Innovations," LCERPA Working Papers jc0149, Laurier Centre for Economic Research and Policy Analysis, revised Nov 2024.
- Teelucksingh, Sonja S. & Watson, Patrick K., 2013. "Linking tourism flows and biological biodiversity in Small Island Developing States (SIDS): evidence from panel data," Environment and Development Economics, Cambridge University Press, vol. 18(4), pages 392-404, August.
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
- Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
- Beatriz Plaza & Pilar González-Casimiro & Paz Moral-Zuazo & Courtney Waldron, 2015. "Culture-led city brands as economic engines: theory and empirics," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(1), pages 179-196, January.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
- Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
- Reinhard Ellwanger, Stephen Snudden, Lenin Arango-Castillo, 2023. "Seize the Last Day: Period-End-Point Sampling for Forecasts of Temporally Aggregated Data," LCERPA Working Papers bm0142, Laurier Centre for Economic Research and Policy Analysis.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- António Rua & Carlos Melo Gouveia & Nuno Lourenço, 2020. "Forecasting tourism with targeted predictors in a data-rich environment," Working Papers w202005, Banco de Portugal, Economics and Research Department.
- K. K. Furmanov & Yu. V. Turovets, 2024. "Assessing the Impact of External Shocks on the Development of the Manufacturing Industry," Studies on Russian Economic Development, Springer, vol. 35(5), pages 697-706, October.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Martin McCarthy, Stephen Snudden, 2024. "Forecasts of Period-Average Exchange Rates: New Insights from Real-Time Daily Data," LCERPA Working Papers jc0148, Laurier Centre for Economic Research and Policy Analysis, revised Oct 2024.
- Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
- Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
- Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).
- Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011.
"Forecasting tourist arrivals using time-varying parameter structural time series models,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
- Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
- Elisa Jorge-González & Enrique González-Dávila & Raquel MartÃn-Rivero & Domingo Lorenzo-DÃaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Tanaka, Kiyoyasu, 2016. "Forecasting inbound tourists in Cambodia," IDE Discussion Papers 601, Institute of Developing Economies, Japan External Trade Organization(JETRO).
- Jian-Wu Bi & Tian-Yu Han & Hui Li, 2022. "International tourism demand forecasting with machine learning models: The power of the number of lagged inputs," Tourism Economics, , vol. 28(3), pages 621-645, May.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
- Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
- Bahman Rostami‐Tabar & M. Zied Babai & Aris Syntetos & Yves Ducq, 2013. "Demand forecasting by temporal aggregation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 60(6), pages 479-498, September.
- Bi, Jian-Wu & Li, Hui & Fan, Zhi-Ping, 2021. "Tourism demand forecasting with time series imaging: A deep learning model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Rostami-Tabar, Bahman & Babai, M. Zied & Ali, Mohammad & Boylan, John E., 2019. "The impact of temporal aggregation on supply chains with ARMA(1,1) demand processes," European Journal of Operational Research, Elsevier, vol. 273(3), pages 920-932.
- Xie, Gang & Qian, Yatong & Wang, Shouyang, 2020. "A decomposition-ensemble approach for tourism forecasting," Annals of Tourism Research, Elsevier, vol. 81(C).
- Lengyel, Attila, 2016. "Tourism, meditation, sustainability," APSTRACT: Applied Studies in Agribusiness and Commerce, AGRIMBA, vol. 10(1), pages 1-11, March.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Davide Provenzano & Serena Volo, 2022. "Tourism recovery amid COVID-19: The case of Lombardy, Italy," Tourism Economics, , vol. 28(1), pages 110-130, February.
- Oscar Claveria & Enric Monte & Salvador Torra, 2016. "Modelling cross-dependencies between Spain’s regional tourism markets with an extension of the Gaussian process regression model," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 7(3), pages 341-357, August.
- Cláudia Duarte & Sónia Cabral, . "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Athanasopoulos, George & Deng, Minfeng & Li, Gang & Song, Haiyan, 2014. "Modelling substitution between domestic and outbound tourism in Australia: A system-of-equations approach," Tourism Management, Elsevier, vol. 45(C), pages 159-170.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Shaolong Suna & Dan Bi & Ju-e Guo & Shouyang Wang, 2020. "Seasonal and Trend Forecasting of Tourist Arrivals: An Adaptive Multiscale Ensemble Learning Approach," Papers 2002.08021, arXiv.org, revised Mar 2020.
- Keerti Manisha & Inderpal Singh, 2024. "Forecasting of Indian and foreign tourist arrivals to Himachal Pradesh using Decomposition, Box–Jenkins, and Holt–Winters exponential smoothing methods," Asia-Pacific Journal of Regional Science, Springer, vol. 8(3), pages 879-909, September.
- Richard T.R. Qiu & Doris Chenguang Wu & Vincent Dropsy & Sylvain Petit & Stephen Pratt & Yasuo Ohe, 2021. "TOURIST ARRIVAL FORECAST AMID COVID-19: A perspective from the Asia and Pacific team," Post-Print hal-03138092, HAL.
- Rob J. Hyndman & Han Lin Shang, 2008.
"Rainbow plots, Bagplots and Boxplots for Functional Data,"
Monash Econometrics and Business Statistics Working Papers
9/08, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
- Weiyi Xie & Sebastian Kurtek & Karthik Bharath & Ying Sun, 2017. "A Geometric Approach to Visualization of Variability in Functional Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 979-993, July.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Epifanio, Irene & Ventura-Campos, Noelia, 2011. "Functional data analysis in shape analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2758-2773, September.
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Francesca Ieva & Anna Maria Paganoni, 2020. "Component-wise outlier detection methods for robustifying multivariate functional samples," Statistical Papers, Springer, vol. 61(2), pages 595-614, April.
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang, 2011.
"A survey of functional principal component analysis,"
Monash Econometrics and Business Statistics Working Papers
6/11, Monash University, Department of Econometrics and Business Statistics.
- Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Ana Arribas-Gil & Juan Romo, 2015. "Discussion of “Multivariate functional outlier detection”," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 263-267, July.
- Zafar, Raja Fawad & Qayyum, Abdul & Ghouri, Saghir Pervaiz, 2015. "Forecasting Inflation using Functional Time Series Analysis," MPRA Paper 67208, University Library of Munich, Germany.
- Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
- Yuan Yan & Marc Genton, 2015. "Discussion of “Multivariate functional outlier detection” by Mia Hubert, Peter Rousseeuw and Pieter Segaert," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 245-251, July.
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Muhammad Akram & Rob J Hyndman & J. Keith Ord, 2008.
"Exponential smoothing and non-negative data,"
Working Papers
2008-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
Cited by:
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Ralph D. Snyder & J. Keith Ord & Adrian Beaumont, 2010.
"Forecasting the Intermittent Demand for Slow-Moving Items,"
Working Papers
2010-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Mar 2011.
- Keith Ord & Ralph Snyder & Adrian Beaumont, 2010. "Forecasting the Intermittent Demand for Slow-Moving Items," Monash Econometrics and Business Statistics Working Papers 12/10, Monash University, Department of Econometrics and Business Statistics.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Svetunkov, Ivan & Boylan, John Edward, 2017. "Multiplicative state-space models for intermittent time series," MPRA Paper 82487, University Library of Munich, Germany.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007.
"Hierarchical forecasts for Australian domestic tourism,"
Monash Econometrics and Business Statistics Working Papers
12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
Cited by:
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Jose Angelo Divino & Michael McAleer, 2009. "Modelling the Growth and Volatility in Daily International Mass Tourism to Peru," Documentos de Trabajo del ICAE 2009-15, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
- Deng, Minfeng & Athanasopoulos, George, 2011.
"Modelling Australian domestic and international inbound travel: a spatial–temporal approach,"
Tourism Management, Elsevier, vol. 32(5), pages 1075-1084.
- Minfeng Deng & George Athanasopoulos, 2009. "Modelling Australian Domestic and International Inbound Travel: a Spatial-Temporal Approach," Monash Econometrics and Business Statistics Working Papers 10/09, Monash University, Department of Econometrics and Business Statistics.
- Eden Xiaoying Jiao & Jason Li Chen, 2019. "Tourism forecasting: A review of methodological developments over the last decade," Tourism Economics, , vol. 25(3), pages 469-492, May.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Buda Baji'c & Sr{dj}an Mili'cevi'c & Aleksandar Anti'c & Slobodan Markovi'c & Nemanja Tomi'c, 2024. "Neural Network Modeling for Forecasting Tourism Demand in Stopi\'{c}a Cave: A Serbian Cave Tourism Study," Papers 2404.04974, arXiv.org.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Katherine Tierney, 2022. "The Future of Assisted Reproductive Technology Live Births in the United States," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(5), pages 2289-2309, October.
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Divino, Jose Angelo & McAleer, Michael, 2010.
"Modelling and forecasting daily international mass tourism to Peru,"
Tourism Management, Elsevier, vol. 31(6), pages 846-854.
- Jose Angelo Divino & Michael McAleer, 2009. "Modelling and Forecasting Daily International Mass Tourism to Peru," CIRJE F-Series CIRJE-F-651, CIRJE, Faculty of Economics, University of Tokyo.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Monash Econometrics and Business Statistics Working Papers
17/14, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
- Redouane Benabdallah Benarmas & Kadda Beghdad Bey, 2024. "A deep learning hierarchical approach to road traffic forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1294-1307, August.
- Giacomo Sbrana & Andrea Silvestrini, 2013.
"Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
Temi di discussione (Economic working papers)
929, Bank of Italy, Economic Research and International Relations Area.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Mahsa Ashouri & Rob J Hyndman & Galit Shmueli, 2019. "Fast Forecast Reconciliation Using Linear Models," Monash Econometrics and Business Statistics Working Papers 29/19, Monash University, Department of Econometrics and Business Statistics.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Senra, Eva, 2017. "22 Years of inflation assessment and forecasting experience at the bulletin of EU & US inflation and macroeconomic analysis," DES - Working Papers. Statistics and Econometrics. WS 24678, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Song, Haiyan & Qiu, Richard T.R. & Park, Jinah, 2019. "A review of research on tourism demand forecasting," Annals of Tourism Research, Elsevier, vol. 75(C), pages 338-362.
- Jose Angelo Divino & Michael McAleer, 2009.
"Modelling Sustainable International Tourism Demand to the Brazilian Amazon,"
Documentos de Trabajo del ICAE
2009-13, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Divino, J.A. & McAleer, M.J., 2008. "Modelling sustainable international tourism demand to the Brazilian Amazon," Econometric Institute Research Papers EI 2008-22, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Jose Angelo Divino & Michael McAleer, 2009. "Modelling Sustainable International Tourism Demand to the Brazilian Amazon," CIRJE F-Series CIRJE-F-650, CIRJE, Faculty of Economics, University of Tokyo.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Jian-Wu Bi & Tian-Yu Han & Yanbo Yao, 2024. "Collaborative forecasting of tourism demand for multiple tourist attractions with spatial dependence: A combined deep learning model," Tourism Economics, , vol. 30(2), pages 361-388, March.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Kadir, Kadir & Prasetyo, Octavia Rizky, 2023. "Can Paddy Growing Phase Produce an Accurate Forecast of Paddy Harvested Area in Indonesia? Analysis of the Area Sampling Frame Results," MPRA Paper 119893, University Library of Munich, Germany, revised 15 Sep 2023.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Puwasala Gamakumara & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman, 2018. "Probabilisitic forecasts in hierarchical time series," Monash Econometrics and Business Statistics Working Papers 11/18, Monash University, Department of Econometrics and Business Statistics.
- Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Ord, J. Keith, 2022. "The uncertainty track: Machine learning, statistical modeling, synthesis," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1526-1530.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.
- da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
- Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
Cited by:
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Pablo Montero-Manso & Rob J Hyndman, 2020.
"Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality,"
Monash Econometrics and Business Statistics Working Papers
45/20, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"Investor Happiness and Predictability of the Realized Volatility of Oil Price,"
Working Papers
202009, University of Pretoria, Department of Economics.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Investor Happiness and Predictability of the Realized Volatility of Oil Price," Sustainability, MDPI, vol. 12(10), pages 1-11, May.
- Arthur Novaes de Amorim & Rob Deardon & Vineet Saini, 2021. "A stacked ensemble method for forecasting influenza-like illness visit volumes at emergency departments," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-15, March.
- Fantazzini, Dean, 2024.
"Adaptive Conformal Inference for computing Market Risk Measures: an Analysis with Four Thousands Crypto-Assets,"
MPRA Paper
121214, University Library of Munich, Germany.
- Dean Fantazzini, 2024. "Adaptive Conformal Inference for Computing Market Risk Measures: An Analysis with Four Thousand Crypto-Assets," JRFM, MDPI, vol. 17(6), pages 1-44, June.
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019.
"Forecasting Realized Oil-Price Volatility: The Role of Financial Stress and Asymmetric Loss,"
Working Papers
201903, University of Pretoria, Department of Economics.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
- Tim Janke & Florian Steinke, 2019. "Forecasting the Price Distribution of Continuous Intraday Electricity Trading," Energies, MDPI, vol. 12(22), pages 1-14, November.
- Nobre, André M. & Severiano, Carlos A. & Karthik, Shravan & Kubis, Marek & Zhao, Lu & Martins, Fernando R. & Pereira, Enio B. & Rüther, Ricardo & Reindl, Thomas, 2016. "PV power conversion and short-term forecasting in a tropical, densely-built environment in Singapore," Renewable Energy, Elsevier, vol. 94(C), pages 496-509.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
- Xu Tan & Lining Xing & Zhaoquan Cai & Gaige Wang, 2020. "Analysis of production cycle-time distribution with a big-data approach," Journal of Intelligent Manufacturing, Springer, vol. 31(8), pages 1889-1897, December.
- Sel, Burakhan & Minner, Stefan, 2022. "A hedging policy for seaborne forward freight markets based on probabilistic forecasts," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
- Francesco Lisi & Ismail Shah, 2024. "Joint Component Estimation for Electricity Price Forecasting Using Functional Models," Energies, MDPI, vol. 17(14), pages 1-18, July.
- Amara-Ouali, Yvenn & Fasiolo, Matteo & Goude, Yannig & Yan, Hui, 2023. "Daily peak electrical load forecasting with a multi-resolution approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1272-1286.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Croonenbroeck, Carsten & Dahl, Christian Møller, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Energy, Elsevier, vol. 73(C), pages 221-232.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
- David Zendle & Catherine Flick & Elena Gordon-Petrovskaya & Nick Ballou & Leon Y. Xiao & Anders Drachen, 2023. "No evidence that Chinese playtime mandates reduced heavy gaming in one segment of the video games industry," Nature Human Behaviour, Nature, vol. 7(10), pages 1753-1766, October.
- Arlindo Ananias Pereira da Silva & Adriano Roberto Franquelino & Paulo Eduardo Teodoro & Rafael Montanari & Glaucia Amorim Faria & Cristóvão Henrique Ribeiro da Silva & Dayane Bortoloto da Silva & Wal, 2022. "The fewer, the better fare: Can the loss of vegetation in the Cerrado drive the increase in dengue fever cases infection?," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-16, January.
- Matheus Henrique Dal Molin Ribeiro & Stéfano Frizzo Stefenon & José Donizetti de Lima & Ademir Nied & Viviana Cocco Mariani & Leandro dos Santos Coelho, 2020. "Electricity Price Forecasting Based on Self-Adaptive Decomposition and Heterogeneous Ensemble Learning," Energies, MDPI, vol. 13(19), pages 1-22, October.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Schaer, Oliver & Kourentzes, Nikolaos & Fildes, Robert, 2019. "Demand forecasting with user-generated online information," International Journal of Forecasting, Elsevier, vol. 35(1), pages 197-212.
- Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
- Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Hassani, Hossein & Silva, Emmanuel Sirimal & Antonakakis, Nikolaos & Filis, George & Gupta, Rangan, 2017. "Forecasting accuracy evaluation of tourist arrivals," Annals of Tourism Research, Elsevier, vol. 63(C), pages 112-127.
- Liu, Xiaomei & Li, Sihan & Gao, Meina, 2024. "A discrete time-varying grey Fourier model with fractional order terms for electricity consumption forecast," Energy, Elsevier, vol. 296(C).
- Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
- Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
- Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- A. Fotheringham & Ricardo Crespo & Jing Yao, 2015. "Exploring, modelling and predicting spatiotemporal variations in house prices," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 54(2), pages 417-436, March.
- José Manuel Oliveira & Patrícia Ramos, 2024. "Evaluating the Effectiveness of Time Series Transformers for Demand Forecasting in Retail," Mathematics, MDPI, vol. 12(17), pages 1-28, August.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Jinhyun Hong & David McArthur & Varun Raturi, 2020. "Did Safe Cycling Infrastructure Still Matter During a COVID-19 Lockdown?," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Marco Ferretti & Ugo Fiore & Francesca Perla & Marcello Risitano & Salvatore Scognamiglio, 2022. "Deep Learning Forecasting for Supporting Terminal Operators in Port Business Development," Future Internet, MDPI, vol. 14(8), pages 1-19, July.
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- Eliud Silva & Corey Sparks, 2021. "Hierarchical forecasts of Diabetes mortality in Mexico by marginalization and sex to establish resource allocation," EconoQuantum, Revista de Economia y Finanzas, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 18(2), pages 82-98, Julio-Dic.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- González Grandón, T. & Schwenzer, J. & Steens, T. & Breuing, J., 2024. "Electricity demand forecasting with hybrid classical statistical and machine learning algorithms: Case study of Ukraine," Applied Energy, Elsevier, vol. 355(C).
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Mathieu Pichault & Claire Vincent & Grant Skidmore & Jason Monty, 2021. "Short-Term Wind Power Forecasting at the Wind Farm Scale Using Long-Range Doppler LiDAR," Energies, MDPI, vol. 14(9), pages 1-21, May.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015.
"Forecasting the price of gold,"
Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2014. "Forecasting the Price of Gold," Working Papers 201428, University of Pretoria, Department of Economics.
- Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720, January.
- Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Phinikarides, Alexander & Kindyni, Nitsa & Makrides, George & Georghiou, George E., 2014. "Review of photovoltaic degradation rate methodologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 143-152.
- Ma, Shaohui & Fildes, Robert, 2021. "Retail sales forecasting with meta-learning," European Journal of Operational Research, Elsevier, vol. 288(1), pages 111-128.
- Villegas, Marco A. & Pedregal, Diego J., 2019. "Automatic selection of unobserved components models for supply chain forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 157-169.
- Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Frank Davenport & Chris Funk, 2015. "Using time series structural characteristics to analyze grain prices in food insecure countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 1055-1070, October.
- Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- George Athanasopoulos & Rob J Hyndman, 2011.
"The value of feedback in forecasting competitions,"
Monash Econometrics and Business Statistics Working Papers
3/11, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849, July.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849.
- Rodrigo Melo Gois & Marco Antonio Jorge, 2017. "Investigating the Okun’s Law in Brazil and three of its Metropolitan Areas," Revista de Economia Mackenzie (REM), Mackenzie Presbyterian University, Social and Applied Sciences Center, vol. 14(1), pages 24-58, January-J.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2022.
"Risk aversion and the predictability of crude oil market volatility: A forecasting experiment with random forests,"
Journal of the Operational Research Society, Taylor & Francis Journals, vol. 73(8), pages 1755-1767, August.
- Riza Demirer & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019. "Risk Aversion and the Predictability of Crude Oil Market Volatility: A Forecasting Experiment with Random Forests," Working Papers 201972, University of Pretoria, Department of Economics.
- Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
- Barnes, Stuart J., 2021. "Stuck in the past or living in the present? Temporal focus and the spread of COVID-19," Social Science & Medicine, Elsevier, vol. 280(C).
- Rangan Gupta & Joshua Nielsen & Christian Pierdzioch, 2023.
"Stock Market Bubbles and the Realized Volatility of Oil Price Returns,"
Working Papers
202325, University of Pretoria, Department of Economics.
- Gupta, Rangan & Nielsen, Joshua & Pierdzioch, Christian, 2024. "Stock market bubbles and the realized volatility of oil price returns," Energy Economics, Elsevier, vol. 132(C).
- Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
- Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Bayón, L. & Grau, J.M. & Ruiz, M.M. & Suárez, P.M., 2016. "A comparative economic study of two configurations of hydro-wind power plants," Energy, Elsevier, vol. 112(C), pages 8-16.
- João Sousa Andrade & António Portugal Duarte, 2011.
"The Portuguese Public Finances and the Spanish Horse,"
GEMF Working Papers
2011-21, GEMF, Faculty of Economics, University of Coimbra.
- António Portugal Duarte & João Sousa Andrade, 2012. "The Portuguese Public Finances and the Spanish Horse," EcoMod2012 3718, EcoMod.
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2019.
"Forecasting Realized Gold Volatility: Is there a Role of Geopolitical Risks?,"
Working Papers
201943, University of Pretoria, Department of Economics.
- Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized gold volatility: Is there a role of geopolitical risks?," Finance Research Letters, Elsevier, vol. 35(C).
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Sonnleitner, Benedikt & Stapf, Jelena & Wulff, Kai, 2024. "Benchmarking short term forecasts of regional banknote lodgements and withdrawals," Discussion Papers 39/2024, Deutsche Bundesbank.
- Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Hyung-Jin Chung & Dong-Il Chun & Eun Myeong Kang & Keonwoo Kim & Jinyoung Lee & Ye Jin Jeon & Jaeho Cho & Sungho Won & Young Yi, 2022. "Trend and Seasonality of Diabetic Foot Amputation in South Korea: A Population-Based Nationwide Study," IJERPH, MDPI, vol. 19(7), pages 1-11, March.
- Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
- Ghufran Ahmad & Furqan Ahmed & Muhammad Suhail Rizwan & Javed Muhammad & Syeda Hira Fatima & Aamer Ikram & Hajo Zeeb, 2021. "Evaluating data-driven methods for short-term forecasts of cumulative SARS-CoV2 cases," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-21, May.
- Gavin Boyd & Dain Na & Zhong Li & Spencer Snowling & Qianqian Zhang & Pengxiao Zhou, 2019. "Influent Forecasting for Wastewater Treatment Plants in North America," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
- Giacomo Di Foggia & Massimo Beccarello & Bakary Jammeh, 2024. "A Global Perspective on Renewable Energy Implementation: Commitment Requires Action," Energies, MDPI, vol. 17(20), pages 1-14, October.
- Ana Belen Vicente & Pablo Juan & Sergi Meseguer & Laura Serra & Sergio Trilles, 2019. "Air Quality Trend of PM10. Statistical Models for Assessing the Air Quality Impact of Environmental Policies," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
- G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
- Dittmer, Celina & Krümpel, Johannes & Lemmer, Andreas, 2021. "Power demand forecasting for demand-driven energy production with biogas plants," Renewable Energy, Elsevier, vol. 163(C), pages 1871-1877.
- Marta Matyjaszek & Gregorio Fidalgo Valverde & Alicja Krzemień & Krzysztof Wodarski & Pedro Riesgo Fernández, 2020. "Optimizing Predictor Variables in Artificial Neural Networks When Forecasting Raw Material Prices for Energy Production," Energies, MDPI, vol. 13(8), pages 1-15, April.
- Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2023.
"Multiscale Agricultural Commodities Forecasting Using Wavelet-SARIMA Process,"
Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 21(1), pages 1-40, March.
- Mamadou-Diéne Diop & Jules Sadefo Kamdem, 2022. "Multiscale Agricultural Commodities Forecasting using Wavelet-SARIMA Process," Post-Print hal-03416349, HAL.
- Mendoza, Daniel E. & Ochoa-Sánchez, Ana & Samaniego, Esteban P., 2022. "Forecasting of a complex phenomenon using stochastic data-based techniques under non-conventional schemes: The SARS-CoV-2 virus spread case," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
- Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
- Pietro Giorgio Lovaglio & Mario Mezzanzanica & Emilio Colombo, 2020. "Comparing time series characteristics of official and web job vacancy data," Quality & Quantity: International Journal of Methodology, Springer, vol. 54(1), pages 85-98, February.
- Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
- Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
- Jaworski Stanisław & Zielińska-Kolasińska Zofia, 2021. "Towards a target employment rate within age and gender groups," Statistics in Transition New Series, Statistics Poland, vol. 22(4), pages 213-225, December.
- F. Antolini & L. Grassini, 2019. "Foreign arrivals nowcasting in Italy with Google Trends data," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2385-2401, September.
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Akın, Melda, 2015. "A novel approach to model selection in tourism demand modeling," Tourism Management, Elsevier, vol. 48(C), pages 64-72.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
- Johannes Buhl & Christa Liedtke & Sebastian Schuster & Katrin Bienge, 2020. "Predicting the Material Footprint in Germany between 2015 and 2020 via Seasonally Decomposed Autoregressive and Exponential Smoothing Algorithms," Resources, MDPI, vol. 9(11), pages 1-17, October.
- Jokubaitis, Saulius & Celov, Dmitrij & Leipus, Remigijus, 2021. "Sparse structures with LASSO through principal components: Forecasting GDP components in the short-run," International Journal of Forecasting, Elsevier, vol. 37(2), pages 759-776.
- Miao, Hong & Ramchander, Sanjay & Wang, Tianyang & Yang, Dongxiao, 2017. "Influential factors in crude oil price forecasting," Energy Economics, Elsevier, vol. 68(C), pages 77-88.
- Lee, Juyong & Cho, Youngsang, 2022. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Energy, Elsevier, vol. 239(PD).
- Rosanna C. Barnard & Nicholas G. Davies & Mark Jit & W. John Edmunds, 2022. "Modelling the medium-term dynamics of SARS-CoV-2 transmission in England in the Omicron era," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018.
"Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks,"
Risks, MDPI, vol. 6(1), pages 1-20, March.
- Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Post-Print hal-02055155, HAL.
- Dmytro Krukovets, 2024. "Exploring an LSTM-SARIMA routine for core inflation forecasting," Technology audit and production reserves, PC TECHNOLOGY CENTER, vol. 2(2(76)), pages 6-12, April.
- Tom Wilson & Huw Brokensha & Francisco Rowe & Ludi Simpson, 2018. "Insights from the Evaluation of Past Local Area Population Forecasts," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 37(1), pages 137-155, February.
- François Freddy Ateba & Issaka Sagara & Nafomon Sogoba & Mahamoudou Touré & Drissa Konaté & Sory Ibrahim Diawara & Séidina Aboubacar Samba Diakité & Ayouba Diarra & Mamadou D. Coulibaly & Mathias Dolo, 2020. "Spatio-Temporal Dynamic of Malaria Incidence: A Comparison of Two Ecological Zones in Mali," IJERPH, MDPI, vol. 17(13), pages 1-21, June.
- Schalk Burger & Searle Silverman & Gary van Vuuren, 2018. "Deriving Correlation Matrices for Missing Financial Time-Series Data," International Journal of Economics and Finance, Canadian Center of Science and Education, vol. 10(10), pages 105-105, October.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Wang, Xiufeng & Jiang, Yiyun & Gu, Manyi, 2024. "Exploring the interplay: Crude oil futures, economic shocks, and China's resources," Resources Policy, Elsevier, vol. 91(C).
- Ingel, Anti & Shahroudi, Novin & Kängsepp, Markus & Tättar, Andre & Komisarenko, Viacheslav & Kull, Meelis, 2020. "Correlated daily time series and forecasting in the M4 competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 121-128.
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Murat Güngör, 2023. "Time Series Forecasting of the Covid-19 Pandemic: A Critical Assessment in Retrospect," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 11(1), pages 85-100, July.
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Acuff, Christopher, 2021. "An Empirical Examination of Representational Equity in Consolidated Governments, 1965-2002," SocArXiv bupfs, Center for Open Science.
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Steffen Lange & Peter Putz & Thomas Kopp, 2016.
"Do Mature Economies Grow Exponentially?,"
Papers
1601.04028, arXiv.org.
- Lange, Steffen & Pütz, Peter & Kopp, Thomas, 2018. "Do Mature Economies Grow Exponentially?," Ecological Economics, Elsevier, vol. 147(C), pages 123-133.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Svitlana Galeshchuk, 2017. "Technological bias at the exchange rate market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 80-86, April.
- Pierre Masselot & Fateh Chebana & Taha B. M. J. Ouarda & Diane Bélanger & Pierre Gosselin, 2022. "Data-Enhancement Strategies in Weather-Related Health Studies," IJERPH, MDPI, vol. 19(2), pages 1-13, January.
- Mariarosaria Coppola & Maria Russolillo & Rosaria Simone, 2019. "An Indexation Mechanism for Retirement Age: Analysis of the Gender Gap," Risks, MDPI, vol. 7(1), pages 1-13, February.
- Matteo Bonato & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020.
"A Note on Investor Happiness and the Predictability of Realized Volatility of Gold,"
Working Papers
202004, University of Pretoria, Department of Economics.
- Bonato, Matteo & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2021. "A note on investor happiness and the predictability of realized volatility of gold," Finance Research Letters, Elsevier, vol. 39(C).
- McWilliams, William N. & Isengildina Massa, Olga & Stewart, Shamar L., 2024. "Annual Food Price Inflation Forecasting: A Macroeconomic Random Forest Approach," 2024 Annual Meeting, July 28-30, New Orleans, LA 343923, Agricultural and Applied Economics Association.
- Amna Hafeez & Muhsan Ehsan & Ayesha Abbas & Munawar Shah & Rasim Shahzad, 2022. "Machine learning-based thermal anomalies detection from MODIS LST associated with the Mw 7.7 Awaran, Pakistan earthquake," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 2097-2115, March.
- Bagnato, Luca & De Capitani, Lucio & Mazza, Angelo & Punzo, Antonio, 2015. "SDD: An R Package for Serial Dependence Diagrams," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(c02).
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Stöver, Britta, 2019. "Estimating the transition time from school to university using a stochastic mortality model," Hannover Economic Papers (HEP) dp-657, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Christos Katris & Manolis G. Kavussanos, 2021. "Time series forecasting methods for the Baltic dry index," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1540-1565, December.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Is there a Golden Rule?," Journal of Business Research, Elsevier, vol. 68(8), pages 1742-1745.
- Peña, Daniel & Smucler, Ezequiel & Yohai, Victor J., 2021. "Sparse estimation of dynamic principal components for forecasting high-dimensional time series," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1498-1508.
- David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
- Mohsin, Muhammad & Jamaani, Fouad, 2023. "Green finance and the socio-politico-economic factors’ impact on the future oil prices: Evidence from machine learning," Resources Policy, Elsevier, vol. 85(PA).
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017.
"Visualising forecasting algorithm performance using time series instance spaces,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016. "Visualising forecasting Algorithm Performance using Time Series Instance Spaces," Monash Econometrics and Business Statistics Working Papers 10/16, Monash University, Department of Econometrics and Business Statistics.
- Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
- Sayar Karmakar & Marek Chudý & Wei Biao Wu, 2022. "Long‐term prediction intervals with many covariates," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(4), pages 587-609, July.
- Nina Vujanovic & Bruno Casella & Richard Bolwijn, . "Forecasting global FDI: a panel data approach," UNCTAD Transnational Corporations Journal, United Nations Conference on Trade and Development.
- Andrea Nigri & Susanna Levantesi & Mario Marino & Salvatore Scognamiglio & Francesca Perla, 2019. "A Deep Learning Integrated Lee–Carter Model," Risks, MDPI, vol. 7(1), pages 1-16, March.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
- Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Darius Kulikauskas, 2014. "Nonlinear Taylor rule for the European Central Bank," Economics Bulletin, AccessEcon, vol. 34(3), pages 1798-1804.
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
- Radhika Prosad Datta, 2023. "Leveraging Sample Entropy for Enhanced Volatility Measurement and Prediction in International Oil Price Returns," Papers 2312.12788, arXiv.org.
- Shahrin Islam & Armana Sabiha Huq & Sabah Hossain Iqra & Raas Sarker Tomal, 2023. "Impacts of COVID-19 Pandemic Lockdown on Road Safety in Bangladesh," Sustainability, MDPI, vol. 15(3), pages 1-22, February.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
- Zietz, Joachim & Traian, Anca, 2014. "When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 271-281.
- Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018.
"Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Sonali Das, 2015. "Predicting Global Temperature Anomaly: A Definitive Investigation Using an Ensemble of Twelve Competing Forecasting Models," Working Papers 201561, University of Pretoria, Department of Economics.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Charles Rahal, 2015. "Housing Market Forecasting with Factor Combinations," Discussion Papers 15-05, Department of Economics, University of Birmingham.
- M. Atikur Rahman Khan & D.S. Poskitt, 2014. "On The Theory and Practice of Singular Spectrum Analysis Forecasting," Monash Econometrics and Business Statistics Working Papers 3/14, Monash University, Department of Econometrics and Business Statistics.
- Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
- Töppel, Jannick & Tränkler, Timm, 2019. "Modeling energy efficiency insurances and energy performance contracts for a quantitative comparison of risk mitigation potential," Energy Economics, Elsevier, vol. 80(C), pages 842-859.
- Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Beatriz González-Pérez & Concepción Núñez & José L. Sánchez & Gabriel Valverde & José Manuel Velasco, 2021. "Expert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19," Mathematics, MDPI, vol. 9(13), pages 1-34, June.
- Tristan Launay & Anne Philippe & Sophie Lamarche, 2015. "Construction of an informative hierarchical prior for a small sample with the help of historical data and application to electricity load forecasting," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 361-385, June.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
- Andrés M. Alonso & Francisco J. Nogales & Carlos Ruiz, 2020. "A Single Scalable LSTM Model for Short-Term Forecasting of Massive Electricity Time Series," Energies, MDPI, vol. 13(20), pages 1-19, October.
- Fantazzini, Dean & Shangina, Tamara, 2019.
"The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades,"
Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 55, pages 5-31.
- Fantazzini, Dean & Shangina, Tamara, 2019. "The importance of being informed: forecasting market risk measures for the Russian RTS index future using online data and implied volatility over two decades," MPRA Paper 95992, University Library of Munich, Germany.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Bohdan M. Pavlyshenko, 2019. "Machine-Learning Models for Sales Time Series Forecasting," Data, MDPI, vol. 4(1), pages 1-11, January.
- William Roberts Clark & Vincent Arel-Bundock, 2013. "Independent but Not Indifferent: Partisan Bias in Monetary Policy at the Fed," Economics and Politics, Wiley Blackwell, vol. 25(1), pages 1-26, March.
- Sizhe Chen & Han Lin Shang & Yang Yang, 2025. "Is the age pension in Australia sustainable and fair? Evidence from forecasting the old-age dependency ratio using the Hamilton-Perry model," Journal of Population Research, Springer, vol. 42(1), pages 1-27, March.
- de la Fuente, Iván & Navarro, Eliseo & Serna, Gregorio, 2023. "Proposal for calculating regulatory capital requirements for reverse mortgages," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- Prol, Javier López & O, Sungmin, 2020. "Impact of COVID-19 Measures on Short-Term Electricity Consumption in the Most Affected EU Countries and USA States," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 23(10).
- Saeed, Naima & Nguyen, Su & Cullinane, Kevin & Gekara, Victor & Chhetri, Prem, 2023. "Forecasting container freight rates using the Prophet forecasting method," Transport Policy, Elsevier, vol. 133(C), pages 86-107.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
- Costa, Marcelo Azevedo & Ruiz-Cárdenas, Ramiro & Mineti, Leandro Brioschi & Prates, Marcos Oliveira, 2021. "Dynamic time scan forecasting for multi-step wind speed prediction," Renewable Energy, Elsevier, vol. 177(C), pages 584-595.
- Danilo Pinto Moreira de Souza & Eliane Da Silva Christo & Aryfrance Rocha Almeida, 2017. "Location of Faults in Power Transmission Lines Using the ARIMA Method," Energies, MDPI, vol. 10(10), pages 1-12, October.
- Fantazzini, Dean & Pushchelenko, Julia & Mironenkov, Alexey & Kurbatskii, Alexey, 2021.
"Forecasting internal migration in Russia using Google Trends: Evidence from Moscow and Saint Petersburg,"
MPRA Paper
110452, University Library of Munich, Germany.
- Dean Fantazzini & Julia Pushchelenko & Alexey Mironenkov & Alexey Kurbatskii, 2021. "Forecasting Internal Migration in Russia Using Google Trends: Evidence from Moscow and Saint Petersburg," Forecasting, MDPI, vol. 3(4), pages 1-30, October.
- Byers, J.W. & Popova, I. & Simkins, B.J., 2021. "Robust estimation of conditional risk measures using machine learning algorithm for commodity futures prices in the presence of outliers," Journal of Commodity Markets, Elsevier, vol. 24(C).
- Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
- Vaia I. Kontopoulou & Athanasios D. Panagopoulos & Ioannis Kakkos & George K. Matsopoulos, 2023. "A Review of ARIMA vs. Machine Learning Approaches for Time Series Forecasting in Data Driven Networks," Future Internet, MDPI, vol. 15(8), pages 1-31, July.
- Diego J Pedregal, 2019. "Time series analysis and forecasting with ECOTOOL," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
- Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
- Adam J. Check & Ming Chien Lo & Kwok Ping Tsang, 2023. "Are unit root tests useful for univariate time series forecasts with different orders of integration? A Monte Carlo study," Economics Bulletin, AccessEcon, vol. 43(1), pages 203-244.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
- Sinclair Davidson & Ashton de Silva, 2018. "Did Recent Tobacco Reforms Change the Cigarette Market?," Economic Papers, The Economic Society of Australia, vol. 37(1), pages 55-74, March.
- Divakaruni, Anantha & Zimmerman, Peter, 2023.
"The Lightning Network: Turning Bitcoin into money,"
Finance Research Letters, Elsevier, vol. 52(C).
- Anantha Divakaruni & Peter Zimmerman, 2022. "The Lightning Network: Turning Bitcoin into Money," Working Papers 22-19, Federal Reserve Bank of Cleveland.
- Itkonen, Juha & Juvonen, Petteri, 2017. "Nowcasting the Finnish economy with a large Bayesian vector autoregressive model," BoF Economics Review 6/2017, Bank of Finland.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Anete Brinke & Ludmila Fadejeva & Boriss Siliverstovs & Kārlis Vilerts, 2023. "Assessing the informational content of card transactions for nowcasting retail trade: Evidence for Latvia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(3), pages 566-577, April.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Magdalena Sycińska-Dziarnowska & Liliana Szyszka-Sommerfeld & Karolina Kłoda & Michele Simeone & Krzysztof Woźniak & Gianrico Spagnuolo, 2021. "Mental Health Interest and Its Prediction during the COVID-19 Pandemic Using Google Trends," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
- Iñaki Bildosola & Gaizka Garechana & Enara Zarrabeitia & Ernesto Cilleruelo, 2020. "Characterization of strategic emerging technologies: the case of big data," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 45-60, March.
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- John O’Trakoun, 2022. "Business forecasting during the pandemic," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 57(3), pages 95-110, July.
- Emil Kraft & Dogan Keles & Wolf Fichtner, 2020. "Modeling of frequency containment reserve prices with econometrics and artificial intelligence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1179-1197, December.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Monash Econometrics and Business Statistics Working Papers
17/14, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
- Noemi Nava & Tiziana Di Matteo & Tomaso Aste, 2018. "Financial Time Series Forecasting Using Empirical Mode Decomposition and Support Vector Regression," Risks, MDPI, vol. 6(1), pages 1-21, February.
- Marco Quatrosi, 2020. "Analysis of monthly CO2 emission trends for major EU Countries: a time series approach," SEEDS Working Papers 1520, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Nov 2020.
- Svitlana Galeshchuk & Sumitra Mukherjee, 2017. "Deep networks for predicting direction of change in foreign exchange rates," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(4), pages 100-110, October.
- José V. Segura-Heras & José D. Bermúdez & Ana Corberán-Vallet & Enriqueta Vercher, 2022. "Analysis of Weighting Strategies for Improving the Accuracy of Combined Forecasts," Mathematics, MDPI, vol. 10(5), pages 1-12, February.
- Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Brandão, Rita Marques & Porta Nova, Acácio M.O., 2012. "Analysis of event-based, single-server nonstationary simulation responses using classical time-series models," European Journal of Operational Research, Elsevier, vol. 218(3), pages 676-686.
- Sarfraz, Muddassar & Iqbal, Kashif & Wang, Yichu & Bhutta, Muhammad Shoaib & Jaffri, Zain ul Abidin, 2023. "Role of agricultural resource sector in environmental emissions and its explicit relationship with sustainable development: Evidence from agri-food system in China," Resources Policy, Elsevier, vol. 80(C).
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- Paolo Fornaro & Henri Luomaranta, 2020. "Nowcasting Finnish real economic activity: a machine learning approach," Empirical Economics, Springer, vol. 58(1), pages 55-71, January.
- Pietro Giorgio Lovaglio, 2022. "Do job vacancies variations anticipate employment variations by sector? Some preliminary evidence from Italy," LABOUR, CEIS, vol. 36(1), pages 71-93, March.
- Lu, Quanying & Li, Yuze & Chai, Jian & Wang, Shouyang, 2020. "Crude oil price analysis and forecasting: A perspective of “new triangle”," Energy Economics, Elsevier, vol. 87(C).
- Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
- Bokde, Neeraj Dhanraj & Tranberg, Bo & Andresen, Gorm Bruun, 2021. "Short-term CO2 emissions forecasting based on decomposition approaches and its impact on electricity market scheduling," Applied Energy, Elsevier, vol. 281(C).
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2021.
"Forecasting Realized Volatility of Bitcoin: The Role of the Trade War,"
Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 29-53, January.
- Elie Bouri & Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2020. "Forecasting Realized Volatility of Bitcoin: The Role of the Trade War," Working Papers 202003, University of Pretoria, Department of Economics.
- Lehna, Malte & Scheller, Fabian & Herwartz, Helmut, 2022. "Forecasting day-ahead electricity prices: A comparison of time series and neural network models taking external regressors into account," Energy Economics, Elsevier, vol. 106(C).
- Czakó, Erzsébet & Losonci, Dávid & Kiss-Dobronyi, Bence, 2024. "Menedzsmentgyakorlatok és a hazai vállalatok árbevétel-változása a Covid-19 jelentette gazdasági sokk idején [Management practices and changes in turnover of domestic firms during the Covid-19 econ," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 229-254.
- Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
- Long Wen & Chang Liu & Haiyan Song, 2019. "Forecasting tourism demand using search query data: A hybrid modelling approach," Tourism Economics, , vol. 25(3), pages 309-329, May.
- Takeshi Miyama & Hiroshi Matsui & Kenichi Azuma & Chika Minejima & Yasuyuki Itano & Norimichi Takenaka & Masayuki Ohyama, 2020. "Time Series Analysis of Climate and Air Pollution Factors Associated with Atmospheric Nitrogen Dioxide Concentration in Japan," IJERPH, MDPI, vol. 17(24), pages 1-10, December.
- Fildes, Robert & Goodwin, Paul, 2021. "Stability in the inefficient use of forecasting systems: A case study in a supply chain company," International Journal of Forecasting, Elsevier, vol. 37(2), pages 1031-1046.
- Pablo F. Andreoni & Marcia A. Ruiz & María Inés Rodríguez & Ana Laura Ruibal-Conti, 2022. "Unraveling the Lagged Effect of Hydro-meteorological Conditions On the Trophic State of a Reservoir By Applying Dynamic Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(11), pages 4275-4291, September.
- Sebastian C. Ibañez & Christopher P. Monterola, 2023. "A Global Forecasting Approach to Large-Scale Crop Production Prediction with Time Series Transformers," Agriculture, MDPI, vol. 13(9), pages 1-27, September.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Rangan Gupta & Christian Pierdzioch & Afees A. Salisu, 2020.
"Oil-Price Uncertainty and the U.K. Unemployment Rate: A Forecasting Experiment with Random Forests Using 150 Years of Data,"
Working Papers
202095, University of Pretoria, Department of Economics.
- Gupta, Rangan & Pierdzioch, Christian & Salisu, Afees A., 2022. "Oil-price uncertainty and the U.K. unemployment rate: A forecasting experiment with random forests using 150 years of data," Resources Policy, Elsevier, vol. 77(C).
- Ivan Letteri & Giuseppe Della Penna & Giovanni De Gasperis & Abeer Dyoub, 2022. "DNN-ForwardTesting: A New Trading Strategy Validation using Statistical Timeseries Analysis and Deep Neural Networks," Papers 2210.11532, arXiv.org.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Wan, Cheng & Bertschi, Ljudmila, 2015. "Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 66-75.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Khan Jaffur, Zameelah & Seetanah, Boopen & Tandrayen-Ragoobur, Verena & Fauzel, Sheereen & Teeroovengadum, Viraiyan, 2022. "Impact of the Global COVID-19 Pandemic on FDI: Evidence from a Small Open Economy," Conference papers 333443, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Tim Köhler & Jörg Döpke, 2023. "Will the last be the first? Ranking German macroeconomic forecasters based on different criteria," Empirical Economics, Springer, vol. 64(2), pages 797-832, February.
- Benjamin Jones, 2020. "Revenue forecasting in the mining industries: A data-driven approach," WIDER Working Paper Series wp-2020-22, World Institute for Development Economic Research (UNU-WIDER).
- Surya Teja Eada & Vladimir Pozdnyakov & Jun Yan, 2025. "Discretely observed Brownian motion governed by telegraph signal process: Estimation and application to finance," Statistical Inference for Stochastic Processes, Springer, vol. 28(1), pages 1-17, April.
- Claveria, Oscar, 2019.
"Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations,"
Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
- Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- João A. Bastos, 2019.
"Forecasting the capacity of mobile networks,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 231-242, October.
- Bastos, João A., 2019. "Forecasting the capacity of mobile networks," MPRA Paper 92727, University Library of Munich, Germany.
- Baltuttis, Dennik & Töppel, Jannick & Tränkler, Timm & Wiethe, Christian, 2020. "Managing the risks of energy efficiency insurances in a portfolio context: An actuarial diversification approach," International Review of Financial Analysis, Elsevier, vol. 68(C).
- Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
- Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
- Matteo Bonato & Rangan Gupta & Christian Pierdzioch, 2024. "Do Shortages Forecast Aggregate and Sectoral U.S. Stock Market Realized Variance? Evidence from a Century of Data," Working Papers 202450, University of Pretoria, Department of Economics.
- Dorji, Karma Minjur Phuntsho, 2024. "Exploring Nowcasting Techniques for Real-Time GDP Estimation in Bhutan," MPRA Paper 121380, University Library of Munich, Germany, revised 30 Jun 2024.
- Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
- Jindřich Pokora, 2017. "Hybrid ARIMA and Support Vector Regression in Short-term Electricity Price Forecasting," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 699-708.
- David Atance & Josep Lledó & Eliseo Navarro, 2025. "Modelling and Forecasting Mortality Rates for a Life Insurance Portfolio," Risk Management, Palgrave Macmillan, vol. 27(1), pages 1-25, January.
- Qureshi, Anum & Rizwan, Muhammad Suhail & Ahmad, Ghufran & Ashraf, Dawood, 2022. "Russia–Ukraine war and systemic risk: Who is taking the heat?," Finance Research Letters, Elsevier, vol. 48(C).
- Fanning, Andrew L. & Hickel, Jason, 2023. "Compensation for atmospheric appropriation," LSE Research Online Documents on Economics 119717, London School of Economics and Political Science, LSE Library.
- Justin Dang & Aman Ullah, 2023. "Generalized kernel regularized least squares estimator with parametric error covariance," Empirical Economics, Springer, vol. 64(6), pages 3059-3088, June.
- Han, Weiwei & Wang, Xun & Petropoulos, Fotios & Wang, Jing, 2019. "Brain imaging and forecasting: Insights from judgmental model selection," Omega, Elsevier, vol. 87(C), pages 1-9.
- Akylas Stratigakos & Athanasios Bachoumis & Vasiliki Vita & Elias Zafiropoulos, 2021. "Short-Term Net Load Forecasting with Singular Spectrum Analysis and LSTM Neural Networks," Energies, MDPI, vol. 14(14), pages 1-13, July.
- Akech Ayak Majak Deng, 2023. "Administration on Revenue Generation in South Sudan: A Case Study of the National Revenue Authority and Ministry of Finance and Planning," International Journal of Science and Business, IJSAB International, vol. 29(1), pages 12-33.
- Fröhlich Markus, 2018. "Nowcasting Austrian Short Term Statistics," Journal of Official Statistics, Sciendo, vol. 34(2), pages 503-522, June.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Javier Contreras-Reyes & Wilfredo Palma, 2013. "Statistical analysis of autoregressive fractionally integrated moving average models in R," Computational Statistics, Springer, vol. 28(5), pages 2309-2331, October.
- Li, Wenqing & Qiao, Yuanbo & Li, Xiao & Wang, Yutao, 2022. "Energy consumption, pollution haven hypothesis, and Environmental Kuznets Curve: Examining the environment–economy link in belt and road initiative countries," Energy, Elsevier, vol. 239(PE).
- G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
- Panayotis Christidis & Aris Christodoulou, 2020. "The Predictive Capacity of Air Travel Patterns during the Global Spread of the COVID-19 Pandemic: Risk, Uncertainty and Randomness," IJERPH, MDPI, vol. 17(10), pages 1-15, May.
- Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
- Emilio Porcu & Philip A. White, 2022. "Random fields on the hypertorus: Covariance modeling and applications," Environmetrics, John Wiley & Sons, Ltd., vol. 33(1), February.
- Guizzardi, Andrea & Pons, Flavio Maria Emanuele & Angelini, Giovanni & Ranieri, Ercolino, 2021. "Big data from dynamic pricing: A smart approach to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1049-1060.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Huijian Dong & Xiaomin Guo & Han Reichgelt & Ruizhi Hu, 2020. "Predictive power of ARIMA models in forecasting equity returns: a sliding window method," Journal of Asset Management, Palgrave Macmillan, vol. 21(6), pages 549-566, October.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
- Felipe Santos‐Marquez, 2022. "Spatial beta‐convergence forecasting models: Evidence from municipal homicide rates in Colombia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 294-302, March.
- Jiayin Bi & Ying Qi, 2024. "RETRACTED ARTICLE: The convergence of digital finance and green investments: opportunities, risks, energy transitions and regulatory considerations," Economic Change and Restructuring, Springer, vol. 57(3), pages 1-31, June.
- Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Newman, Minke E. & McLaren, Kurt P. & Wilson, Byron S., 2018. "Using the forest-transition model and a proximate cause of deforestation to explain long-term forest cover trends in a Caribbean forest," Land Use Policy, Elsevier, vol. 71(C), pages 395-408.
- Kyriakos Skarlatos & Eleni S. Bekri & Dimitrios Georgakellos & Polychronis Economou & Sotirios Bersimis, 2023. "Projecting Annual Rainfall Timeseries Using Machine Learning Techniques," Energies, MDPI, vol. 16(3), pages 1-20, February.
- Camelo, Henrique do Nascimento & Lucio, Paulo Sérgio & Leal Junior, João Bosco Verçosa & Carvalho, Paulo Cesar Marques de & Santos, Daniel von Glehn dos, 2018. "Innovative hybrid models for forecasting time series applied in wind generation based on the combination of time series models with artificial neural networks," Energy, Elsevier, vol. 151(C), pages 347-357.
- Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.
- Bruno Ferman & Cristine Pinto, 2019.
"Synthetic Controls with Imperfect Pre-Treatment Fit,"
Papers
1911.08521, arXiv.org, revised Jan 2021.
- Bruno Ferman & Cristine Pinto, 2021. "Synthetic controls with imperfect pretreatment fit," Quantitative Economics, Econometric Society, vol. 12(4), pages 1197-1221, November.
- Prellezo, Raúl & Corrales, Xavier & Andonegi, Eider & Bald, Carlos & Fernandes-Salvador, Jose A. & Iñarra, Bruno & Irigoien, Xabier & Martin, Adrian & Murillas-Maza, Arantza & Tasdemir, Deniz, 2024. "Economic trade-offs of harvesting the ocean twilight zone: An ecosystem services approach," Ecosystem Services, Elsevier, vol. 67(C).
- Paweł Pełka, 2023. "Analysis and Forecasting of Monthly Electricity Demand Time Series Using Pattern-Based Statistical Methods," Energies, MDPI, vol. 16(2), pages 1-22, January.
- Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
- Ahmar, Ansari Saleh & Arifin, Andi Nurani Mangkawani, 2017. "Peramalan Indeks Harga Konsumen (IHK) Indonesia menggunakan forecast package pada R," INA-Rxiv bmwvy, Center for Open Science.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011.
"Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
- Jae H. Kim & Haiyang Song & Kevin Wong & George Athanasopoulos & Shen Liu, 2008. "Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals," Monash Econometrics and Business Statistics Working Papers 11/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
- Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
- Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
- Yim, Ha-Neul & Riddell, Jordan R. & Wheeler, Andrew P., 2020. "Is the recent increase in national homicide abnormal? Testing the application of fan charts in monitoring national homicide trends over time," Journal of Criminal Justice, Elsevier, vol. 66(C).
- Jonathan Roth & Jayashree Chadalawada & Rishee K. Jain & Clayton Miller, 2021. "Uncertainty Matters: Bayesian Probabilistic Forecasting for Residential Smart Meter Prediction, Segmentation, and Behavioral Measurement and Verification," Energies, MDPI, vol. 14(5), pages 1-22, March.
- Demirer, Riza & Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2019.
"Time-varying risk aversion and realized gold volatility,"
The North American Journal of Economics and Finance, Elsevier, vol. 50(C).
- Riza Demirer & Rangan Gupta & Christian Pierdzioch, 2018. "Time-Varying Risk Aversion and Realized Gold Volatility," Working Papers 201881, University of Pretoria, Department of Economics.
- Joseph Ross, 2021. "Stationarity Statistics on Rolling Windows," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 655-691, February.
- Croonenbroeck, Carsten & Møller Dahl, Christian, 2014. "Accurate medium-term wind power forecasting in a censored classification framework," Discussion Papers 351, European University Viadrina Frankfurt (Oder), Department of Business Administration and Economics.
- Sahay, Arvind & Jaikumar, Saravana, 2016. "Does Pharmaceutical Price Regulation Result in Greater Access to Essential Medicines? Study of the impact of drug price control order on sales volume of drugs in India," IIMA Working Papers WP2016-02-01, Indian Institute of Management Ahmedabad, Research and Publication Department.
- de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
- Alyse K. Winchester & Ryan A. Peterson & Ellison Carter & Mary D. Sammel, 2021. "Impact of COVID-19 Social Distancing Policies on Traffic Congestion, Mobility, and NO 2 Pollution," Sustainability, MDPI, vol. 13(13), pages 1-17, June.
- Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Justin Dang & Aman Ullah, 2022. "Generalized Kernel Regularized Least Squares Estimator with Parametric Error Covariance," Working Papers 202303, University of California at Riverside, Department of Economics, revised Mar 2023.
- Chang, Annie Y.J. & Wang, Xudong & Sharafi, Mojdeh & Miranda-Moreno, Luis & Sun, Lijun, 2024. "Headwind or tailwind? The evolution of bike-sharing and ride-hailing demand during the COVID-19 pandemic," Journal of Transport Geography, Elsevier, vol. 118(C).
- Monika Zielińska-Sitkiewicz & Mariola Chrzanowska & Konrad Furmańczyk & Kacper Paczutkowski, 2021. "Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
- Stefan Kerbl & Michael Sigmund, 2016. "From low to negative rates: an asymmetric dilemma," Financial Stability Report, Oesterreichische Nationalbank (Austrian Central Bank), issue 32, pages 120-137.
- Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
- Cheng-Hong Yang & Jen-Chung Shao & Yen-Hsien Liu & Pey-Huah Jou & Yu-Da Lin, 2022. "Application of Fuzzy-Based Support Vector Regression to Forecast of International Airport Freight Volumes," Mathematics, MDPI, vol. 10(14), pages 1-18, July.
- Rong Fu & Luze Xie & Tao Liu & Binbin Zheng & Yibo Zhang & Shuai Hu, 2023. "A Soil Moisture Prediction Model, Based on Depth and Water Balance Equation: A Case Study of the Xilingol League Grassland," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
- Robert I. Harris & William A. Pizer, 2020. "Using Taxes to Meet an Emission Target," NBER Working Papers 27781, National Bureau of Economic Research, Inc.
- Anton Antonov GERUNOV, 2016.
"Automating Analytics: Forecasting Time Series in Economics and Business,"
Journal of Economics and Political Economy, KSP Journals, vol. 3(2), pages 340-349, June.
- Gerunov, Anton, 2016. "Automating Analytics: Forecasting Time Series in Economics and Business," MPRA Paper 71010, University Library of Munich, Germany.
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- Carolina Euán & Ying Sun & Brian J. Reich, 2022. "Statistical analysis of multi‐day solar irradiance using a threshold time series model," Environmetrics, John Wiley & Sons, Ltd., vol. 33(3), May.
- Aziz Ezzat, Ahmed, 2020. "Turbine-specific short-term wind speed forecasting considering within-farm wind field dependencies and fluctuations," Applied Energy, Elsevier, vol. 269(C).
- Khan, Muhammad Asif & Segovia, Juan E.Trinidad & Bhatti, M.Ishaq & Kabir, Asif, 2023. "Corporate vulnerability in the US and China during COVID-19: A machine learning approach," The Journal of Economic Asymmetries, Elsevier, vol. 27(C).
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Shang, Han Lin & Kearney, Fearghal, 2022.
"Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
- Han Lin Shang & Fearghal Kearney, 2021. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," Papers 2107.14026, arXiv.org.
- Kangguo Li & Jia Rui & Wentao Song & Li Luo & Yunkang Zhao & Huimin Qu & Hong Liu & Hongjie Wei & Ruixin Zhang & Buasiyamu Abudunaibi & Yao Wang & Zecheng Zhou & Tianxin Xiang & Tianmu Chen, 2024. "Temporal shifts in 24 notifiable infectious diseases in China before and during the COVID-19 pandemic," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
- Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
- Christian Grimme & Robert Lehmann & Marvin Noeller, 2019.
"Forecasting Imports with Information from Abroad,"
ifo Working Paper Series
294, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
- Christian Grimme & Robert Lehmann & Marvin Noeller, 2018. "Forecasting Imports with Information from Abroad," CESifo Working Paper Series 7079, CESifo.
- Grimme, Christian & Lehmann, Robert & Noeller, Marvin, 2021. "Forecasting imports with information from abroad," Economic Modelling, Elsevier, vol. 98(C), pages 109-117.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Marta Crispino & Vincenzo Mariani, 2023. "A tool to nowcast tourist overnight stays with payment data and complementary indicators," Questioni di Economia e Finanza (Occasional Papers) 746, Bank of Italy, Economic Research and International Relations Area.
- Ajay Singh & Dinghai Xu, 2016.
"Random matrix application to correlations amongst the volatility of assets,"
Quantitative Finance, Taylor & Francis Journals, vol. 16(1), pages 69-83, January.
- Ajay Singh & Dinghai Xu, 2013. "Random Matrix Application to Correlations Among Volatility of Assets," Papers 1310.1601, arXiv.org.
- Song, Haiyan & Wen, Long & Liu, Chang, 2019. "Density tourism demand forecasting revisited," Annals of Tourism Research, Elsevier, vol. 75(C), pages 379-392.
- van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
- Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
- Jacob Hale & Suzanna Long, 2020. "A Time Series Sustainability Assessment of a Partial Energy Portfolio Transition," Energies, MDPI, vol. 14(1), pages 1-14, December.
- Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
- Nava, Noemi & Di Matteo, Tiziana & Aste, Tomaso, 2018. "Financial time series forecasting using empirical mode decomposition and support vector regression," LSE Research Online Documents on Economics 91028, London School of Economics and Political Science, LSE Library.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011.
"Forecasting tourist arrivals using time-varying parameter structural time series models,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869, July.
- Song, Haiyan & Li, Gang & Witt, Stephen F. & Athanasopoulos, George, 2011. "Forecasting tourist arrivals using time-varying parameter structural time series models," International Journal of Forecasting, Elsevier, vol. 27(3), pages 855-869.
- Kenny Kam Kuen Mok & Chong It Tan & Jinhui Zhang & Yanlin Shi, 2024. "Mortality modelling with arrival of additional year of mortality data: Calibration and forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 50(28), pages 797-826.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Neeraj Dhanraj Bokde & Zaher Mundher Yaseen & Gorm Bruun Andersen, 2020. "ForecastTB—An R Package as a Test-Bench for Time Series Forecasting—Application of Wind Speed and Solar Radiation Modeling," Energies, MDPI, vol. 13(10), pages 1-24, May.
- Andrea G. Forte & Wei Wang & Luca Veltri & Gianluigi Ferrari, 2019. "A Next-Generation Core Network Architecture for Mobile Networks," Future Internet, MDPI, vol. 11(7), pages 1-25, July.
- Barbeito, Inés & Zaragoza, Sonia & Tarrío-Saavedra, Javier & Naya, Salvador, 2017. "Assessing thermal comfort and energy efficiency in buildings by statistical quality control for autocorrelated data," Applied Energy, Elsevier, vol. 190(C), pages 1-17.
- Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
- Xiong, Tao & Li, Chongguang & Bao, Yukun, 2017. "Interval-valued time series forecasting using a novel hybrid HoltI and MSVR model," Economic Modelling, Elsevier, vol. 60(C), pages 11-23.
- Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
- Azizur Rahman & Depeng Jiang, 2023. "Forecasting Canadian Age-Specific Mortality Rates: Application of Functional Time Series Analysis," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
- Wisniewski, Janna & Worges, Matt & Lusamba-Dikassa, Paul-Samson, 2023. "Impact of a free care policy on routine health service volumes during a protracted Ebola virus disease outbreak in the Democratic Republic of Congo," Social Science & Medicine, Elsevier, vol. 322(C).
- Song, Haiyan & Lin, Shanshan & Witt, Stephen F. & Zhang, Xinyan, 2011. "Impact of financial/economic crisis on demand for hotel rooms in Hong Kong," Tourism Management, Elsevier, vol. 32(1), pages 172-186.
- Ludmila Fadejeva & Boriss Siliverstovs & Karlis Vilerts & Anete Brinke, 2022. "Consumer Spending in the Covid-19 Pandemic: Evidence from Card Transactions in Latvia," Discussion Papers 2022/01, Latvijas Banka.
- Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Zhu, Siying & Jia, Shuai & Sun, Qinghe & Meng, Qiang, 2023. "An empirical study of China–Singapore International Land–Sea Trade Corridor: Analysis from supply and demand sides," Transport Policy, Elsevier, vol. 135(C), pages 1-10.
- Karapanagiotidis, Paul, 2014. "Dynamic modeling of commodity futures prices," MPRA Paper 56805, University Library of Munich, Germany.
- Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
- Kamarul Ariffin MANSOR & Wan Irham ISHAK, 2015. "Forecasting Tourist Arrivals To Langkawi Island Malaysia," CrossCultural Management Journal, Fundația Română pentru Inteligența Afacerii, Editorial Department, issue 1, pages 69-76, June.
- Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Ma Jiyue & Huang Fei & Bruhn Aaron, 2021. "Estimating China’s Future Life Insurance Market," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 15(1), pages 1-16, January.
- Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
- Yusupova, Alisa & Pavlidis, Nicos G. & Pavlidis, Efthymios G., 2023. "Dynamic linear models with adaptive discounting," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1925-1944.
- Sadat, Seyyed Ali & Hoex, Bram & Pearce, Joshua M., 2022. "A Review of the Effects of Haze on Solar Photovoltaic Performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Yuyun Hidayat & Titi Purwandari & Sukono & Igif Gimin Prihanto & Rizki Apriva Hidayana & Riza Andrian Ibrahim, 2023. "Mean-Value-at-Risk Portfolio Optimization Based on Risk Tolerance Preferences and Asymmetric Volatility," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
- Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
- Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Anastasia Soukhov & Ahmed Foda & Moataz Mohamed, 2022. "Electric Mobility Emission Reduction Policies: A Multi-Objective Optimization Assessment Approach," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Chen, Haojun & Maher, Daniela, 2013. "On the predictive role of large futures trades for S&P500 index returns: An analysis of COT data as an informative trading signal," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 27(C), pages 177-201.
- Catalina Torres & Arianna Caporali & Gilles Pison, 2023. "The Human Multiple Births Database (HMBD)," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 48(4), pages 89-106.
- Wanying Fu & Barry R. Smith & Patrick Brewer & Sean Droms, 2022. "A New Mortality Framework to Identify Trends and Structural Changes in Mortality Improvement and Its Application in Forecasting," Risks, MDPI, vol. 10(8), pages 1-38, August.
- Matsypura, Dmytro & Thompson, Ryan & Vasnev, Andrey L., 2018. "Optimal selection of expert forecasts with integer programming," Omega, Elsevier, vol. 78(C), pages 165-175.
- Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
- Ribeiro, Matheus Henrique Dal Molin & da Silva, Ramon Gomes & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Short-term forecasting COVID-19 cumulative confirmed cases: Perspectives for Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Fiorucci, Jose Augusto & Louzada, Francisco, 2020. "GROEC: Combination method via Generalized Rolling Origin Evaluation," International Journal of Forecasting, Elsevier, vol. 36(1), pages 105-109.
- AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Hassani, Hossein & Silva, Emmanuel Sirimal, 2018. "Forecasting UK consumer price inflation using inflation forecasts," Research in Economics, Elsevier, vol. 72(3), pages 367-378.
- Erick Inácio Ferreira & Igor Viveiros Melo Souza, 2023. "Time series forecasting : a test of automated econometric methods," Textos para Discussão Cedeplar-UFMG 661, Cedeplar, Universidade Federal de Minas Gerais.
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
- Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
- Iraj Daizadeh, 2021. "Leveraging latent persistency in United States patent and trademark applications to gain insight into the evolution of an innovation-driven economy," Papers 2101.02588, arXiv.org, revised May 2021.
- Elena Collino & Dario Ronzio, 2021. "Exploitation of a New Short-Term Multimodel Photovoltaic Power Forecasting Method in the Very Short-Term Horizon to Derive a Multi-Time Scale Forecasting System," Energies, MDPI, vol. 14(3), pages 1-30, February.
- Asmik Nalmpatian & Christian Heumann & Stefan Pilz, 2024. "Forecasting Mortality Trends: Advanced Techniques and the Impact of COVID-19," Stats, MDPI, vol. 7(4), pages 1-17, October.
- Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
- Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
- Tijana Matejić & Snežana Knežević & Vesna Bogojević Arsić & Tijana Obradović & Stefan Milojević & Miljan Adamović & Aleksandra Mitrović & Marko Milašinović & Dragoljub Simonović & Goran Milošević & Ma, 2022. "Assessing the Impact of the COVID-19 Crisis on Hotel Industry Bankruptcy Risk through Novel Forecasting Models," Sustainability, MDPI, vol. 14(8), pages 1-44, April.
- Caracappa, Joseph C. & Beet, Andrew & Gaichas, Sarah & Gamble, Robert J. & Hyde, Kimberly J.W. & Large, Scott I. & Morse, Ryan E. & Stock, Charles A. & Saba, Vincent S., 2022. "A northeast United States Atlantis marine ecosystem model with ocean reanalysis and ocean color forcing," Ecological Modelling, Elsevier, vol. 471(C).
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Thabiso E. Masena & Sarah L. Mahlangu & Sandile C. Shongwe, 2024. "Time Series Perspective on the Sustainability of the South African Food and Beverage Sector," Sustainability, MDPI, vol. 16(22), pages 1-21, November.
- Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Jerónimo Chirivella-Martorell & Álvaro Briz-Redón & Ángel Serrano-Aroca, 2018. "Modelling of Biomass Concentration, Multi-Wavelength Absorption and Discrimination Method for Seven Important Marine Microalgae Species," Energies, MDPI, vol. 11(5), pages 1-13, April.
- Amber X. Chen & Shaojing Sun & Hongbo Yu, 2024. "Moral attitudes towards effort and efficiency: a comparison between American and Chinese history," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-14, December.
- Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
- Ba M. Chu & Kim Huynh & David T. Jacho-Chávez & Oleksiy Kryvtsov, 2018. "On the Evolution of the United Kingdom Price Distributions," Staff Working Papers 18-25, Bank of Canada.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Junyi Lu & Sebastian Meyer, 2020. "Forecasting Flu Activity in the United States: Benchmarking an Endemic-Epidemic Beta Model," IJERPH, MDPI, vol. 17(4), pages 1-13, February.
- Mostafa Majidpour & Hamidreza Nazaripouya & Peter Chu & Hemanshu R. Pota & Rajit Gadh, 2018. "Fast Univariate Time Series Prediction of Solar Power for Real-Time Control of Energy Storage System," Forecasting, MDPI, vol. 1(1), pages 1-14, September.
- João Lucas Ferreira dos Santos & Allefe Jardel Chagas Vaz & Yslene Rocha Kachba & Sergio Luiz Stevan & Thiago Antonini Alves & Hugo Valadares Siqueira, 2024. "Linear Ensembles for WTI Oil Price Forecasting," Energies, MDPI, vol. 17(16), pages 1-25, August.
- Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
- André Cardoso Dias, 2019. "Estimating a country’s currency circulation within a monetary union," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Are post-crisis statistical initiatives completed?, volume 49, Bank for International Settlements.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Cheng-Hong Yang & Borcy Lee & Pey-Huah Jou & Yu-Fang Chung & Yu-Da Lin, 2023. "Analysis and Forecasting of International Airport Traffic Volume," Mathematics, MDPI, vol. 11(6), pages 1-19, March.
- Dietmar Janetzko, 2014. "Predictive modeling in turbulent times – What Twitter reveals about the EUR/USD exchange rate," Netnomics, Springer, vol. 15(2), pages 69-106, September.
- Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
- Saša Obradoviæ & Lela Ristiæ & Nemanja Lojanica, 2018. "Are unemployment rates stationary for SEE10 countries? Evidence from linear and nonlinear dynamics," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 36(2), pages 559-583.
- Fildes, Robert & Petropoulos, Fotios, 2013. "An evaluation of simple forecasting model selection rules," MPRA Paper 51772, University Library of Munich, Germany.
- Ziaul Haque Munim & Hans-Joachim Schramm, 2021. "Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 310-327, June.
- T. Bazhenov & D. Fantazzini, 2019.
"Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility,"
Russian Journal of Industrial Economics, MISIS, vol. 12(1).
- Bazhenov, Timofey & Fantazzini, Dean, 2019. "Forecasting Realized Volatility of Russian stocks using Google Trends and Implied Volatility," MPRA Paper 93544, University Library of Munich, Germany.
- Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
- Gabriela F. Nane & Nicolas Robinson-Garcia & François Schalkwyk & Daniel Torres-Salinas, 2023. "COVID-19 and the scientific publishing system: growth, open access and scientific fields," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(1), pages 345-362, January.
- Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
- Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
- David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
- Phinikarides, Alexander & Makrides, George & Zinsser, Bastian & Schubert, Markus & Georghiou, George E., 2015. "Analysis of photovoltaic system performance time series: Seasonality and performance loss," Renewable Energy, Elsevier, vol. 77(C), pages 51-63.
- Orhan Altuğ Karabiber & George Xydis, 2019. "Electricity Price Forecasting in the Danish Day-Ahead Market Using the TBATS, ANN and ARIMA Methods," Energies, MDPI, vol. 12(5), pages 1-29, March.
- Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
- Dellino, G. & Laudadio, T. & Mari, R. & Mastronardi, N. & Meloni, C., 2018. "Microforecasting methods for fresh food supply chain management: A computational study," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 147(C), pages 100-120.
- Sayar Karmakar & Marek Chudy & Wei Biao Wu, 2020. "Long-term prediction intervals with many covariates," Papers 2012.08223, arXiv.org, revised Sep 2021.
- Malliga Subramanian & Jaehyuk Cho & Sathishkumar Veerappampalayam Easwaramoorthy & Akash Murugesan & Ramya Chinnasamy, 2023. "Enhancing Sustainable Transportation: AI-Driven Bike Demand Forecasting in Smart Cities," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
- Joana M. Barros & Ruth Melia & Kady Francis & John Bogue & Mary O’Sullivan & Karen Young & Rebecca A. Bernert & Dietrich Rebholz-Schuhmann & Jim Duggan, 2019. "The Validity of Google Trends Search Volumes for Behavioral Forecasting of National Suicide Rates in Ireland," IJERPH, MDPI, vol. 16(17), pages 1-18, September.
- Evan L Ray & Nicholas G Reich, 2018. "Prediction of infectious disease epidemics via weighted density ensembles," PLOS Computational Biology, Public Library of Science, vol. 14(2), pages 1-23, February.
- Irene Nandutu & Marcellin Atemkeng & Nokubonga Mgqatsa & Sakayo Toadoum Sari & Patrice Okouma & Rockefeller Rockefeller & Theophilus Ansah-Narh & Jean Louis Ebongue Kedieng Fendji & Franklin Tchakount, 2022. "Error Correction Based Deep Neural Networks for Modeling and Predicting South African Wildlife–Vehicle Collision Data," Mathematics, MDPI, vol. 10(21), pages 1-31, October.
- Lozinskaia, Agata & Redkina, Anastasiia & Shenkman, Evgeniia, 2020. "Electricity consumption forecasting for integrated power system with seasonal patterns," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 60, pages 5-25.
- Milan Bašta, 2018. "Time series forecasting with a prior wavelet-based denoising step," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2018(1), pages 5-24.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
- Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Michael D. Hunter & Haya Fatimah & Marina A. Bornovalova, 2022. "Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 477-505, June.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
- James D. Santos & José M. J. Costa, 2019. "An Algorithm for Prior Elicitation in Dynamic Bayesian Models for Proportions with the Logit Link Function," Methodology and Computing in Applied Probability, Springer, vol. 21(1), pages 169-183, March.
- Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Juyong Lee & Youngsang Cho, 2021. "National-scale electricity peak load forecasting: Traditional, machine learning, or hybrid model?," Papers 2107.06174, arXiv.org.
- Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
- Alexandra Bastaraud & Emeline Perthame & Jean-Marius Rakotondramanga & Jackson Mahazosaotra & Noro Ravaonindrina & Ronan Jambou, 2020. "The impact of rainfall on drinking water quality in Antananarivo, Madagascar," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-18, June.
- Thomas Url & Rob J. Hyndman & Alexander Dokumentov, 2016. "Long-term Forecasts of Age-specific Labour Market Participation Rates with Functional Data Models," WIFO Working Papers 510, WIFO.
- Seabold,Skipper & Coppola,Andrea, 2015. "Nowcasting prices using Google trends : an application to Central America," Policy Research Working Paper Series 7398, The World Bank.
- Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
- Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
- Auerbach, Jonathan & Wan, Phyllis, 2020. "Forecasting the urban skyline with extreme value theory," International Journal of Forecasting, Elsevier, vol. 36(3), pages 814-828.
- Andrew L. Fanning & Jason Hickel, 2023. "Compensation for atmospheric appropriation," Nature Sustainability, Nature, vol. 6(9), pages 1077-1086, September.
- Konstantinos Gkillas & Rangan Gupta & Christian Pierdzioch, 2018. "Forecasting (Good and Bad) Realized Exchange-Rate Volatility: Is there a Role for Realized Skewness and Kurtosis?," Working Papers 201879, University of Pretoria, Department of Economics.
- Heike Belitz & Martin Gornig & Alexander Schiersch, 2011. "Deutsche forschungsintensive Industrie: Feuerprobe in der Krise bestanden?," Vierteljahrshefte zur Wirtschaftsforschung / Quarterly Journal of Economic Research, DIW Berlin, German Institute for Economic Research, vol. 80(3), pages 35-54.
- Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
- Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
- Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
- Eisfeld, Rupert-Klaas & Just, Tobias, . "Die Auswirkungen der COVID-19-Pandemie auf die deutschen Wohnungsmärkte. Eine Studie im Auftrag der Hans-Böckler-Stiftung," Beiträge zur Immobilienwirtschaft, University of Regensburg, Department of Economics, number 26, August.
- Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
- Di Foggia, Giacomo & Beccarello, Massimo, 2024. "European roadmaps to achieving 2030 renewable energy targets," Utilities Policy, Elsevier, vol. 88(C).
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
- Hajirahimi, Zahra & Khashei, Mehdi, 2022. "Series Hybridization of Parallel (SHOP) models for time series forecasting," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Elias Amancio Siqueira-Filho & Maira Farias Andrade Lira & Attilio Converti & Hugo Valadares Siqueira & Carmelo J. A. Bastos-Filho, 2023. "Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models," Energies, MDPI, vol. 16(7), pages 1-27, March.
- Meena Madhavan & Mohammed Ali Sharafuddin & Pairach Piboonrungroj & Ching-Chiao Yang, 2023. "Short-term Forecasting for Airline Industry: The Case of Indian Air Passenger and Air Cargo," Global Business Review, International Management Institute, vol. 24(6), pages 1145-1179, December.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Petropoulos, Fotios & Svetunkov, Ivan, 2020. "A simple combination of univariate models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 110-115.
- João Costa Freitas & Alberto Adrego Pinto & Óscar Felgueiras, 2024. "Game Theory for Predicting Stocks’ Closing Prices," Mathematics, MDPI, vol. 12(17), pages 1-49, August.
- Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
- Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
- Langton, Samuel & Farrell, Graham & Dixon, Anthony, 2020. "Six Months In: Pandemic Crime Trends in England and Wales," SocArXiv t7ne8, Center for Open Science.
- Francisco Vergara-Perucich, 2022. "Assessing the Accuracy of Google Trends for Predicting Presidential Elections: The Case of Chile, 2006–2021," Data, MDPI, vol. 7(11), pages 1-12, October.
- Yang, Haolin & Schell, Kristen R., 2022. "GHTnet: Tri-Branch deep learning network for real-time electricity price forecasting," Energy, Elsevier, vol. 238(PC).
- George Athanasopoulos & Rob J Hyndman & Raffaele Mattera, 2023. "Improving out-of-sample Forecasts of Stock Price Indexes with Forecast Reconciliation and Clustering," Monash Econometrics and Business Statistics Working Papers 17/23, Monash University, Department of Econometrics and Business Statistics.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
- Drachal, Krzysztof, 2018. "Comparison between Bayesian and information-theoretic model averaging: Fossil fuels prices example," Energy Economics, Elsevier, vol. 74(C), pages 208-251.
- Marios Kokkodis & Theodoros Lappas & Sam Ransbotham, 2020. "From Lurkers to Workers: Predicting Voluntary Contribution and Community Welfare," Information Systems Research, INFORMS, vol. 31(2), pages 607-626, June.
- Deng, Gary & Newton, Peter, 2017. "Assessing the impact of solar PV on domestic electricity consumption: Exploring the prospect of rebound effects," Energy Policy, Elsevier, vol. 110(C), pages 313-324.
- Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Silva, Emmanuel Sirimal & Hassani, Hossein, 2022. "‘Modelling’ UK tourism demand using fashion retail sales," Annals of Tourism Research, Elsevier, vol. 95(C).
- Xin Zhao & Stuart Barber & Charles C. Taylor & Zoka Milan, 2021. "Interval forecasts based on regression trees for streaming data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(1), pages 5-36, March.
- Melanie Meis & Mariela Sued & Ramiro I. Saurral & Patricia Menéndez, 2024. "A novel statistically-based approach to regionalize extreme precipitation events using temperature data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14785-14807, December.
- Dietmar Janetzko, 2014. "Using Twitter to Model the EUR/USD Exchange Rate," Papers 1402.1624, arXiv.org.
- Naomi Radke & Klaus Keller & Rasoul Yousefpour & Marc Hanewinkel, 2020. "Identifying decision-relevant uncertainties for dynamic adaptive forest management under climate change," Climatic Change, Springer, vol. 163(2), pages 891-911, November.
- Bernadett Aradi & G'abor Petneh'azi & J'ozsef G'all, 2020. "Volatility Forecasting with 1-dimensional CNNs via transfer learning," Papers 2009.05508, arXiv.org.
- Cheng-Hong Yang & Bo-Hong Chen & Chih-Hsien Wu & Kuo-Chang Chen & Li-Yeh Chuang, 2022. "Deep Learning for Forecasting Electricity Demand in Taiwan," Mathematics, MDPI, vol. 10(14), pages 1-19, July.
- Silva, Emmanuel Sirimal & Hassani, Hossein & Heravi, Saeed & Huang, Xu, 2019. "Forecasting tourism demand with denoised neural networks," Annals of Tourism Research, Elsevier, vol. 74(C), pages 134-154.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Krzysztof DRACHAL, 2020. "Forecasting the Inflation Rate in Poland and U.S. Using Dynamic Model Averaging (DMA) and Google Queries," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 18-34, July.
- Kim, Kyusoon & Oh, Hee-Seok, 2024. "Network time series forecasting using spectral graph wavelet transform," International Journal of Forecasting, Elsevier, vol. 40(3), pages 971-984.
- David Evans & Claire Mason & Haohui Chen & Andrew Reeson, 2024. "Accelerated demand for interpersonal skills in the Australian post-pandemic labour market," Nature Human Behaviour, Nature, vol. 8(1), pages 32-42, January.
- Ioannis Papageorgiou & Ioannis Kontoyiannis, 2023. "The Bayesian Context Trees State Space Model for time series modelling and forecasting," Papers 2308.00913, arXiv.org, revised Oct 2023.
- Tatiana Petukhova & Davor Ojkic & Beverly McEwen & Rob Deardon & Zvonimir Poljak, 2018. "Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-17, June.
- Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models: Evidence from European Financial Markets and Bitcoins," Forecasting, MDPI, vol. 5(2), pages 1-15, June.
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Jeronymo Marcondes Pinto & Jennifer L. Castle, 2022. "Machine Learning Dynamic Switching Approach to Forecasting in the Presence of Structural Breaks," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 129-157, July.
- Bastos, Bruno Quaresma & Cyrino Oliveira, Fernando Luiz & Milidiú, Ruy Luiz, 2021. "U-Convolutional model for spatio-temporal wind speed forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 949-970.
- Takeda, Hisashi & Tamura, Yoshiyasu & Sato, Seisho, 2016. "Using the ensemble Kalman filter for electricity load forecasting and analysis," Energy, Elsevier, vol. 104(C), pages 184-198.
- Thomas Url & Rob J Hyndman & Alexander Dokumentov, 2016. "Long-term forecasts of age-specific participation rates with functional data models," Monash Econometrics and Business Statistics Working Papers 3/16, Monash University, Department of Econometrics and Business Statistics.
- Eduardo Rosas Rojas & Mónica C. Mimbrera Delgado, 2018. "Inflación y volatilidad cambiaria en México (1969-2017)," Ensayos de Economía 17297, Universidad Nacional de Colombia Sede Medellín.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- Iraj Daizadeh, 2021. "Seasonal and Secular Periodicities Identified in the Dynamics of US FDA Medical Devices (1976 2020) Portends Intrinsic Industrial Transformation and Independence of Certain Crises," Papers 2107.05347, arXiv.org, revised Aug 2021.
- López Prol, Javier & O, Sungmin, 2020. "Impact of COVID-19 measures on electricity consumption," MPRA Paper 101649, University Library of Munich, Germany.
- Jaewon Kwak & Soojun Kim & Gilho Kim & Vijay P. Singh & Seungjin Hong & Hung Soo Kim, 2015. "Scrub Typhus Incidence Modeling with Meteorological Factors in South Korea," IJERPH, MDPI, vol. 12(7), pages 1-20, June.
- Guizzardi, Andrea & Stacchini, Annalisa, 2015. "Real-time forecasting regional tourism with business sentiment surveys," Tourism Management, Elsevier, vol. 47(C), pages 213-223.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- Víctor M. Guerrero & Francisco Corona, 2018. "Retropolating some relevant series of Mexico's System of National Accounts at constant prices: The case of Mexico City's GDP," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 495-519, November.
- Riesgo García, María Victoria & Krzemień, Alicja & Manzanedo del Campo, Miguel Ángel & Escanciano García-Miranda, Carmen & Sánchez Lasheras, Fernando, 2018. "Rare earth elements price forecasting by means of transgenic time series developed with ARIMA models," Resources Policy, Elsevier, vol. 59(C), pages 95-102.
- Felix Divo & Eric Endress & Kevin Endler & Kristian Kersting & Devendra Singh Dhami, 2024. "Forecasting Company Fundamentals," Papers 2411.05791, arXiv.org.
- Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
- Iraj Daizadeh, 2020. "Trademark filings and patent application count time series are structurally near-identical and cointegrated: Implications for studies in innovation," Papers 2012.10400, arXiv.org.
- Avesani, Diego & Zanfei, Ariele & Di Marco, Nicola & Galletti, Andrea & Ravazzolo, Francesco & Righetti, Maurizio & Majone, Bruno, 2022. "Short-term hydropower optimization driven by innovative time-adapting econometric model," Applied Energy, Elsevier, vol. 310(C).
- Khan, M. Atikur Rahman & Poskitt, D.S., 2017. "Forecasting stochastic processes using singular spectrum analysis: Aspects of the theory and application," International Journal of Forecasting, Elsevier, vol. 33(1), pages 199-213.
- Job Nmadu & Ezekiel Yisa & Usman Mohammed & Halima Sallawu & Yebosoko Nmadu & Sokoyami Nmadu, 2022. "Structural Analysis and Forecast of Nigerian Monthly Inflation Movement between 1996 and 2022," RAIS Conference Proceedings 2022-2024 0211, Research Association for Interdisciplinary Studies.
- Labonnah Farzana Rahman & Mohammad Marufuzzaman & Lubna Alam & Md Azizul Bari & Ussif Rashid Sumaila & Lariyah Mohd Sidek, 2021. "Developing an Ensembled Machine Learning Prediction Model for Marine Fish and Aquaculture Production," Sustainability, MDPI, vol. 13(16), pages 1-14, August.
- Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
- Athanasopoulos, George & Deng, Minfeng & Li, Gang & Song, Haiyan, 2014. "Modelling substitution between domestic and outbound tourism in Australia: A system-of-equations approach," Tourism Management, Elsevier, vol. 45(C), pages 159-170.
- E. Bajalinov & Sz. Duleba, 2020. "Seasonal time series forecasting by the Walsh-transformation based technique," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 983-1001, September.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Jens Kley-Holsteg & Florian Ziel, 2020. "Probabilistic Multi-Step-Ahead Short-Term Water Demand Forecasting with Lasso," Papers 2005.04522, arXiv.org.
- Apostolos Ampountolas, 2023. "Comparative Analysis of Machine Learning, Hybrid, and Deep Learning Forecasting Models Evidence from European Financial Markets and Bitcoins," Papers 2307.08853, arXiv.org.
- Puwasala Gamakumara & Edgar Santos-Fernandez & Priyanga Dilini Talagala & Rob J Hyndman & Kerrie Mengersen & Catherine Leigh, 2023. "Conditional Normalization in Time Series Analysis," Monash Econometrics and Business Statistics Working Papers 10/23, Monash University, Department of Econometrics and Business Statistics.
- Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
- Dixon, Anthony & Farrell, Graham & Tilley, Nick, 2022. "Illegal waste fly-tipping in the COVID-19 pandemic: Enhanced compliance, temporal displacement and urban-rural variation," SocArXiv df5ue, Center for Open Science.
- Fornaro, Paolo, 2020. "Nowcasting Industrial Production Using Uncoventional Data Sources," ETLA Working Papers 80, The Research Institute of the Finnish Economy.
- Bleher, Johannes & Dimpfl, Thomas, 2019. "Today I got a million, tomorrow, I don't know: On the predictability of cryptocurrencies by means of Google search volume," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 147-159.
- Krzysztof Drachal & Daniel González Cortés, 2022. "Estimation of Lockdowns’ Impact on Well-Being in Selected Countries: An Application of Novel Bayesian Methods and Google Search Queries Data," IJERPH, MDPI, vol. 20(1), pages 1-24, December.
- Fabian Schäfer & Manuel Walther & Dominik G. Grimm & Alexander Hübner, 2023. "Combining machine learning and optimization for the operational patient-bed assignment problem," Health Care Management Science, Springer, vol. 26(4), pages 785-806, December.
- Leonardo Di Gangi & M. Lapucci & F. Schoen & A. Sortino, 2019. "An efficient optimization approach for best subset selection in linear regression, with application to model selection and fitting in autoregressive time-series," Computational Optimization and Applications, Springer, vol. 74(3), pages 919-948, December.
- Gro Klaeboe & Anders Lund Eriksrud & Stein-Erik Fleten, 2013. "Benchmarking time series based forecasting models for electricity balancing market prices," Working Papers 2013-006, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Chris Heaton & Natalia Ponomareva & Qin Zhang, 2020. "Forecasting models for the Chinese macroeconomy: the simpler the better?," Empirical Economics, Springer, vol. 58(1), pages 139-167, January.
- Matyjaszek, Marta & Riesgo Fernández, Pedro & Krzemień, Alicja & Wodarski, Krzysztof & Fidalgo Valverde, Gregorio, 2019. "Forecasting coking coal prices by means of ARIMA models and neural networks, considering the transgenic time series theory," Resources Policy, Elsevier, vol. 61(C), pages 283-292.
- Abigail R Colson & Itamar Megiddo & Gerardo Alvarez-Uria & Sumanth Gandra & Tim Bedford & Alec Morton & Roger M Cooke & Ramanan Laxminarayan, 2019. "Quantifying uncertainty about future antimicrobial resistance: Comparing structured expert judgment and statistical forecasting methods," PLOS ONE, Public Library of Science, vol. 14(7), pages 1-18, July.
- Richard T.R. Qiu & Doris Chenguang Wu & Vincent Dropsy & Sylvain Petit & Stephen Pratt & Yasuo Ohe, 2021. "TOURIST ARRIVAL FORECAST AMID COVID-19: A perspective from the Asia and Pacific team," Post-Print hal-03138092, HAL.
- Aleida Braaksma & Martin S. Copenhaver & Ana C. Zenteno & Elizabeth Ugarph & Retsef Levi & Bethany J. Daily & Benjamin Orcutt & Kathryn M. Turcotte & Peter F. Dunn, 2023. "Evaluation and implementation of a Just-In-Time bed-assignment strategy to reduce wait times for surgical inpatients," Health Care Management Science, Springer, vol. 26(3), pages 501-515, September.
- Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
- Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
- Krzysztof Gajowniczek & Tomasz Ząbkowski, 2018. "Simulation Study on Clustering Approaches for Short-Term Electricity Forecasting," Complexity, Hindawi, vol. 2018, pages 1-21, April.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Innocensia Owuor & Hartwig H. Hochmair, 2023. "Temporal Relationship between Daily Reports of COVID-19 Infections and Related GDELT and Tweet Mentions," Geographies, MDPI, vol. 3(3), pages 1-26, September.
- Seunghon Ham & Sunju Kim & Naroo Lee & Pilje Kim & Igchun Eom & Byoungcheun Lee & Perng-Jy Tsai & Kiyoung Lee & Chungsik Yoon, 2017. "Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 685-699, March.
- Jethro Browell, 2017. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Papers 1708.02625, arXiv.org.
- Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
- Daniele Girolimetto & George Athanasopoulos & Tommaso Di Fonzo & Rob J Hyndman, 2023. "Cross-temporal Probabilistic Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 6/23, Monash University, Department of Econometrics and Business Statistics.
- Jethro Browell, 2018. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Filip Stanv{e}k, 2024. "Designing Time-Series Models With Hypernetworks & Adversarial Portfolios," Papers 2407.20352, arXiv.org.
- Graff, Mario & Peña, Rafael & Medina, Aurelio & Escalante, Hugo Jair, 2014. "Wind speed forecasting using a portfolio of forecasters," Renewable Energy, Elsevier, vol. 68(C), pages 550-559.
- Daniel Ciganda & Nicolas Todd, 2019. "The limits to fertility recuperation," MPIDR Working Papers WP-2019-024, Max Planck Institute for Demographic Research, Rostock, Germany.
- Thomas Woods & Tatjana Miljkovic, 2022. "Modeling the Economic Cost of Obesity Risk and Its Relation to the Health Insurance Premium in the United States: A State Level Analysis," Risks, MDPI, vol. 10(10), pages 1-28, October.
- Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
- Ana Paula Santos Gularte & Danusio Gadelha Guimarães Filho & Gabriel Oliveira Torres & Thiago Carvalho Nunes Silva & Vitor Venceslau Curtis, 2024. "Machine Learning-Based Time Series Prediction at Brazilian Stocks Exchange," Computational Economics, Springer;Society for Computational Economics, vol. 64(4), pages 2477-2508, October.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007.
"Optimal combination forecasts for hierarchical time series,"
Monash Econometrics and Business Statistics Working Papers
9/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
Cited by:
- Baecke, Philippe & De Baets, Shari & Vanderheyden, Karlien, 2017. "Investigating the added value of integrating human judgement into statistical demand forecasting systems," International Journal of Production Economics, Elsevier, vol. 191(C), pages 85-96.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Medel, Carlos A., 2012.
"How informative are in-sample information criteria to forecasting? the case of Chilean GDP,"
MPRA Paper
35949, University Library of Munich, Germany.
- Carlos Medel, 2012. "How Informative are In–Sample Information Criteria to Forecasting? The Case of Chilean GDP," Working Papers Central Bank of Chile 657, Central Bank of Chile.
- Carlos A. Medel, 2013. "How informative are in-sample information criteria to forecasting? The case of Chilean GDP," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 50(1), pages 133-161, May.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Barkha Parkash & Tek Tjing Lie & Weihua Li & Shafiqur Rahman Tito, 2024. "End-to-End Top-Down Load Forecasting Model for Residential Consumers," Energies, MDPI, vol. 17(11), pages 1-20, May.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Zhiwei Qin & John Bowman & Jagtej Bewli, 2018. "A Bayesian framework for large-scale geo-demand estimation in on-line retailing," Annals of Operations Research, Springer, vol. 263(1), pages 231-245, April.
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017.
"Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization,"
Monash Econometrics and Business Statistics Working Papers
22/17, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
- Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy. P. Rydlewski, 2017. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for Day and Night Air Pollution in Silesia Region: A Critical Overview," Papers 1712.03797, arXiv.org.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
- Alexander, Carol & Rauch, Johannes, 2021. "A general property for time aggregation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 536-548.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2017. "Aggregated moving functional median in robust prediction of hierarchical functional time series - an application to forecasting web portal users behaviors," Papers 1710.02669, arXiv.org, revised Jul 2018.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Forecast Reconciliation: A geometric View with New Insights on Bias Correction,"
Monash Econometrics and Business Statistics Working Papers
23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
- Zeynep Hilal Kilimci & A. Okay Akyuz & Mitat Uysal & Selim Akyokus & M. Ozan Uysal & Berna Atak Bulbul & Mehmet Ali Ekmis, 2019. "An Improved Demand Forecasting Model Using Deep Learning Approach and Proposed Decision Integration Strategy for Supply Chain," Complexity, Hindawi, vol. 2019, pages 1-15, March.
- Shanika L Wickramasuriya & George Athanasopoulos & Rob J Hyndman, 2015. "Forecasting hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 15/15, Monash University, Department of Econometrics and Business Statistics.
- Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
- Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Monash Econometrics and Business Statistics Working Papers
17/14, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
- Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Sali, Mustapha & Ghrab, Yahya & Chatras, Clément, 2023. "Optimal product aggregation for sales and operations planning in mass customisation context," International Journal of Production Economics, Elsevier, vol. 263(C).
- Giacomo Sbrana & Andrea Silvestrini, 2013.
"Forecasting aggregate demand: analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework,"
Temi di discussione (Economic working papers)
929, Bank of Italy, Economic Research and International Relations Area.
- Sbrana, Giacomo & Silvestrini, Andrea, 2013. "Forecasting aggregate demand: Analytical comparison of top-down and bottom-up approaches in a multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 146(1), pages 185-198.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Mahsa Ashouri & Rob J Hyndman & Galit Shmueli, 2019. "Fast Forecast Reconciliation Using Linear Models," Monash Econometrics and Business Statistics Working Papers 29/19, Monash University, Department of Econometrics and Business Statistics.
- Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Puwasala Gamakumara & Anastasios Panagiotelis & Rob J Hyndman & Mohamed Affan, 2019. "Hierarchical Forecasting," Monash Econometrics and Business Statistics Working Papers 2/19, Monash University, Department of Econometrics and Business Statistics.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Marinoiu Cristian, 2016. "Forecasting The Number Of Unemployed People From Romania Using Hierarchical Time Series," Annals - Economy Series, Constantin Brancusi University, Faculty of Economics, vol. 4, pages 91-97, August.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Florian Eckert & Nina Mühlebach, 2023. "Global and local components of output gaps," Empirical Economics, Springer, vol. 65(5), pages 2301-2331, November.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Salinas, David & Flunkert, Valentin & Gasthaus, Jan & Januschowski, Tim, 2020. "DeepAR: Probabilistic forecasting with autoregressive recurrent networks," International Journal of Forecasting, Elsevier, vol. 36(3), pages 1181-1191.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Daniel Kosiorowski & Dominik Mielczarek & Jerzy P. Rydlewski, 2018. "Forecasting of a Hierarchical Functional Time Series on Example of Macromodel for the Day and Night Air Pollution in Silesia Region - A Critical Overview," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 10(1), pages 53-73, March.
- Spithourakis, Georgios P. & Petropoulos, Fotios & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2015. "Amplifying the learning effects via a Forecasting and Foresight Support System," International Journal of Forecasting, Elsevier, vol. 31(1), pages 20-32.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
- Cobb, Marcus P A, 2017. "Joint Forecast Combination of Macroeconomic Aggregates and Their Components," MPRA Paper 76556, University Library of Munich, Germany.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- George Kapetanios & Fotis Papailias, 2018. "Big Data & Macroeconomic Nowcasting: Methodological Review," Economic Statistics Centre of Excellence (ESCoE) Discussion Papers ESCoE DP-2018-12, Economic Statistics Centre of Excellence (ESCoE).
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2019. "Improving the forecasting performance of temporal hierarchies," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-21, October.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Puwasala Gamakumara & Anastasios Panagiotelis & George Athanasopoulos & Rob J Hyndman, 2018. "Probabilisitic forecasts in hierarchical time series," Monash Econometrics and Business Statistics Working Papers 11/18, Monash University, Department of Econometrics and Business Statistics.
- Silva, Felipe L.C. & Souza, Reinaldo C. & Cyrino Oliveira, Fernando L. & Lourenco, Plutarcho M. & Calili, Rodrigo F., 2018. "A bottom-up methodology for long term electricity consumption forecasting of an industrial sector - Application to pulp and paper sector in Brazil," Energy, Elsevier, vol. 144(C), pages 1107-1118.
- Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Zhang, Keyi & Gençay, Ramazan & Ege Yazgan, M., 2017. "Application of wavelet decomposition in time-series forecasting," Economics Letters, Elsevier, vol. 158(C), pages 41-46.
- Romanus, Eduardo E. & Silva, Eugênio & Goldschmidt, Ronaldo R., 2024. "Empirical probabilistic forecasting: An approach solely based on deterministic explanatory variables for the selection of past forecast errors," International Journal of Forecasting, Elsevier, vol. 40(1), pages 184-201.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Moon, Seongmin & Simpson, Andrew & Hicks, Christian, 2013. "The development of a classification model for predicting the performance of forecasting methods for naval spare parts demand," International Journal of Production Economics, Elsevier, vol. 143(2), pages 449-454.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Calderón-Villarreal, Cuauhtémoc & Hernández-Bielma, Leticia, 2016. "Cambio estructural y desindustrialización en México./ Structural Change and desindustrialisation in Mexico," Panorama Económico, Escuela Superior de Economía, Instituto Politécnico Nacional, vol. 12(23), pages 29-54, Segundo s.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Sbrana, Giacomo & Pelagatti, Matteo, 2024. "Optimal hierarchical EWMA forecasting," International Journal of Forecasting, Elsevier, vol. 40(2), pages 616-625.
- Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
- Cobb, Marcus P A, 2018. "Improving Underlying Scenarios for Aggregate Forecasts: A Multi-level Combination Approach," MPRA Paper 88593, University Library of Munich, Germany.
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Ma, Shaohui & Fildes, Robert, 2022. "The performance of the global bottom-up approach in the M5 accuracy competition: A robustness check," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1492-1499.
- Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
- Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007.
"Hierarchical forecasts for Australian domestic tourism,"
Monash Econometrics and Business Statistics Working Papers
12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
- Capistrán Carlos & Constandse Christian & Ramos Francia Manuel, 2009. "Using Seasonal Models to Forecast Short-Run Inflation in Mexico," Working Papers 2009-05, Banco de México.
- Olukunle O. Owolabi & Deborah A. Sunter, 2022. "Bayesian Optimization and Hierarchical Forecasting of Non-Weather-Related Electric Power Outages," Energies, MDPI, vol. 15(6), pages 1-22, March.
- Colin O. Quinn & George F. Corliss & Richard J. Povinelli, 2024. "Cross-Temporal Hierarchical Forecast Reconciliation of Natural Gas Demand," Energies, MDPI, vol. 17(13), pages 1-18, June.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- Tucker McElroy, 2018. "Seasonal adjustment subject to accounting constraints," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 72(4), pages 574-589, November.
- Brégère, Margaux & Huard, Malo, 2022. "Online hierarchical forecasting for power consumption data," International Journal of Forecasting, Elsevier, vol. 38(1), pages 339-351.
- Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.
- da Silva, Felipe L.C. & Cyrino Oliveira, Fernando L. & Souza, Reinaldo C., 2019. "A bottom-up bayesian extension for long term electricity consumption forecasting," Energy, Elsevier, vol. 167(C), pages 198-210.
- Mamonov, Nikolay & Golubyatnikov, Evgeny & Kanevskiy, Daniel & Gusakov, Igor, 2022. "GoodsForecast second-place solution in M5 Uncertainty track: Combining heterogeneous models for a quantile estimation task," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1434-1441.
- Tang, Wenjin & Bu, Hui & Ji, Yuqiong & Li, Zhongfei, 2024. "Market uncertainty and information content in complex seasonality of prices," Pacific-Basin Finance Journal, Elsevier, vol. 86(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Krzysztof Karpio & Piotr Łukasiewicz & Rafik Nafkha, 2023. "New Method of Modeling Daily Energy Consumption," Energies, MDPI, vol. 16(5), pages 1-24, February.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Antoni Espasa & Eva Senra, 2017. "Twenty-Two Years of Inflation Assessment and Forecasting Experience at the Bulletin of EU & US Inflation and Macroeconomic Analysis," Econometrics, MDPI, vol. 5(4), pages 1-28, October.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
- Macmillan, Madeline & Zolan, Alexander & Bazilian, Morgan & Villa, Daniel L., 2024. "Microgrid design and multi-year dispatch optimization under climate-informed load and renewable resource uncertainty," Applied Energy, Elsevier, vol. 368(C).
- Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007.
"The vector innovation structural time series framework: a simple approach to multivariate forecasting,"
Monash Econometrics and Business Statistics Working Papers
3/07, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- de Silva, Ashton & Hyndman, Rob J. & Snyder, Ralph, 2009.
"A multivariate innovations state space Beveridge-Nelson decomposition,"
Economic Modelling, Elsevier, vol. 26(5), pages 1067-1074, September.
- de Silva, Ashton, 2007. "A multivariate innovations state space Beveridge Nelson decomposition," MPRA Paper 5431, University Library of Munich, Germany.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2013.
"Forecasting multivariate time series with the Theta Method,"
Working Papers
13004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2015. "Forecasting Multivariate Time Series with the Theta Method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 220-229, April.
- George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
- Konstantin Chirikhin & Boris Ryabko, 2021. "Compression-Based Methods of Time Series Forecasting," Mathematics, MDPI, vol. 9(3), pages 1-11, January.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007.
"A state space model for exponential smoothing with group seasonality,"
Monash Econometrics and Business Statistics Working Papers
7/07, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Azhong Ye & Rob J Hyndman & Zinai Li, 2006.
"Local Linear Multivariate Regression with Variable Bandwidth in the Presence of Heteroscedasticity,"
Monash Econometrics and Business Statistics Working Papers
8/06, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Jungwoo Kim & Joocheol Kim, 2017. "Nonparametric forecasting with one-sided kernel adopting pseudo one-step ahead data," Working papers 2017rwp-102, Yonsei University, Yonsei Economics Research Institute.
- Shim, Jooyong & Hwang, Changha, 2009. "Support vector censored quantile regression under random censoring," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 912-919, February.
- Jooyong Shim & Changha Hwang & Kyungha Seok, 2014. "Composite support vector quantile regression estimation," Computational Statistics, Springer, vol. 29(6), pages 1651-1665, December.
- George Athanasopoulos & Rob J. Hyndman, 2006.
"Modelling and forecasting Australian domestic tourism,"
Monash Econometrics and Business Statistics Working Papers
19/06, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Deng, Minfeng & Athanasopoulos, George, 2011.
"Modelling Australian domestic and international inbound travel: a spatial–temporal approach,"
Tourism Management, Elsevier, vol. 32(5), pages 1075-1084.
- Minfeng Deng & George Athanasopoulos, 2009. "Modelling Australian Domestic and International Inbound Travel: a Spatial-Temporal Approach," Monash Econometrics and Business Statistics Working Papers 10/09, Monash University, Department of Econometrics and Business Statistics.
- Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2016.
"La modelización de la demanda de turismo de economías emergentes: el caso de la llegada de turistas rusos a España,"
Cuadernos de Economía - Spanish Journal of Economics and Finance, Asociación Cuadernos de Economía, vol. 39(110), pages 112-125, Mayo.
- Marcos Alvarez-Díaz & Mª Soledad Otero-Giraldez & Manuel González-Gómez, 2015. "La Modelización de la Demanda de Turismo de Economías Emergentes: El caso de la Llegada de Turistas Rusos a España," Working Papers 1503, Universidade de Vigo, Departamento de Economía Aplicada.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Tamara Mata & Carlos Llano, 2013. "Social networks and trade of services: modelling interregional flows with spatial and network autocorrelation effects," Journal of Geographical Systems, Springer, vol. 15(3), pages 319-367, July.
- Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
- OROIAN, Maria & RATIU, Ramona-Flavia & GHERES, Marinela, 2013. "Using The Residents’ Profile As Potential Tourists In Tourist Market Segmentation: The Case Of Mures County, Romania," Academica Science Journal, Economica Series, Dimitrie Cantemir University, Faculty of Economical Science, vol. 1(2), pages 21-34, May.
- Amira Gasmi & Seifallah Sassi, 2015. "International tourism demand in Tunisia: Evidence from dynamic panel data model," Economics Bulletin, AccessEcon, vol. 35(1), pages 507-518.
- Ahmad Farid Osman & Maxwell L. King, 2015. "A new approach to forecasting based on exponential smoothing with independent regressors," Monash Econometrics and Business Statistics Working Papers 2/15, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007.
"Hierarchical forecasts for Australian domestic tourism,"
Monash Econometrics and Business Statistics Working Papers
12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
- Deng, Minfeng & Athanasopoulos, George, 2011.
"Modelling Australian domestic and international inbound travel: a spatial–temporal approach,"
Tourism Management, Elsevier, vol. 32(5), pages 1075-1084.
- Jae Kim & Param Silvapulle & Rob J. Hyndman, 2006.
"Half-Life Estimation based on the Bias-Corrected Bootstrap: A Highest Density Region Approach,"
Monash Econometrics and Business Statistics Working Papers
11/06, Monash University, Department of Econometrics and Business Statistics.
- Kim, Jae H. & Silvapulle, Param & Hyndman, Rob J., 2007. "Half-life estimation based on the bias-corrected bootstrap: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3418-3432, April.
Cited by:
- Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011.
"Improved interval estimation of long run response from a dynamic linear model: A highest density region approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010. "Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach," Working Papers 2010.06, School of Economics, La Trobe University.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010. "Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach," Working Papers 2010.06, School of Economics, La Trobe University.
- Park, Yung Chul & Park, Hail, 2014. "Stock Market Co-Movement and Exchange Rate Flexibility: Experience of the Republic of Korea," ADBI Working Papers 479, Asian Development Bank Institute.
- Georgios Loukopoulos & Dimitrios Antonopoulos, 2015. "Purchasing Power Parity: A Unit Root, Cointegration and VAR Analysis in Emerging and Advanced Countries," Business and Economic Research, Macrothink Institute, vol. 5(1), pages 262-279, June.
- Qian Chen & David E. Giles, 2007. "A Saddlepoint Approximation to the Distribution of the Half-Life Estimator in an Autoregressive Model: New Insights Into the PPP Puzzle," Econometrics Working Papers 0703, Department of Economics, University of Victoria.
- Thabo M. Mokoena & Gupta, R. & Van Eyden, R., 2009. "Half-Life Deviations from PPP in the South African Development Community (SADC)," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 9(1).
- Soon, Siew-Voon & Baharumshah, Ahmad Zubaidi & Mohamad Shariff, Nurul Sima, 2017. "The persistence in real interest rates: Does it solve the intertemporal consumption behavior puzzle?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 50(C), pages 36-51.
- L. Spierdijk & J.A. Bikker, 2012. "Mean Reversion in Stock Prices: Implications for Long-Term Investors," Working Papers 12-07, Utrecht School of Economics.
- Philip Inyeob Ji, 2013. "Do country-specific shocks matter? Evidence from Australia and high income countries," Applied Economics, Taylor & Francis Journals, vol. 45(6), pages 729-739, February.
- Jayasuriya, Sisira & Kim, Jae H. & Kumar, Parmod, 2007. "International and Internal Market Integration in Indian agriculture: A study of the Indian Rice Market," 106th Seminar, October 25-27, 2007, Montpellier, France 7935, European Association of Agricultural Economists.
- Kim, Jae H. & Ji, Philip Inyeob, 2011. "Mean-reversion in international real interest rates," Economic Modelling, Elsevier, vol. 28(4), pages 1959-1966, July.
- Rob J Hyndman & Muhammad Akram, 2006.
"Some Nonlinear Exponential Smoothing Models are Unstable,"
Monash Econometrics and Business Statistics Working Papers
3/06, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006.
"Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions,"
Monash Econometrics and Business Statistics Working Papers
13/06, Monash University, Department of Econometrics and Business Statistics.
- Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
Cited by:
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Katja Hanewald & Thomas Post & Helmut Gründl, 2011.
"Stochastic Mortality, Macroeconomic Risks and Life Insurer Solvency,"
The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(3), pages 458-475, July.
- Hanewald, Katja & Post, Thomas & Gründl, Helmut, 2011. "Stochastic mortality, macroeconomic risks, and life insurer solvency," ICIR Working Paper Series 01/11, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).
- Hanewald, Katja & Post, Thomas & Gründl, Helmut, 2009. "Stochastic mortality, macroeconomic risks, and life insurer solvency," SFB 649 Discussion Papers 2009-015, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Hendrik Hansen, 2013. "The forecasting performance of mortality models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 11-31, January.
- Thilini Dulanjali Kularatne & Jackie Li & Yanlin Shi, 2022. "Forecasting Mortality Rates with a Two-Step LASSO Based Vector Autoregressive Model," Risks, MDPI, vol. 10(11), pages 1-23, November.
- Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
- Fanny Janssen & Leo Wissen & Anton Kunst, 2013. "Including the Smoking Epidemic in Internationally Coherent Mortality Projections," Demography, Springer;Population Association of America (PAA), vol. 50(4), pages 1341-1362, August.
- Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
- Mariarosaria Coppola & Maria Russolillo & Rosaria Simone, 2019. "An Indexation Mechanism for Retirement Age: Analysis of the Gender Gap," Risks, MDPI, vol. 7(1), pages 1-13, February.
- Grossman, Irina & Wilson, Tom & Temple, Jeromey, 2023. "Forecasting small area populations with long short-term memory networks," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).
- David Atance & Alejandro Balbás & Eliseo Navarro, 2020. "Constructing dynamic life tables with a single-factor model," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 787-825, December.
- Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
- Hendrik Hansen & Peter Pflaumer, 2011. "Zur Prognose der Lebenserwartung in Deutschland: Ein Vergleich verschiedener Verfahren," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 5(3), pages 203-219, December.
- I. A. Lakman & R. A. Askarov & V. B. Prudnikov & Z. F. Askarova & V. M. Timiryanova, 2021. "Predicting Mortality by Causes in the Republic of Bashkortostan Using the Lee–Carter Model," Studies on Russian Economic Development, Springer, vol. 32(5), pages 536-548, September.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
- Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
- Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
- Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
- Anja De Waegenaere & Bertrand Melenberg & Ralph Stevens, 2010.
"Longevity Risk,"
De Economist, Springer, vol. 158(2), pages 151-192, June.
- De Waegenaere, A.M.B. & Melenberg, B. & Stevens, R., 2010. "Longevity risk," Other publications TiSEM fa89b4b3-82f5-4c65-8c2c-b, Tilburg University, School of Economics and Management.
- Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
- Njenga Carolyn N & Sherris Michael, 2011. "Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(2), pages 1-54, July.
- Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
- Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
- Haberman, Steven & Renshaw, Arthur, 2011. "A comparative study of parametric mortality projection models," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 35-55, January.
- Gisou Díaz-Rojo & Ana Debón & Jaime Mosquera, 2020. "Multivariate Control Chart and Lee–Carter Models to Study Mortality Changes," Mathematics, MDPI, vol. 8(11), pages 1-17, November.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
- Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
- Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
- Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
- Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Rob J Hyndman & Heather Booth, 2006.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
Monash Econometrics and Business Statistics Working Papers
14/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Rúben Pereira Carlos & Onofre Simões, 2012. "Hedging The Longevity Risk For The Portuguese Population In The Bond Market," Portuguese Journal of Management Studies, ISEG, Universidade de Lisboa, vol. 0(1), pages 63-82.
- Mitchell, Daniel & Brockett, Patrick & Mendoza-Arriaga, Rafael & Muthuraman, Kumar, 2013. "Modeling and forecasting mortality rates," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 275-285.
- Kenny Kam Kuen Mok & Chong It Tan & Jinhui Zhang & Yanlin Shi, 2024. "Mortality modelling with arrival of additional year of mortality data: Calibration and forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 50(28), pages 797-826.
- Carlo Maccheroni & Samuel Nocito, 2017.
"Backtesting the Lee–Carter and the Cairns–Blake–Dowd Stochastic Mortality Models on Italian Death Rates,"
Risks, MDPI, vol. 5(3), pages 1-23, July.
- Carlo Maccheroni & Samuel Nocito, 2017. "Backtesting the Lee-Carter and the Cairns-Blake-Dowd Stochastic Mortality Models on Italian Death Rates," CeRP Working Papers 166, Center for Research on Pensions and Welfare Policies, Turin (Italy).
- Pascariu, Marius D. & Canudas-Romo, Vladimir & Vaupel, James W., 2018. "The double-gap life expectancy forecasting model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 339-350.
- Szymański Andrzej & Rossa Agnieszka, 2021. "The Complex-Number Mortality Model (CNMM) based on orthonormal expansion of membership functions," Statistics in Transition New Series, Statistics Poland, vol. 22(3), pages 31-57, September.
- Darko Medved & Aleš Ahcan & Jože Sambt, 2012. "Testing the sustainability of the Slovenian (PAYG) pension system using the Lee–Carter method," International Journal of Sustainable Economy, Inderscience Enterprises Ltd, vol. 4(1), pages 17-34.
- George Atsalakis & Dimitrios Nezis & George Matalliotakis & Camelia Ioana Ucenic & Christos Skiadas, 2008. "Forecasting Mortality Rate Using a Neural Network with Fuzzy Inference System," Working Papers 0806, University of Crete, Department of Economics.
- Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
- FLICI, Farid, 2015. "Provisionnement des rentes viagères en Algérie entre approche statique et approche prospective [Life Annuities Reserving in Algeria between static approach and prospective approach]," MPRA Paper 91917, University Library of Munich, Germany.
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Hanewald, Katja, 2009. "Lee-Carter and the macroeconomy," SFB 649 Discussion Papers 2009-008, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Kyle J. Foreman & Guangquan Li & Nicky Best & Majid Ezzati, 2017. "Small area forecasts of cause-specific mortality: application of a Bayesian hierarchical model to US vital registration data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 66(1), pages 121-139, January.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
- Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
- Bergeron-Boucher, Marie-Pier & Vázquez-Castillo, Paola & Missov, Trifon, 2022. "A modal age at death approach to forecasting mortality," SocArXiv 5zr2k, Center for Open Science.
- Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
- Dorina Lazar & Anuta Buiga & Adela Deaconu, 2016. "Common Stochastic Trends in European Mortality Levels: Testing and Consequences for Modeling Longevity Risk in Insurance," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 152-168, June.
- David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
- Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
- He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
- Søren Kjærgaard & Yunus Emre Ergemen & Malene Kallestrup-Lamb & Jim Oeppen & Rune Lindahl-Jacobsen, 2019. "Forecasting Causes of Death using Compositional Data Analysis: the Case of Cancer Deaths," CREATES Research Papers 2019-07, Department of Economics and Business Economics, Aarhus University.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Tim J. Boonen & Hong Li, 2017. "Modeling and Forecasting Mortality With Economic Growth: A Multipopulation Approach," Demography, Springer;Population Association of America (PAA), vol. 54(5), pages 1921-1946, October.
- Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
- Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
- Wang, Hsin-Chung & Yue, Ching-Syang Jack & Chong, Chen-Tai, 2018. "Mortality models and longevity risk for small populations," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 351-359.
- Jisoo Hwang & Seok Ki Kim, 2023. "Unexpected longevity, intergenerational policies, and fertility," Journal of Population Economics, Springer;European Society for Population Economics, vol. 36(3), pages 1607-1640, July.
- Syazreen Shair & Sachi Purcal & Nick Parr, 2017. "Evaluating Extensions to Coherent Mortality Forecasting Models," Risks, MDPI, vol. 5(1), pages 1-20, March.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- OlaOluwa S. Yaya & Luis A. Gil-Alana & Acheampong Y. Amoateng, 2019. "Under-5 Mortality Rates in G7 Countries: Analysis of Fractional Persistence, Structural Breaks and Nonlinear Time Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 675-694, October.
- Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth, 2006.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
Monash Econometrics and Business Statistics Working Papers
14/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
Cited by:
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Alessandro Feraldi & Virginia Zarulli & Stefano Mazzuco & Cristina Giudici, 2024. "Functional data analysis approach in population studies: an application to the gender gap in life expectancy," Quality & Quantity: International Journal of Methodology, Springer, vol. 58(6), pages 5125-5150, December.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Jorge Miguel Bravo & Mercedes Ayuso & Robert Holzmann & Edward Palmer, 2021.
"Intergenerational Actuarial Fairness when Longevity Increases: Amending the Retirement Age,"
CESifo Working Paper Series
9408, CESifo.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023. "Intergenerational actuarial fairness when longevity increases: Amending the retirement age," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
- Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2012.
"Bayesian forecasting of cohort fertility,"
MPIDR Working Papers
WP-2012-003, Max Planck Institute for Demographic Research, Rostock, Germany.
- Carl Schmertmann & Emilio Zagheni & Joshua R. Goldstein & Mikko Myrskylä, 2014. "Bayesian Forecasting of Cohort Fertility," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(506), pages 500-513, June.
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
- Shaokang Wang & Han Lin Shang & Leonie Tickle & Han Li, 2024. "Forecasting Age- and Sex-Specific Survival Functions: Application to Annuity Pricing," Risks, MDPI, vol. 12(7), pages 1-15, July.
- T. Gudaitis & A. Fiori Maccioni, 2014. "Optimal Individual Choice of Contribution to Second Pillar Pension System in Lithuania," Working Paper CRENoS 201402, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Gerard Keogh, 2013. "Modelling Asylum Migration Pull-Force Factors in the EU-15," The Economic and Social Review, Economic and Social Studies, vol. 44(3), pages 371-399.
- Shripad Tuljapurkar, 2006. "Population Forecasts, Fiscal Policy, and Risk," Economics Working Paper Archive wp_471, Levy Economics Institute.
- Deschermeier Philipp, 2014. "Prognose der Anzahl der Erwerbspersonen: Eine Vorausberechnung auf Basis der Funktionalen Datenanalyse am Beispiel der Metropolregion Rhein-Neckar," ZFW – Advances in Economic Geography, De Gruyter, vol. 58(1), pages 50-65, October.
- Tongzheng Pu & Chongxing Huang & Jingjing Yang & Ming Huang, 2023. "Transcending Time and Space: Survey Methods, Uncertainty, and Development in Human Migration Prediction," Sustainability, MDPI, vol. 15(13), pages 1-23, July.
- A. Fiori Maccioni & A. Bitinas, 2013. "Lithuanian pension system's reforms following demographic and social transitions," Working Paper CRENoS 201315, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Sizhe Chen & Han Lin Shang & Yang Yang, 2025. "Is the age pension in Australia sustainable and fair? Evidence from forecasting the old-age dependency ratio using the Hamilton-Perry model," Journal of Population Research, Springer, vol. 42(1), pages 1-27, March.
- Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
- Jonathan Azose & Adrian Raftery, 2015. "Bayesian Probabilistic Projection of International Migration," Demography, Springer;Population Association of America (PAA), vol. 52(5), pages 1627-1650, October.
- Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
- Heinz Stefan, 2014. "Uncertainty quantification of world population growth: A self-similar PDF model," Monte Carlo Methods and Applications, De Gruyter, vol. 20(4), pages 261-277, December.
- Trevor Harris & Bo Li & J. Derek Tucker, 2022. "Scalable multiple changepoint detection for functional data sequences," Environmetrics, John Wiley & Sons, Ltd., vol. 33(2), March.
- Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
- Han Lin Shang, 2010. "Nonparametric modeling and forecasting electricity demand: an empirical study," Monash Econometrics and Business Statistics Working Papers 19/10, Monash University, Department of Econometrics and Business Statistics.
- Rodríguez, Julio, 2008. "A methodology for population projections: an application to Spain," DES - Working Papers. Statistics and Econometrics. WS ws084512, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Chu-Chang Ku & Peter J Dodd, 2019. "Forecasting the impact of population ageing on tuberculosis incidence," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-13, September.
- Boumezoued, Alexandre & Hardy, Héloïse Labit & El Karoui, Nicole & Arnold, Séverine, 2018. "Cause-of-death mortality: What can be learned from population dynamics?," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 301-315.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
- Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
- Tsai, Cary Chi-Liang & Cheng, Echo Sihan, 2021. "Incorporating statistical clustering methods into mortality models to improve forecasting performances," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 42-62.
- Vanella, Patrizio & Deschermeier, Philipp, 2017. "Ein stochastisches Prognosemodell internationaler Migration in Deutschland," Hannover Economic Papers (HEP) dp-605, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Laurie Brown & Binod Nepal & Heather Booth & Sophie Pennec & Kaarin Anstey & Ann Harding, 2011. "Dynamic Modelling of Ageing and Health: The Dynopta Microsimulation Model," NATSEM Working Paper Series 11/14, University of Canberra, National Centre for Social and Economic Modelling.
- Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
- Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
- Yigang Wei & Zhichao Wang & Huiwen Wang & Yan Li & Zhenyu Jiang, 2019. "Predicting population age structures of China, India, and Vietnam by 2030 based on compositional data," PLOS ONE, Public Library of Science, vol. 14(4), pages 1-42, April.
- J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
- Pianese, Augusto & Attias, Anna & Bianchi, Sergio & Varga, Zoltàn, 2020. "On the asymptotic equilibrium of a population system with migration," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 115-127.
- Alexander Dokumentov & Rob J Hyndman, 2013. "Two-dimensional smoothing of mortality rates," Monash Econometrics and Business Statistics Working Papers 26/13, Monash University, Department of Econometrics and Business Statistics.
- Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
- Zafar, Raja Fawad & Qayyum, Abdul & Ghouri, Saghir Pervaiz, 2015. "Forecasting Inflation using Functional Time Series Analysis," MPRA Paper 67208, University Library of Munich, Germany.
- Tsai, Cary Chi-Liang & Kim, Seyeon, 2022. "Model mortality rates using property and casualty insurance reserving methods," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 326-340.
- Cadena, Meitner & Denuit, Michel, 2016. "Semi-parametric accelerated hazard relational models with applications to mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 1-16.
- Leontine Alkema & Adrian Raftery & Patrick Gerland & Samuel Clark & François Pelletier & Thomas Buettner & Gerhard Heilig, 2011. "Probabilistic Projections of the Total Fertility Rate for All Countries," Demography, Springer;Population Association of America (PAA), vol. 48(3), pages 815-839, August.
- Phillip A. Jang & David S. Matteson, 2023. "Spatial correlation in weather forecast accuracy: a functional time series approach," Computational Statistics, Springer, vol. 38(3), pages 1215-1229, September.
- Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
- Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
- Tomas, Julien & Planchet, Frédéric, 2015. "Prospective mortality tables: Taking heterogeneity into account," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 169-190.
- van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Denny Meyer & Rob J. Hyndman, 2005.
"Rating Forecasts for Television Programs,"
Monash Econometrics and Business Statistics Working Papers
1/05, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Keita Kinjo & Takeshi Ebina, 2015. "State-Dependent Choice Model for TV Programs with Externality: Analysis of Viewing Behavior," Journal of Media Economics, Taylor & Francis Journals, vol. 28(1), pages 20-40, March.
- Bircan Erbas & Rob J. Hyndman & Dorota M. Gertig, 2005.
"Forecasting age-specific breast cancer mortality using functional data models,"
Monash Econometrics and Business Statistics Working Papers
3/05, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Chouinard, Marc & D'Amours, Sophie & Aït-Kadi, Daoud, 2008. "A stochastic programming approach for designing supply loops," International Journal of Production Economics, Elsevier, vol. 113(2), pages 657-677, June.
- Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
- Rob J Hyndman & Heather Booth, 2006.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
Monash Econometrics and Business Statistics Working Papers
14/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005.
"Time Series Forecasting: The Case for the Single Source of Error State Space,"
Monash Econometrics and Business Statistics Working Papers
7/05, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Charles S. Bos & Phillip Gould, 2007. "Dynamic Correlations and Optimal Hedge Ratios," Tinbergen Institute Discussion Papers 07-025/4, Tinbergen Institute.
- Luis Uzeda, 2018.
"State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models,"
Staff Working Papers
18-14, Bank of Canada.
- Luis Uzeda, 2022. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," Advances in Econometrics, in: Essays in Honour of Fabio Canova, volume 44, pages 25-53, Emerald Group Publishing Limited.
- Luis Uzeda, 2016. "State Correlation and Forecasting: A Bayesian Approach Using Unobserved Components Models," ANU Working Papers in Economics and Econometrics 2016-632, Australian National University, College of Business and Economics, School of Economics.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
- George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Md. Shahid Ullah, 2005.
"Robust forecasting of mortality and fertility rates: a functional data approach,"
Monash Econometrics and Business Statistics Working Papers
2/05, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
Cited by:
- Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Booth, Heather, 2006. "Demographic forecasting: 1980 to 2005 in review," International Journal of Forecasting, Elsevier, vol. 22(3), pages 547-581.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Sven Otto & Nazarii Salish, 2022. "Approximate Factor Models for Functional Time Series," Papers 2201.02532, arXiv.org, revised May 2024.
- Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
- Kung, Ko-Lun & MacMinn, Richard D. & Kuo, Weiyu & Tsai, Chenghsien Jason, 2022. "Multi-population mortality modeling: When the data is too much and not enough," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 41-55.
- Gabriella Piscopo & Marina Resta, 2017. "Applying spectral biclustering to mortality data," Risks, MDPI, vol. 5(2), pages 1-13, April.
- Márcio Laurini, 2012.
"Dynamic Functional Data Analysis with Nonparametric State Space Models,"
IBMEC RJ Economics Discussion Papers
2012-01, Economics Research Group, IBMEC Business School - Rio de Janeiro.
- M�rcio Poletti Laurini, 2014. "Dynamic functional data analysis with non-parametric state space models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(1), pages 142-163, January.
- Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Adrian Raftery & Jennifer Chunn & Patrick Gerland & Hana Ševčíková, 2013. "Bayesian Probabilistic Projections of Life Expectancy for All Countries," Demography, Springer;Population Association of America (PAA), vol. 50(3), pages 777-801, June.
- Niels Haldrup & Carsten P. T. Rosenskjold, 2019.
"A Parametric Factor Model of the Term Structure of Mortality,"
Econometrics, MDPI, vol. 7(1), pages 1-22, March.
- Niels Haldrup & Carsten P. T. Rosenskjold, 2018. "A Parametric Factor Model of the Term Structure of Mortality," CREATES Research Papers 2018-06, Department of Economics and Business Economics, Aarhus University.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- van der Linde, Angelika, 2008. "Variational Bayesian functional PCA," Computational Statistics & Data Analysis, Elsevier, vol. 53(2), pages 517-533, December.
- Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006.
"Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions,"
Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
- Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
- Mestekemper, Thomas & Windmann, Michael & Kauermann, Göran, 2010. "Functional hourly forecasting of water temperature," International Journal of Forecasting, Elsevier, vol. 26(4), pages 684-699, October.
- Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
- Rodney V. Fonseca & Aluísio Pinheiro, 2020. "Wavelet estimation of the dimensionality of curve time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(5), pages 1175-1204, October.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Pallavi Sawant & Nedret Billor & Hyejin Shin, 2012. "Functional outlier detection with robust functional principal component analysis," Computational Statistics, Springer, vol. 27(1), pages 83-102, March.
- Won‐Ki Seo, 2024. "Functional principal component analysis for cointegrated functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 45(2), pages 320-330, March.
- Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
- Gao, Quansheng & Hu, Chengjun, 2009. "Dynamic mortality factor model with conditional heteroskedasticity," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 410-423, December.
- Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
- Hainaut, Donatien & Denuit, Michel, 2019. "Wavelet-based feature-engineering for mortality projection," LIDAM Discussion Papers ISBA 2019026, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Jorge Miguel Bravo & Mercedes Ayuso & Robert Holzmann & Edward Palmer, 2021.
"Intergenerational Actuarial Fairness when Longevity Increases: Amending the Retirement Age,"
CESifo Working Paper Series
9408, CESifo.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023. "Intergenerational actuarial fairness when longevity increases: Amending the retirement age," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
- Rebecca F. Gleditsch & Adrian F. Rogne & Astri Syse & Michael Thomas, 2021. "The accuracy of Statistics Norway’s national population projections," Discussion Papers 948, Statistics Norway, Research Department.
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Danesi, Ivan Luciano & Haberman, Steven & Millossovich, Pietro, 2015. "Forecasting mortality in subpopulations using Lee–Carter type models: A comparison," Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 151-161.
- Rebecca Folkman Gleditsch & Astri Syse, 2020. "Ways to project fertility in Europe. Perceptions of current practices and outcomes," Discussion Papers 929, Statistics Norway, Research Department.
- Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019.
"Seasonal Functional Autoregressive Models,"
Monash Econometrics and Business Statistics Working Papers
16/19, Monash University, Department of Econometrics and Business Statistics.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022. "Seasonal functional autoregressive models," Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
- Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015.
"Bayesian Poisson log-bilinear models for mortality projections with multiple populations,"
BAFFI CAREFIN Working Papers
1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
- Guillermo Vinue & Irene Epifanio, 2021. "Robust archetypoids for anomaly detection in big functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 437-462, June.
- Yang, Sharon S. & Yue, Jack C. & Huang, Hong-Chih, 2010. "Modeling longevity risks using a principal component approach: A comparison with existing stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 46(1), pages 254-270, February.
- Shang Han Lin, 2020. "A Comparison of Hurst Exponent Estimators in Long-range Dependent Curve Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 12(1), pages 1-39, January.
- Boualem Djehiche & Bjorn Lofdahl, 2014.
"Risk aggregation and stochastic claims reserving in disability insurance,"
Papers
1401.3589, arXiv.org, revised Aug 2014.
- Djehiche, Boualem & Löfdahl, Björn, 2014. "Risk aggregation and stochastic claims reserving in disability insurance," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 100-108.
- Bastian Schäfer, 2021. "Bandwidth selection for the Local Polynomial Double Conditional Smoothing under Spatial ARMA Errors," Working Papers CIE 146, Paderborn University, CIE Center for International Economics.
- Sandra Bilek-Steindl & Christian Glocker & Serguei Kaniovski & Thomas Url, 2016. "Austria 2025 – The Effect of Human Capital Accumulation on Output Growth," WIFO Studies, WIFO, number 59175, January.
- Kokoszka, Piotr & Miao, Hong & Petersen, Alexander & Shang, Han Lin, 2019. "Forecasting of density functions with an application to cross-sectional and intraday returns," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1304-1317.
- Paul Ghelasi & Florian Ziel, 2023. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," Papers 2305.16255, arXiv.org.
- Shaokang Wang & Han Lin Shang & Leonie Tickle & Han Li, 2024. "Forecasting Age- and Sex-Specific Survival Functions: Application to Annuity Pricing," Risks, MDPI, vol. 12(7), pages 1-15, July.
- Emanuele Aliverti & Stefano Mazzuco & Bruno Scarpa, 2022. "Dynamic modelling of mortality via mixtures of skewed distribution functions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1030-1048, July.
- Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
- Michel Denuit, 2009. "Life Anuities with Stochastic Survival Probabilities: A Review," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 463-489, September.
- D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.
- Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
- Shahin Tavakoli & Gilles Nisol & Marc Hallin, 2023. "Factor models for high‐dimensional functional time series II: Estimation and forecasting," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 601-621, September.
- Yang, Yang & Shang, Han Lin & Raymer, James, 2024. "Forecasting Australian fertility by age, region, and birthplace," International Journal of Forecasting, Elsevier, vol. 40(2), pages 532-548.
- Nurul Aityqah Yaacob & Jamil J. Jaber & Dharini Pathmanathan & Sadam Alwadi & Ibrahim Mohamed, 2021. "Hybrid of the Lee-Carter Model with Maximum Overlap Discrete Wavelet Transform Filters in Forecasting Mortality Rates," Mathematics, MDPI, vol. 9(18), pages 1-11, September.
- Han Li & Colin O’Hare, 2019. "Mortality Forecasting: How Far Back Should We Look in Time?," Risks, MDPI, vol. 7(1), pages 1-15, February.
- Ghelasi, Paul & Ziel, Florian, 2024. "Hierarchical forecasting for aggregated curves with an application to day-ahead electricity price auctions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 581-596.
- Deschermeier Philipp, 2014. "Prognose der Anzahl der Erwerbspersonen: Eine Vorausberechnung auf Basis der Funktionalen Datenanalyse am Beispiel der Metropolregion Rhein-Neckar," ZFW – Advances in Economic Geography, De Gruyter, vol. 58(1), pages 50-65, October.
- Andreas Niemeyer, 2015. "Safety Margins for Systematic Biometric and Financial Risk in a Semi-Markov Life Insurance Framework," Risks, MDPI, vol. 3(1), pages 1-26, January.
- Sizhe Chen & Han Lin Shang & Yang Yang, 2025. "Is the age pension in Australia sustainable and fair? Evidence from forecasting the old-age dependency ratio using the Hamilton-Perry model," Journal of Population Research, Springer, vol. 42(1), pages 1-27, March.
- Luke Durell & J. Thad Scott & Douglas Nychka & Amanda S. Hering, 2023. "Functional forecasting of dissolved oxygen in high‐frequency vertical lake profiles," Environmetrics, John Wiley & Sons, Ltd., vol. 34(4), June.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
- D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
- Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
- Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
- Bali, Juan Lucas & Boente, Graciela, 2014. "Consistency of a numerical approximation to the first principal component projection pursuit estimator," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 181-191.
- Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
- Boente, Graciela & Parada, Daniela, 2023. "Robust estimation for functional quadratic regression models," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
- Hong Li & Johnny Siu-Hang Li, 2017. "Optimizing the Lee-Carter Approach in the Presence of Structural Changes in Time and Age Patterns of Mortality Improvements," Demography, Springer;Population Association of America (PAA), vol. 54(3), pages 1073-1095, June.
- Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
- Yoosoon Chang & Yongok Choi & Chang Sik Kim & J. Isaac Miller & Joon Y. Park, 2019.
"Forecasting Regional Long-Run Energy Demand: A Functional Coefficient Panel Approach,"
Working Papers
1915, Department of Economics, University of Missouri.
- Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
- Marcus Christiansen, 2012. "Multistate models in health insurance," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(2), pages 155-186, June.
- Francesca Di Iorio & Stefano Fachin, 2020. "Forecasting mortality rates and life expectancy in the year of Covid-19," DSS Empirical Economics and Econometrics Working Papers Series 2020/1, Centre for Empirical Economics and Econometrics, Department of Statistics, "Sapienza" University of Rome.
- Xie, Haihan & Kong, Linglong, 2023. "Gaussian copula function-on-scalar regression in reproducing kernel Hilbert space," Journal of Multivariate Analysis, Elsevier, vol. 198(C).
- Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
- Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
- Fraiman, Ricardo & Pateiro-López, Beatriz, 2012. "Quantiles for finite and infinite dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 108(C), pages 1-14.
- Andrew J. G. Cairns & David Blake & Kevin Dowd & Amy R. Kessler, 2016. "Phantoms never die: living with unreliable population data," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 975-1005, October.
- Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
- Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
- Diquigiovanni, Jacopo & Fontana, Matteo & Vantini, Simone, 2022. "Conformal prediction bands for multivariate functional data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Wang, Pengjie & Pantelous, Athanasios A. & Vahid, Farshid, 2023. "Multi-population mortality projection: The augmented common factor model with structural breaks," International Journal of Forecasting, Elsevier, vol. 39(1), pages 450-469.
- Hatzopoulos, P. & Haberman, S., 2011. "A dynamic parameterization modeling for the age-period-cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 49(2), pages 155-174, September.
- Christiansen, Marcus C. & Denuit, Michel M. & Lazar, Dorina, 2012. "The Solvency II square-root formula for systematic biometric risk," Insurance: Mathematics and Economics, Elsevier, vol. 50(2), pages 257-265.
- Shang, Han Lin & Smith, Peter W.F. & Bijak, Jakub & Wiśniowski, Arkadiusz, 2016. "A multilevel functional data method for forecasting population, with an application to the United Kingdom," International Journal of Forecasting, Elsevier, vol. 32(3), pages 629-649.
- Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
- Njenga Carolyn N & Sherris Michael, 2011. "Longevity Risk and the Econometric Analysis of Mortality Trends and Volatility," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 5(2), pages 1-54, July.
- Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
- Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
- Haolun Shi & Jiguo Cao, 2022. "Robust Functional Principal Component Analysis Based on a New Regression Framework," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 523-543, September.
- Hainaut, Donatien & Denuit, Michel, 2020. "Wavelet-based feature-engineering for mortality projection," LIDAM Discussion Papers ISBA 2020001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
- Athena Pantazis & Samuel J Clark, 2018. "A parsimonious characterization of change in global age-specific and total fertility rates," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-19, January.
- Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
- Aleksejs Melihovs, 2014. "Forecasting Natural Population Change: the Case of Latvia," Discussion Papers 2014/03, Latvijas Banka.
- Chen, An & Li, Hong & Schultze, Mark, 2022. "Collective longevity swap: A novel longevity risk transfer solution and its economic pricing," Journal of Economic Behavior & Organization, Elsevier, vol. 201(C), pages 227-249.
- Dowd, Kevin & Cairns, Andrew J.G. & Blake, David & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2010. "Evaluating the goodness of fit of stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 47(3), pages 255-265, December.
- Debon, A. & Montes, F. & Mateu, J. & Porcu, E. & Bevilacqua, M., 2008. "Modelling residuals dependence in dynamic life tables: A geostatistical approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3128-3147, February.
- Valeria D’Amato & Steven Haberman & Maria Russolillo, 2012. "The Stratified Sampling Bootstrap for Measuring the Uncertainty in Mortality Forecasts," Methodology and Computing in Applied Probability, Springer, vol. 14(1), pages 135-148, March.
- Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Cristina Rueda-Sabater & Pedro Alvarez-Esteban, 2008. "The analysis of age-specific fertility patterns via logistic models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 35(9), pages 1053-1070.
- Li, Han & O’Hare, Colin, 2017. "Semi-parametric extensions of the Cairns–Blake–Dowd model: A one-dimensional kernel smoothing approach," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 166-176.
- Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
- Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021.
"Getting life expectancy estimates right for pension policy: period versus cohort approach,"
Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
- Ayuso, Mercedes & Bravo, Jorge Miguel & Holzmann, Robert, 2018. "Getting Life Expectancy Estimates Right for Pension Policy: Period versus Cohort Approach," IZA Discussion Papers 11512, Institute of Labor Economics (IZA).
- Mercedes Ayuso & Jorge Miguel Bravo & Robert Holzman, 2018. "Getting Life Expectancy Estimates Right for Pension Policy: Period versus Cohort Approach," CESifo Working Paper Series 7349, CESifo.
- Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
- Carfora, M.F. & Cutillo, L. & Orlando, A., 2017. "A quantitative comparison of stochastic mortality models on Italian population data," Computational Statistics & Data Analysis, Elsevier, vol. 112(C), pages 198-214.
- Risk, J. & Ludkovski, M., 2016. "Statistical emulators for pricing and hedging longevity risk products," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 45-60.
- Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
- Gleditsch Rebecca Folkman & Syse Astri & Thomas Michael J., 2021. "Fertility Projections in a European Context: A Survey of Current Practices among Statistical Agencies," Journal of Official Statistics, Sciendo, vol. 37(3), pages 547-568, September.
- Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Rob J Hyndman & Heather Booth, 2006.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
Monash Econometrics and Business Statistics Working Papers
14/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
- Vanella, Patrizio & Deschermeier, Philipp, 2017. "Ein stochastisches Prognosemodell internationaler Migration in Deutschland," Hannover Economic Papers (HEP) dp-605, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Canale, Antonio & Vantini, Simone, 2016. "Constrained functional time series: Applications to the Italian gas market," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1340-1351.
- Azizur Rahman & Depeng Jiang, 2023. "Forecasting Canadian Age-Specific Mortality Rates: Application of Functional Time Series Analysis," Mathematics, MDPI, vol. 11(18), pages 1-14, September.
- Ufuk Beyaztas & Hanlin Shang, 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Forecasting, MDPI, vol. 4(1), pages 1-15, March.
- Graciela Boente & Matías Salibián-Barrera, 2021. "Robust functional principal components for sparse longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 79(2), pages 159-188, August.
- Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
- Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
- Germán Aneiros-Pérez & Philippe Vieu, 2013. "Testing linearity in semi-parametric functional data analysis," Computational Statistics, Springer, vol. 28(2), pages 413-434, April.
- Moliner, Jesús & Epifanio, Irene, 2019. "Robust multivariate and functional archetypal analysis with application to financial time series analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 519(C), pages 195-208.
- George Atsalakis & Dimitrios Nezis & George Matalliotakis & Camelia Ioana Ucenic & Christos Skiadas, 2008. "Forecasting Mortality Rate Using a Neural Network with Fuzzy Inference System," Working Papers 0806, University of Crete, Department of Economics.
- Jorge R. Sosa Donoso & Miguel Flores & Salvador Naya & Javier Tarrío-Saavedra, 2023. "Local Correlation Integral Approach for Anomaly Detection Using Functional Data," Mathematics, MDPI, vol. 11(4), pages 1-18, February.
- Israel Martínez‐Hernández & Marc G. Genton, 2021. "Nonparametric trend estimation in functional time series with application to annual mortality rates," Biometrics, The International Biometric Society, vol. 77(3), pages 866-878, September.
- Aguilera, Ana M. & Escabias, Manuel & Valderrama, Mariano J., 2008. "Forecasting binary longitudinal data by a functional PC-ARIMA model," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3187-3197, February.
- Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
- Arkadiusz Wiśniowski & Peter Smith & Jakub Bijak & James Raymer & Jonathan Forster, 2015. "Bayesian Population Forecasting: Extending the Lee-Carter Method," Demography, Springer;Population Association of America (PAA), vol. 52(3), pages 1035-1059, June.
- Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Mohammad Arashi & Mohammad Mahdi Rounaghi, 2022. "Analysis of market efficiency and fractal feature of NASDAQ stock exchange: Time series modeling and forecasting of stock index using ARMA-GARCH model," Future Business Journal, Springer, vol. 8(1), pages 1-12, December.
- Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
- Rueda, Cristina & Rodríguez, Pilar, 2010. "State space models for estimating and forecasting fertility," International Journal of Forecasting, Elsevier, vol. 26(4), pages 712-724, October.
- Lee, Seokho & Shin, Hyejin & Billor, Nedret, 2013. "M-type smoothing spline estimators for principal functions," Computational Statistics & Data Analysis, Elsevier, vol. 66(C), pages 89-100.
- Alexandros E. Milionis & Nikolaos G. Galanopoulos & Peter Hatzopoulos & Aliki Sagianou, 2022. "Forecasting actuarial time series: a practical study of the effect of statistical pre-adjustments," Working Papers 297, Bank of Greece.
- Marcus Ebeling, 2018. "How Has the Lower Boundary of Human Mortality Evolved, and Has It Already Stopped Decreasing?," Demography, Springer;Population Association of America (PAA), vol. 55(5), pages 1887-1903, October.
- Carl Schmertmann, 2021. "D-splines: Estimating rate schedules using high-dimensional splines with empirical demographic penalties," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 44(45), pages 1085-1114.
- Ainhoa-Elena Léger & Stefano Mazzuco, 2021. "What Can We Learn from the Functional Clustering of Mortality Data? An Application to the Human Mortality Database," European Journal of Population, Springer;European Association for Population Studies, vol. 37(4), pages 769-798, November.
- Shirun Shen & Huiya Zhou & Kejun He & Lan Zhou, 2024. "Principal Component Analysis of Two-dimensional Functional Data with Serial Correlation," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 29(3), pages 601-620, September.
- Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
- Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
- Luis Alfonso Menéndez-García & Paulino José García-Nieto & Esperanza García-Gonzalo & Fernando Sánchez Lasheras & Laura Álvarez-de-Prado & Antonio Bernardo-Sánchez, 2023. "Method for the Detection of Functional Outliers Applied to Quality Monitoring Samples in the Vicinity of El Musel Seaport in the Metropolitan Area of Gijón (Northern Spain)," Mathematics, MDPI, vol. 11(12), pages 1-23, June.
- Farah Yasmeen & Rob J Hyndman & Bircan Erbas, 2010. "Forecasting age-related changes in breast cancer mortality among white and black US women: A functional approach," Monash Econometrics and Business Statistics Working Papers 9/10, Monash University, Department of Econometrics and Business Statistics.
- Patrizio Vanella & Philipp Deschermeier & Christina B. Wilke, 2020. "An Overview of Population Projections—Methodological Concepts, International Data Availability, and Use Cases," Forecasting, MDPI, vol. 2(3), pages 1-18, September.
- Han Lin Shang, 2011.
"A survey of functional principal component analysis,"
Monash Econometrics and Business Statistics Working Papers
6/11, Monash University, Department of Econometrics and Business Statistics.
- Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
- Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
- Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
- He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
- Alexander Dokumentov & Rob J Hyndman, 2013. "Two-dimensional smoothing of mortality rates," Monash Econometrics and Business Statistics Working Papers 26/13, Monash University, Department of Econometrics and Business Statistics.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Goia, Aldo & May, Caterina & Fusai, Gianluca, 2010. "Functional clustering and linear regression for peak load forecasting," International Journal of Forecasting, Elsevier, vol. 26(4), pages 700-711, October.
- Rob J. Hyndman & Han Lin Shang, 2008. "Rainbow plots, Bagplots and Boxplots for Functional Data," Monash Econometrics and Business Statistics Working Papers 9/08, Monash University, Department of Econometrics and Business Statistics.
- Thomas Url & Rob J. Hyndman & Alexander Dokumentov, 2016. "Long-term Forecasts of Age-specific Labour Market Participation Rates with Functional Data Models," WIFO Working Papers 510, WIFO.
- Daniel R. Kowal & David S. Matteson & David Ruppert, 2019. "Functional Autoregression for Sparsely Sampled Data," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 37(1), pages 97-109, January.
- Zafar, Raja Fawad & Qayyum, Abdul & Ghouri, Saghir Pervaiz, 2015. "Forecasting Inflation using Functional Time Series Analysis," MPRA Paper 67208, University Library of Munich, Germany.
- Laha, A. K. & Rathi, Poonam, 2017. "New Approaches to Prediction using Functional Data Analysis," IIMA Working Papers WP 2017-08-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Hervé Cardot & Antoine Godichon-Baggioni, 2017. "Fast estimation of the median covariation matrix with application to online robust principal components analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(3), pages 461-480, September.
- Alex Isakson & Simone Krummaker & María Dolores Martínez-Miranda & Ben Rickayzen, 2021. "Calendar Effect and In-Sample Forecasting Applied to Mesothelioma Mortality Data," Mathematics, MDPI, vol. 9(18), pages 1-17, September.
- Cadena, Meitner & Denuit, Michel, 2016. "Semi-parametric accelerated hazard relational models with applications to mortality projections," Insurance: Mathematics and Economics, Elsevier, vol. 68(C), pages 1-16.
- Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
- Dennis Schroers, 2024. "Robust Functional Data Analysis for Stochastic Evolution Equations in Infinite Dimensions," Papers 2401.16286, arXiv.org, revised Jun 2024.
- Graciela Boente & Matías Salibian-Barrera, 2015. "S -Estimators for Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1100-1111, September.
- Bali, Juan Lucas & Boente, Graciela, 2017. "Robust estimators under a functional common principal components model," Computational Statistics & Data Analysis, Elsevier, vol. 113(C), pages 424-440.
- Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
- Gao, Yuan & Shang, Han Lin & Yang, Yanrong, 2019. "High-dimensional functional time series forecasting: An application to age-specific mortality rates," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 232-243.
- Jorge Barrientos Marin & Laura Marquez Marulanda & Fernando Villada Duque, 2023. "Analyzing Electricity Demand in Colombia: A Functional Time Series Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 13(1), pages 75-84, January.
- Kehui Chen & Pedro Delicado & Hans-Georg Müller, 2017. "Modelling function-valued stochastic processes, with applications to fertility dynamics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(1), pages 177-196, January.
- Santiago Gall n & Jorge Barrientos, 2021. "Forecasting the Colombian Electricity Spot Price under a Functional Approach," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 67-74.
- Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
- Mammen, Enno & Martínez-Miranda, María Dolores & Nielsen, Jens Perch & Vogt, Michael, 2021. "Calendar effect and in-sample forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 31-52.
- Härdle, Wolfgang Karl & Myšičková, Alena, 2009. "Stochastic population forecast for Germany and its consequence for the German pension system," SFB 649 Discussion Papers 2009-009, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Thomas Url & Rob J Hyndman & Alexander Dokumentov, 2016. "Long-term forecasts of age-specific participation rates with functional data models," Monash Econometrics and Business Statistics Working Papers 3/16, Monash University, Department of Econometrics and Business Statistics.
- Phillip A. Jang & David S. Matteson, 2023. "Spatial correlation in weather forecast accuracy: a functional time series approach," Computational Statistics, Springer, vol. 38(3), pages 1215-1229, September.
- Syazreen Shair & Sachi Purcal & Nick Parr, 2017. "Evaluating Extensions to Coherent Mortality Forecasting Models," Risks, MDPI, vol. 5(1), pages 1-20, March.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- Ka Kin Lam & Bo Wang, 2021. "Robust Non-Parametric Mortality and Fertility Modelling and Forecasting: Gaussian Process Regression Approaches," Forecasting, MDPI, vol. 3(1), pages 1-21, March.
- Kehui Chen & Hans-Georg Müller, 2012. "Modeling Repeated Functional Observations," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(500), pages 1599-1609, December.
- de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
- Wang, Hong & Koo, Bonsoo & O'Hare, Colin, 2016. "Retirement planning in the light of changing demographics," Economic Modelling, Elsevier, vol. 52(PB), pages 749-763.
- Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
- Ševčíková, Hana & Raftery, Adrian E., 2016. "bayesPop: Probabilistic Population Projections," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 75(i05).
- Istvan Majer & Ralph Stevens & Wilma Nusselder & Johan Mackenbach & Pieter Baal, 2013. "Modeling and Forecasting Health Expectancy: Theoretical Framework and Application," Demography, Springer;Population Association of America (PAA), vol. 50(2), pages 673-697, April.
- Martínez-Hernández, Israel & Genton, Marc G. & González-Farías, Graciela, 2019. "Robust depth-based estimation of the functional autoregressive model," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 66-79.
- Christiansen, Marcus C. & Niemeyer, Andreas & Teigiszerová, Lucia, 2015. "Modeling and forecasting duration-dependent mortality rates," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 65-81.
- Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
- Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
- Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo, 2014. "Computational framework for longevity risk management," Computational Management Science, Springer, vol. 11(1), pages 111-137, January.
- Patrizio Vanella & Ugofilippo Basellini & Berit Lange, 2020. "Assessing Excess Mortality in Times of Pandemics Based on Principal Component Analysis of Weekly Mortality Data -- The Case of COVID-19," Working Papers axbhmxrs-o0viyh9z07m, French Institute for Demographic Studies.
- Tomas, Julien & Planchet, Frédéric, 2015. "Prospective mortality tables: Taking heterogeneity into account," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 169-190.
- Péter Vékás, 2020. "Rotation of the age pattern of mortality improvements in the European Union," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1031-1048, September.
- Joanne Ellison & Erengul Dodd & Jonathan J. Forster, 2020. "Forecasting of cohort fertility under a hierarchical Bayesian approach," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 829-856, June.
- van Delft, Anne & Eichler, Michael, 2017. "Locally Stationary Functional Time Series," LIDAM Discussion Papers ISBA 2017023, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Kehui Chen & Jing Lei, 2015. "Localized Functional Principal Component Analysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1266-1275, September.
- Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.
- Rob J. Hyndman & Anne B. Koehler, 2005.
"Another Look at Measures of Forecast Accuracy,"
Monash Econometrics and Business Statistics Working Papers
13/05, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
Cited by:
- Cabral, Joilson de Assis & Freitas Cabral, Maria Viviana de & Pereira Júnior, Amaro Olímpio, 2020. "Elasticity estimation and forecasting: An analysis of residential electricity demand in Brazil," Utilities Policy, Elsevier, vol. 66(C).
- Das, Prashant & Füss, Roland & Hanle, Benjamin & Russ, Isabel Nina, 2020. "The cross-over effect of irrational sentiments in housing, commercial property, and stock markets," Journal of Banking & Finance, Elsevier, vol. 114(C).
- Helder Rojas & David Dias, 2020. "Transmission of macroeconomic shocks to risk parameters: Their uses in stress testing," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(3), pages 353-380, May.
- Gaetano Perone, 2022. "Using the SARIMA Model to Forecast the Fourth Global Wave of Cumulative Deaths from COVID-19: Evidence from 12 Hard-Hit Big Countries," Econometrics, MDPI, vol. 10(2), pages 1-23, April.
- Jiang Wu & Jianzhong Zhou & Lu Chen & Lei Ye, 2015. "Coupling Forecast Methods of Multiple Rainfall–Runoff Models for Improving the Precision of Hydrological Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5091-5108, November.
- Pi Guo & Tao Liu & Qin Zhang & Li Wang & Jianpeng Xiao & Qingying Zhang & Ganfeng Luo & Zhihao Li & Jianfeng He & Yonghui Zhang & Wenjun Ma, 2017. "Developing a dengue forecast model using machine learning: A case study in China," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(10), pages 1-22, October.
- Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Miriam Steurer & Robert Hill, 2019. "Metrics for Evaluating the Performance of Automated Valuation Models," Graz Economics Papers 2019-02, University of Graz, Department of Economics.
- Ioannis Badounas & Georgios Pitselis, 2020. "Loss Reserving Estimation With Correlated Run-Off Triangles in a Quantile Longitudinal Model," Risks, MDPI, vol. 8(1), pages 1-26, February.
- Walter, Paul & Groß, Markus & Schmid, Timo & Tzavidis, Nikos, 2017. "Estimation of linear and non-linear indicators using interval censored income data," Discussion Papers 2017/22, Free University Berlin, School of Business & Economics.
- Li, Jinghua & Zhou, Jiasheng & Chen, Bo, 2020. "Review of wind power scenario generation methods for optimal operation of renewable energy systems," Applied Energy, Elsevier, vol. 280(C).
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
- Michael Kostmann & Wolfgang K. Härdle, 2019.
"Forecasting in Blockchain-Based Local Energy Markets,"
Energies, MDPI, vol. 12(14), pages 1-27, July.
- Kostmann, Michael & Härdle, Wolfgang Karl, 2019. "Forecasting in Blockchain-based Local Energy Markets," IRTG 1792 Discussion Papers 2019-014, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
- Jahanpour, Ehsan & Ko, Hoo Sang & Nof, Shimon Y., 2016. "Collaboration protocols for sustainable wind energy distribution networks," International Journal of Production Economics, Elsevier, vol. 182(C), pages 496-507.
- Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Pankaj Kumar, 2021. "Deep Hawkes Process for High-Frequency Market Making," Papers 2109.15110, arXiv.org.
- Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007.
"Does age structure forecast economic growth?,"
International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
- David E. Bloom & David Canning & Günther Fink & Jocelyn Finlay, 2006. "Does Age Structure Forecast Economic Growth?," PGDA Working Papers 2006, Program on the Global Demography of Aging.
- David E. Bloom & David Canning & Günther Fink & Jocelyn E. Finlay, 2007. "Does Age Structure Forecast Economic Growth?," NBER Working Papers 13221, National Bureau of Economic Research, Inc.
- Mengyang Wang & Hui Wang & Jiao Wang & Hongwei Liu & Rui Lu & Tongqing Duan & Xiaowen Gong & Siyuan Feng & Yuanyuan Liu & Zhuang Cui & Changping Li & Jun Ma, 2019. "A novel model for malaria prediction based on ensemble algorithms," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-15, December.
- Taleb, Nassim Nicholas, 2020. "On the statistical differences between binary forecasts and real-world payoffs," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1228-1240.
- Peng, Bo & Song, Haiyan & Crouch, Geoffrey I., 2014. "A meta-analysis of international tourism demand forecasting and implications for practice," Tourism Management, Elsevier, vol. 45(C), pages 181-193.
- Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Marcelo Bourguignon, 2016. "Poisson–geometric INAR(1) process for modeling count time series with overdispersion," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 70(3), pages 176-192, August.
- Raman Pall & Yvan Gauthier & Sofia Auer & Walid Mowaswes, 2023. "Predicting drug shortages using pharmacy data and machine learning," Health Care Management Science, Springer, vol. 26(3), pages 395-411, September.
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Willcock, Simon & Martínez-López, Javier & Hooftman, Danny A.P. & Bagstad, Kenneth J. & Balbi, Stefano & Marzo, Alessia & Prato, Carlo & Sciandrello, Saverio & Signorello, Giovanni & Voigt, Brian & Vi, 2018. "Machine learning for ecosystem services," Ecosystem Services, Elsevier, vol. 33(PB), pages 165-174.
- José Manuel Oliveira & Patrícia Ramos, 2024. "Evaluating the Effectiveness of Time Series Transformers for Demand Forecasting in Retail," Mathematics, MDPI, vol. 12(17), pages 1-28, August.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018. "A Data-Driven Approach to Construct Survey-Based Indicators by Means of Evolutionary Algorithms," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 135(1), pages 1-14, January.
- Rounaghi, Mohammad Mahdi & Nassir Zadeh, Farzaneh, 2016. "Investigation of market efficiency and Financial Stability between S&P 500 and London Stock Exchange: Monthly and yearly Forecasting of Time Series Stock Returns using ARMA model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 456(C), pages 10-21.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017.
"“Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming”,"
AQR Working Papers
201706, University of Barcelona, Regional Quantitative Analysis Group, revised May 2017.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "Let the data do the talking: Empirical modelling of survey-based expectations by means of genetic programming," IREA Working Papers 201711, University of Barcelona, Research Institute of Applied Economics, revised May 2017.
- Snyder, Ralph D. & Koehler, Anne B., 2009. "Incorporating a tracking signal into a state space model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 526-530, July.
- Oscar Claveria, 2018.
"“A new metric of consensus for Likert scales”,"
IREA Working Papers
201821, University of Barcelona, Research Institute of Applied Economics, revised Oct 2018.
- Oscar Claveria, 2018. "“A new metric of consensus for Likert scales”," AQR Working Papers 201810, University of Barcelona, Regional Quantitative Analysis Group, revised Oct 2018.
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- Phil Mike Jones & Jon Minton & Andrew Bell, 2023. "Methods for disentangling period and cohort changes in mortality risk over the twentieth century: comparing graphical and modelling approaches," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(4), pages 3219-3239, August.
- Eliud Silva & Corey Sparks, 2021. "Hierarchical forecasts of Diabetes mortality in Mexico by marginalization and sex to establish resource allocation," EconoQuantum, Revista de Economia y Finanzas, Universidad de Guadalajara, Centro Universitario de Ciencias Economico Administrativas, Departamento de Metodos Cuantitativos y Maestria en Economia., vol. 18(2), pages 82-98, Julio-Dic.
- Sophia Voulgaropoulou & Nikolaos Samaras & Nikolaos Ploskas, 2022. "Predicting the Execution Time of the Primal and Dual Simplex Algorithms Using Artificial Neural Networks," Mathematics, MDPI, vol. 10(7), pages 1-21, March.
- Luca Sartore & Yijun Wei & Emilola Abayomi & Seth Riggins & Gavin Corral & Valbona Bejleri & Clifford Spiegelman, 2020. "Modeling swine population dynamics at a finer temporal resolution," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 36(6), pages 1060-1079, November.
- Cathy W. S. Chen & Sangyeol Lee & K. Khamthong, 2021. "Bayesian inference of nonlinear hysteretic integer-valued GARCH models for disease counts," Computational Statistics, Springer, vol. 36(1), pages 261-281, March.
- Yi Wei, 2021. "Absolute Value Constraint: The Reason for Invalid Performance Evaluation Results of Neural Network Models for Stock Price Prediction," Papers 2101.10942, arXiv.org, revised Mar 2021.
- Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
- Ross Askanazi & Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2018.
"On the Comparison of Interval Forecasts,"
PIER Working Paper Archive
18-013, Penn Institute for Economic Research, Department of Economics, University of Pennsylvania, revised 02 Aug 2018.
- Ross Askanazi & Francis X. Diebold & Frank Schorfheide & Minchul Shin, 2018. "On the Comparison of Interval Forecasts," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(6), pages 953-965, November.
- Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
- Gardner, Everette Shaw & Acar, Yavuz, 2016. "The forecastability quotient reconsidered," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1208-1211.
- Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
- Frank Z. Xing & Erik Cambria & Lorenzo Malandri & Carlo Vercellis, 2018. "Discovering Bayesian Market Views for Intelligent Asset Allocation," Papers 1802.09911, arXiv.org, revised Jun 2018.
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- Fu, Wenlong & Fang, Ping & Wang, Kai & Li, Zhenxing & Xiong, Dongzhen & Zhang, Kai, 2021. "Multi-step ahead short-term wind speed forecasting approach coupling variational mode decomposition, improved beetle antennae search algorithm-based synchronous optimization and Volterra series model," Renewable Energy, Elsevier, vol. 179(C), pages 1122-1139.
- Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
- Ciner, Cetin, 2019. "Do industry returns predict the stock market? A reprise using the random forest," The Quarterly Review of Economics and Finance, Elsevier, vol. 72(C), pages 152-158.
- Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020.
"Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand,"
Monash Econometrics and Business Statistics Working Papers
41/20, Monash University, Department of Econometrics and Business Statistics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
- Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
- Tsuchiya, Yoichi, 2023. "Assessing the World Bank’s growth forecasts," Economic Analysis and Policy, Elsevier, vol. 77(C), pages 64-84.
- Frank Davenport & Chris Funk, 2015. "Using time series structural characteristics to analyze grain prices in food insecure countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 1055-1070, October.
- Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: an estimation strategy based on forecasting-driven model selection," Working Papers hal-03224910, HAL.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015.
"Forecasting with Temporal Hierarchies,"
Monash Econometrics and Business Statistics Working Papers
16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Mihaela Bratu, 2012. "A Strategy to Improve the Survey of Professional Forecasters (SPF) Predictions Using Bias-Corrected-Accelerated (BCA) Bootstrap Forecast Intervals," International Journal of Synergy and Research, ToKnowPress, vol. 1(2), pages 45-59.
- Andrea Ghermandi & Paulo A.L.D. Nunes, 2011.
"A Global Map of Costal Recreation Values: results from a spatially explicit meta-analysis,"
Working Papers
2011_08, Department of Economics, University of Venice "Ca' Foscari".
- Ghermandi, Andrea & Nunes, Paulo A.L.D., 2013. "A global map of coastal recreation values: Results from a spatially explicit meta-analysis," Ecological Economics, Elsevier, vol. 86(C), pages 1-15.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Mahdi Moradi & Mehdi Jabbari Nooghabi & Mohammad Mahdi Rounaghi, 2021. "Investigation of fractal market hypothesis and forecasting time series stock returns for Tehran Stock Exchange and London Stock Exchange," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 662-678, January.
- Christine Mpundu-Kaambwa & Gang Chen & Elisabeth Huynh & Remo Russo & Julie Ratcliffe, 2019. "Mapping the PedsQL™ onto the CHU9D: An Assessment of External Validity in a Large Community-Based Sample," PharmacoEconomics, Springer, vol. 37(9), pages 1139-1153, September.
- Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
- Aiping Jiang & Qiuguo Chi & Junjun Gao & Maoguo Wu, 2019. "An Integrated Approach to Forecasting Intermittent Demand for Electric Power Materials," Computational Economics, Springer;Society for Computational Economics, vol. 53(4), pages 1309-1335, April.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
- Mohamad M. Awad, 2019. "Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques," Agriculture, MDPI, vol. 9(3), pages 1-13, March.
- Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Laurynas Narusevicius & Tomas Ramanauskas & Laura Gudauskaitė & Tomas Reichenbachas, 2019. "Lithuanian house price index: modelling and forecasting," Bank of Lithuania Occasional Paper Series 28, Bank of Lithuania.
- Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
- Adrian Xi Lin & Andrew Fu Wah Ho & Kang Hao Cheong & Zengxiang Li & Wentong Cai & Marcel Lucas Chee & Yih Yng Ng & Xiaokui Xiao & Marcus Eng Hock Ong, 2020. "Leveraging Machine Learning Techniques and Engineering of Multi-Nature Features for National Daily Regional Ambulance Demand Prediction," IJERPH, MDPI, vol. 17(11), pages 1-15, June.
- Dongkwan Lee & Choongik Choi, 2021. "An Analysis of the Effects of Development-Restricted Areas on Land Price Using Spatial Analysis," Land, MDPI, vol. 10(6), pages 1-21, June.
- Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
- I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
- Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
- Ioannis Chalkiadakis & Hongxuan Yan & Gareth W Peters & Pavel V Shevchenko, 2021. "Infection rate models for COVID-19: Model risk and public health news sentiment exposure adjustments," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-39, June.
- Ufuk Çelik & Çağatay Başarır, 2017. "The Prediction of Precious Metal Prices via Artificial Neural Network by Using RapidMiner," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 5(1), pages 45-54, June.
- Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
- Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
- Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Perazzini, Selene & Metulini, Rodolfo & Carpita, Maurizio, 2023. "Integration of flows and signals data from mobile phone network for statistical analyses of traffic in a flooding risk area," Socio-Economic Planning Sciences, Elsevier, vol. 90(C).
- Suh, Daniel Y. & Ryerson, Megan S., 2019. "Forecast to grow: Aviation demand forecasting in an era of demand uncertainty and optimism bias," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 128(C), pages 400-416.
- Andrey Davydenko & Paul Goodwin, 2021. "Bewertung der Verzerrung von Punktprognosen über mehrere Zeitreihen hinweg: Maßnahmen und visuelle Werkzeuge [Assessing point forecast bias across multiple time series: Measures and visual tools]," Post-Print hal-03359179, HAL.
- John M. Maheu & Yong Song, 2012.
"A New Structural Break Model with Application to Canadian Inflation Forecasting,"
Working Paper series
27_12, Rimini Centre for Economic Analysis.
- John M Maheu & Yong Song, 2012. "A New Structural Break Model with Application to Canadian Inflation Forecasting," Working Papers tecipa-448, University of Toronto, Department of Economics.
- Maheu, John & Song, Yong, 2012. "A new structural break model with application to Canadian inflation forecasting," MPRA Paper 36870, University Library of Munich, Germany.
- Maheu, John M. & Song, Yong, 2014. "A new structural break model, with an application to Canadian inflation forecasting," International Journal of Forecasting, Elsevier, vol. 30(1), pages 144-160.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011.
"Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922.
- Fildes, Robert & Wei, Yingqi & Ismail, Suzilah, 2011. "Evaluating the forecasting performance of econometric models of air passenger traffic flows using multiple error measures," International Journal of Forecasting, Elsevier, vol. 27(3), pages 902-922, July.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Storm, Hugo & Heckelei, Thomas & Espinosa, María & Gomez y Paloma, Sergio, 2015. "Short Term Prediction of Agricultural Structural Change using Farm Accountancy Data Network and Farm Structure Survey Data," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 64(03), September.
- Isao Ishida & Virmantas Kvedaras, 2015. "Modeling Autoregressive Processes with Moving-Quantiles-Implied Nonlinearity," Econometrics, MDPI, vol. 3(1), pages 1-53, January.
- Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
- Mihaela Bratu, 2011. "The Assessement Of Uncertainty In Predictions Determined By The Variables Aggregation," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(13), pages 1-31.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Koehler, Anne B. & Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "A study of outliers in the exponential smoothing approach to forecasting," International Journal of Forecasting, Elsevier, vol. 28(2), pages 477-484.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Javier Arroyo & Rosa Espínola & Carlos Maté, 2011. "Different Approaches to Forecast Interval Time Series: A Comparison in Finance," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 169-191, February.
- Alba Carballo & María Durbán & Dae-Jin Lee, 2021. "Out-of-Sample Prediction in Multidimensional P-Spline Models," Mathematics, MDPI, vol. 9(15), pages 1-23, July.
- Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
- Achterberg, Massimo A. & Prasse, Bastian & Ma, Long & Trajanovski, Stojan & Kitsak, Maksim & Van Mieghem, Piet, 2022. "Comparing the accuracy of several network-based COVID-19 prediction algorithms," International Journal of Forecasting, Elsevier, vol. 38(2), pages 489-504.
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Wen-Jie Liu & Yu-Ting Bai & Xue-Bo Jin & Ting-Li Su & Jian-Lei Kong, 2022. "Adaptive Broad Echo State Network for Nonstationary Time Series Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-21, September.
- Ingel, Anti & Shahroudi, Novin & Kängsepp, Markus & Tättar, Andre & Komisarenko, Viacheslav & Kull, Meelis, 2020. "Correlated daily time series and forecasting in the M4 competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 121-128.
- Chan, Kam C. & Chan, Leo H. & Nguyen, Chi M., 2020. "Forecasting oil futures market volatility in a financialized world: Why speculative activities matter," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Erjiang E & Ming Yu & Xin Tian & Ye Tao, 2022. "Dynamic Model Selection Based on Demand Pattern Classification in Retail Sales Forecasting," Mathematics, MDPI, vol. 10(17), pages 1-16, September.
- Suryeom Jo & Changhyup Park & Dong-Woo Ryu & Seongin Ahn, 2021. "Adaptive Surrogate Estimation with Spatial Features Using a Deep Convolutional Autoencoder for CO 2 Geological Sequestration," Energies, MDPI, vol. 14(2), pages 1-19, January.
- Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
- Anwar Hasan Abdullah Othman & Salina Kassim & Romzie Bin Rosman & Nur Harena Binti Redzuan, 2020. "Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 19(5), pages 314-330, October.
- Didier Nibbering & Richard Paap & Michel van der Wel, 2015.
"What Do Professional Forecasters Actually Predict?,"
Tinbergen Institute Discussion Papers
15-095/III, Tinbergen Institute, revised 13 Oct 2017.
- Nibbering, Didier & Paap, Richard & van der Wel, Michel, 2018. "What do professional forecasters actually predict?," International Journal of Forecasting, Elsevier, vol. 34(2), pages 288-311.
- Martin Guth, 2022. "Predicting Default Probabilities for Stress Tests: A Comparison of Models," Papers 2202.03110, arXiv.org.
- Gawlitza, Joshua & Sturm, Timo & Spohrer, Kai & Henzler, Thomas & Akin, Ibrahim & Schönberg, Stefan & Borggrefe, Martin & Haubenreisser, Holger & Trinkmann, Frederik, 2019. "Predicting Pulmonary Function Testing from Quantified Computed Tomography Using Machine Learning Algorithms in Patients with COPD," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 113226, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Apostolos Ampountolas, 2019. "Forecasting hotel demand uncertainty using time series Bayesian VAR models," Tourism Economics, , vol. 25(5), pages 734-756, August.
- Oscar Claveria & Enric Monte & Salvador Torra, 2017. "A new approach for the quantification of qualitative measures of economic expectations," Quality & Quantity: International Journal of Methodology, Springer, vol. 51(6), pages 2685-2706, November.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
- Mihaela Simionescu, 2014. "Directional accuracy for inflation and unemployment rate predictions in Romania," International Journal of Business and Economic Sciences Applied Research (IJBESAR), Democritus University of Thrace (DUTH), Kavala Campus, Greece, vol. 7(2), pages 129-138, September.
- Calice, Giovanni & Lin, Ming-Tsung, 2021. "Exploring risk premium factors for country equity returns," Journal of Empirical Finance, Elsevier, vol. 63(C), pages 294-322.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2015.
"Two maxentropic approaches to determine the probability density of compound risk losses,"
Insurance: Mathematics and Economics, Elsevier, vol. 62(C), pages 42-53.
- Erika Gomes-Gonc{c}alves & Henryk Gzyl & Silvia Mayoral, 2014. "Two maxentropic approaches to determine the probability density of compound risk losses," Papers 1411.5625, arXiv.org, revised Nov 2014.
- Robalino-López, Andrés & Mena-Nieto, Ángel & García-Ramos, José-Enrique & Golpe, Antonio A., 2015. "Studying the relationship between economic growth, CO2 emissions, and the environmental Kuznets curve in Venezuela (1980–2025)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 602-614.
- Marcos à lvarez-DÃaz & Manuel González-Gómez & MarÃa Soledad Otero-Giráldez, 2019. "Estimating the economic impact of a political conflict on tourism: The case of the Catalan separatist challenge," Tourism Economics, , vol. 25(1), pages 34-50, February.
- Dahiru A Bala & Mohammed Shuaibu, 2024. "Forecasting United Kingdom's energy consumption using machine learning and hybrid approaches," Energy & Environment, , vol. 35(3), pages 1493-1531, May.
- Syed Ateeb Akhter Shah & Fatima Kaneez & Arshad Riffat, 2022. "Forecasting the GDP Growth in Pakistan: The Role of Consumer Confidence," Lahore Journal of Economics, Department of Economics, The Lahore School of Economics, vol. 27(1), pages 68-88, Jan-June.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Berta, Paolo & Lovaglio, Pietro Giorgio & Paruolo, Paolo & Verzillo, Stefano, 2020.
"Real Time Forecasting of Covid-19 Intensive Care Units demand,"
JRC Working Papers in Economics and Finance
2020-08, Joint Research Centre, European Commission.
- Berta, P. & Lovaglio, P.G. & Paruolo, P. & Verzillo, S., 2020. "Real Time Forecasting of Covid-19 Intensive Care Units demand," Health, Econometrics and Data Group (HEDG) Working Papers 20/16, HEDG, c/o Department of Economics, University of York.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Pekka Koponen & Jussi Ikäheimo & Juha Koskela & Christina Brester & Harri Niska, 2020. "Assessing and Comparing Short Term Load Forecasting Performance," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Wasilewski, J. & Baczynski, D., 2017. "Short-term electric energy production forecasting at wind power plants in pareto-optimality context," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 177-187.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Li, Chunxiao & Cui, Can & Li, Ming, 2023. "A proactive 2-stage indoor CO2-based demand-controlled ventilation method considering control performance and energy efficiency," Applied Energy, Elsevier, vol. 329(C).
- Buriak, Susan E. & Ayars, Candace L., 2019. "Evaluation of a drug and alcohol safety education program in aviation using interrupted time series and the Kirkpatrick framework," Evaluation and Program Planning, Elsevier, vol. 73(C), pages 62-70.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017.
"Visualising forecasting algorithm performance using time series instance spaces,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016. "Visualising forecasting Algorithm Performance using Time Series Instance Spaces," Monash Econometrics and Business Statistics Working Papers 10/16, Monash University, Department of Econometrics and Business Statistics.
- Merry Christ E. Manayaga & Roel F. Ceballos, 2019. "Forecasting the Remittances of the Overseas Filipino Workers in the Philippines," Papers 1906.10422, arXiv.org.
- Domenico Cucina & Manuel Rizzo & Eugen Ursu, 2018. "Identification of multiregime periodic autotregressive models by genetic algorithms," Post-Print hal-03187870, HAL.
- Abolghasemi, Mahdi & Hurley, Jason & Eshragh, Ali & Fahimnia, Behnam, 2020. "Demand forecasting in the presence of systematic events: Cases in capturing sales promotions," International Journal of Production Economics, Elsevier, vol. 230(C).
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011.
"Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660, July.
- Crone, Sven F. & Hibon, Michèle & Nikolopoulos, Konstantinos, 2011. "Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction," International Journal of Forecasting, Elsevier, vol. 27(3), pages 635-660.
- Tine Van Calster & Filip Van den Bossche & Bart Baesens & Wilfried Lemahieu, 2020. "Profit-oriented sales forecasting: a comparison of forecasting techniques from a business perspective," Papers 2002.00949, arXiv.org.
- Krzysztof Drachal, 0000. "Choosing Parameters for Bayesian Symbolic Regression: An Application to Modelling Commodities Prices," Proceedings of Economics and Finance Conferences 14116014, International Institute of Social and Economic Sciences.
- Omar, Haytham & Klibi, Walid & Babai, M. Zied & Ducq, Yves, 2023. "Basket data-driven approach for omnichannel demand forecasting," International Journal of Production Economics, Elsevier, vol. 257(C).
- Pedro Correia S. Bezerra & Pedro Henrique M. Albuquerque, 2017. "Volatility forecasting via SVR–GARCH with mixture of Gaussian kernels," Computational Management Science, Springer, vol. 14(2), pages 179-196, April.
- Marcos Álvarez-Díaz & Manuel González-Gómez & María Soledad Otero-Giráldez, 2018. "Forecasting International Tourism Demand Using a Non-Linear Autoregressive Neural Network and Genetic Programming," Forecasting, MDPI, vol. 1(1), pages 1-17, September.
- Sonmez, Mustafa & Akgüngör, Ali Payıdar & Bektaş, Salih, 2017. "Estimating transportation energy demand in Turkey using the artificial bee colony algorithm," Energy, Elsevier, vol. 122(C), pages 301-310.
- Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
- Troost, Christian & Huber, Robert & Bell, Andrew R. & van Delden, Hedwig & Filatova, Tatiana & Le, Quang Bao & Lippe, Melvin & Niamir, Leila & Polhill, J. Gareth & Sun, Zhanli & Berger, Thomas, 2023. "How to keep it adequate: A protocol for ensuring validity in agent-based simulation," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 159, pages 1-21.
- Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
- Barrow, Devon K. & Crone, Sven F., 2016. "Cross-validation aggregation for combining autoregressive neural network forecasts," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1120-1137.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
- Jeffrey S. Racine & Christopher F. Parmeter, 2012. "Data-Driven Model Evaluation: A Test for Revealed Performance," Department of Economics Working Papers 2012-13, McMaster University.
- Goldsworthy, M. & Moore, T. & Peristy, M. & Grimeland, M., 2022. "Cloud-based model-predictive-control of a battery storage system at a commercial site," Applied Energy, Elsevier, vol. 327(C).
- Aljuneidi, Tariq & Punia, Sushil & Jebali, Aida & Nikolopoulos, Konstantinos, 2024. "Forecasting and planning for a critical infrastructure sector during a pandemic: Empirical evidence from a food supply chain," European Journal of Operational Research, Elsevier, vol. 317(3), pages 936-952.
- Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
- Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
- Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015.
"Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data,"
Economics Discussion Papers
2015-28, Kiel Institute for the World Economy (IfW Kiel).
- Bialowolski, Piotr & Kuszewski, Tomasz & Witkowski, Bartosz, 2015. "Bayesian averaging vs. dynamic factor models for forecasting economic aggregates with tendency survey data," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 9, pages 1-37.
- Grossmann, Igor & Rotella, Amanda A. & Hutcherson, Cendri & Sharpinskyi, Konstantyn & Varnum, Michael E. W. & Achter, Sebastian K. & Dhami, Mandeep & Guo, Xinqi Evie & Kara-Yakoubian, Mane R. & Mandel, 2023. "Insights into the accuracy of social scientists' forecasts of societal change," Other publications TiSEM c14f4a4a-b105-46b3-90f7-f, Tilburg University, School of Economics and Management.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Kunze, Frederik, 2017. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," University of Göttingen Working Papers in Economics 326, University of Goettingen, Department of Economics.
- Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
- Banerjee, Nilabhra & Morton, Alec & Akartunalı, Kerem, 2020. "Passenger demand forecasting in scheduled transportation," European Journal of Operational Research, Elsevier, vol. 286(3), pages 797-810.
- Acar, Yavuz & Gardner, Everette S., 2012. "Forecasting method selection in a global supply chain," International Journal of Forecasting, Elsevier, vol. 28(4), pages 842-848.
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Date, Paresh & Mamon, Rogemar & Tenyakov, Anton, 2013. "Filtering and forecasting commodity futures prices under an HMM framework," Energy Economics, Elsevier, vol. 40(C), pages 1001-1013.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Mehmet Pinar & Thanasis Stengos & M. Ege Yazgan, 2018. "Quantile forecast combination using stochastic dominance," Empirical Economics, Springer, vol. 55(4), pages 1717-1755, December.
- Vo, Duc Hong, 2019.
"Long-run dynamics of exchange rates: A multi-frequency investigation,"
MPRA Paper
103273, University Library of Munich, Germany.
- Hai Vo, Long & Hong Vo, Duc, 2020. "Long-run dynamics of exchange rates: A multi-frequency investigation," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
- Azumah Karim & Ananda Omotukoh Kube & Bashiru Imoro Ibn Saeed, 2020. "Modeling of Monthly Meteorological Time Series," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 9(4), pages 1-8.
- Thomas Shering & Eduardo Alonso & Dimitra Apostolopoulou, 2024. "Investigation of Load, Solar and Wind Generation as Target Variables in LSTM Time Series Forecasting, Using Exogenous Weather Variables," Energies, MDPI, vol. 17(8), pages 1-23, April.
- Drachal, Krzysztof, 2021. "Forecasting selected energy commodities prices with Bayesian dynamic finite mixtures," Energy Economics, Elsevier, vol. 99(C).
- Ozancan Ozdemir & Ceylan Yozgatligil, 2024. "Forecasting performance of machine learning, time series, and hybrid methods for low‐ and high‐frequency time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 441-474, May.
- Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
- Junhwa Hwang & Dongjun Suh & Marc-Oliver Otto, 2020. "Forecasting Electricity Consumption in Commercial Buildings Using a Machine Learning Approach," Energies, MDPI, vol. 13(22), pages 1-29, November.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Satopää, Ville A., 2021. "Improving the wisdom of crowds with analysis of variance of predictions of related outcomes," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1728-1747.
- Bacci, Livio Agnew & Mello, Luiz Gustavo & Incerti, Taynara & Paulo de Paiva, Anderson & Balestrassi, Pedro Paulo, 2019. "Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated fact," International Journal of Production Economics, Elsevier, vol. 212(C), pages 186-211.
- Alexandros Menelaos Tzortzis & Sotiris Pelekis & Evangelos Spiliotis & Evangelos Karakolis & Spiros Mouzakitis & John Psarras & Dimitris Askounis, 2023. "Transfer Learning for Day-Ahead Load Forecasting: A Case Study on European National Electricity Demand Time Series," Mathematics, MDPI, vol. 12(1), pages 1-24, December.
- Bastos, Guadalupe & García-Martos, Carolina, 2017. "Electricity prices forecasting by averaging dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 24028, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Zhang, Yaotian & Feng, Mingming & Shang, Ke-ke & Ran, Yijun & Wang, Cheng-Jun, 2022. "Peeking strategy for online news diffusion prediction via machine learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
- Heinecke, G. & Syntetos, A.A. & Wang, W., 2013. "Forecasting-based SKU classification," International Journal of Production Economics, Elsevier, vol. 143(2), pages 455-462.
- Liu, Anyu & Vici, Laura & Ramos, Vicente & Giannoni, Sauveur & Blake, Adam, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Europe team," Annals of Tourism Research, Elsevier, vol. 88(C).
- Yihang Fu & Mingyu Zhou & Luyao Zhang, 2024. "DAM: A Universal Dual Attention Mechanism for Multimodal Timeseries Cryptocurrency Trend Forecasting," Papers 2405.00522, arXiv.org.
- Andrés M. Alonso & Guadalupe Bastos & Carolina García-Martos, 2016. "Electricity Price Forecasting by Averaging Dynamic Factor Models," Energies, MDPI, vol. 9(8), pages 1-21, July.
- Rahman A. Prasojo & Karunika Diwyacitta & Suwarno & Harry Gumilang, 2017. "Transformer Paper Expected Life Estimation Using ANFIS Based on Oil Characteristics and Dissolved Gases (Case Study: Indonesian Transformers)," Energies, MDPI, vol. 10(8), pages 1-18, August.
- Franses, Philip Hans, 2016. "A note on the Mean Absolute Scaled Error," International Journal of Forecasting, Elsevier, vol. 32(1), pages 20-22.
- PEREAU Jean-Christophe & URSU Eugen, 2015. "Application of periodic autoregressive process to the modeling of the Garonne river flows," Cahiers du GREThA (2007-2019) 2015-14, Groupe de Recherche en Economie Théorique et Appliquée (GREThA).
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Gupta, Ruchita & Jain, Karuna, 2016. "Competition effect of a new mobile technology on an incumbent technology: An Indian case study," Telecommunications Policy, Elsevier, vol. 40(4), pages 332-342.
- Murray, Paul W. & Agard, Bruno & Barajas, Marco A., 2018. "ASACT - Data preparation for forecasting: A method to substitute transaction data for unavailable product consumption data," International Journal of Production Economics, Elsevier, vol. 203(C), pages 264-275.
- Dinesh Reddy Vangumalli & Konstantinos Nikolopoulos & Konstantia Litsiou, 2019. "Clustering, Forecasting and Cluster Forecasting: using k-medoids, k-NNs and random forests for cluster selection," Working Papers 19016, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Diego J Pedregal, 2019. "Time series analysis and forecasting with ECOTOOL," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-23, October.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
- Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
- Dubey, Subodh & Cats, Oded & Hoogendoorn, Serge & Bansal, Prateek, 2022. "A multinomial probit model with Choquet integral and attribute cut-offs," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 140-163.
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Christian Pape & Arne Vogler & Oliver Woll & Christoph Weber, 2017. "Forecasting the distributions of hourly electricity spot prices," EWL Working Papers 1705, University of Duisburg-Essen, Chair for Management Science and Energy Economics, revised May 2017.
- Golmohammadi, Davood & Zhao, Lingyu & Dreyfus, David, 2023. "Using machine learning techniques to reduce uncertainty for outpatient appointment scheduling practices in outpatient clinics," Omega, Elsevier, vol. 120(C).
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Nelson, Rohan & Cameron, Andrew & Xia, Charley & Gooday, Peter, 2022. "The ABARES Approach to Forecasting Agricultural Commodity Markets," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 30(6), November.
- Sanusi, Olajide I. & Safi, Samir K. & Adeeko, Omotara & Tabash, Mosab I., 2022. "Forecasting agricultural commodity price using different models: a case study of widely consumed grains in Nigeria," Agricultural and Resource Economics: International Scientific E-Journal, Agricultural and Resource Economics: International Scientific E-Journal, vol. 8(2), June.
- Ilaria Perissi & Gianluca Martelloni & Ugo Bardi & Davide Natalini & Aled Jones & Angel Nikolaev & Lukas Eggler & Martin Baumann & Roger Samsó & Jordi Solé, 2021. "Cross-Validation of the MEDEAS Energy-Economy-Environment Model with the Integrated MARKAL-EFOM System (TIMES) and the Long-Range Energy Alternatives Planning System (LEAP)," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
- Heo, Wookjae & Lee, Jae Min & Park, Narang & Grable, John E., 2020. "Using Artificial Neural Network techniques to improve the description and prediction of household financial ratios," Journal of Behavioral and Experimental Finance, Elsevier, vol. 25(C).
- Namrye Son & Yoonjeong Shin, 2023. "Short- and Medium-Term Electricity Consumption Forecasting Using Prophet and GRU," Sustainability, MDPI, vol. 15(22), pages 1-16, November.
- Moro, Sérgio & Rita, Paulo & Vala, Bernardo, 2016. "Predicting social media performance metrics and evaluation of the impact on brand building: A data mining approach," Journal of Business Research, Elsevier, vol. 69(9), pages 3341-3351.
- Benjamin Miranda Tabak & Matheus B. Froner & Rafael Corrêa & Thiago C. Silva, 2023. "The Intersection of Health Literacy and Public Health: A Machine Learning-Enhanced Bibliometric Investigation," IJERPH, MDPI, vol. 20(20), pages 1-18, October.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Stefanescu, Răzvan & Dumitriu, Ramona, 2017. "Ajustarea seriilor de timp financiare,Partea întâi [Smoothing of financial time series, Part 1]," MPRA Paper 78329, University Library of Munich, Germany, revised 15 Apr 2017.
- Mariusz Doszyn, 2020. "Biasedness of Forecasts Errors for Intermittent Demand Data," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1113-1127.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Mo, Jixian & Gao, Ruobin & Fai Yuen, Kum & Bai, Xiwen, 2024. "Predictive analysis of sell-and-purchase shipping market: A PIMSE approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
- Ersin Korkmaz & Erdem Doğan & Ali Payıdar Akgüngör, 2024. "Energy Demand Estimation in Turkey According to Road and Rail Transportation: Walrus Optimizer and White Shark Optimizer Algorithm-Based Model Development and Application," Energies, MDPI, vol. 17(19), pages 1-23, October.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.
- Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
- Pichler Paul, 2008. "Forecasting with DSGE Models: The Role of Nonlinearities," The B.E. Journal of Macroeconomics, De Gruyter, vol. 8(1), pages 1-35, July.
- Legaki, Nikoletta-Zampeta & Karpouzis, Kostas & Assimakopoulos, Vassilios & Hamari, Juho, 2021. "Gamification to avoid cognitive biases: An experiment of gamifying a forecasting course," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- James T Yurkovich & Laurence Yang & Bernhard O Palsson, 2017. "Biomarkers are used to predict quantitative metabolite concentration profiles in human red blood cells," PLOS Computational Biology, Public Library of Science, vol. 13(3), pages 1-9, March.
- Paulo Júlio & Pedro M. Esperança & João C. Fonseca, 2011. "Evaluating the forecast quality of GDP components," GEE Papers 0041 Classification-C52, , Gabinete de Estratégia e Estudos, Ministério da Economia, revised Oct 2011.
- Christian Ganser & Marc Keuschnigg, 2018. "Social Influence Strengthens Crowd Wisdom Under Voting," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 21(06n07), pages 1-23, September.
- Alvarado-Valencia, Jorge & Barrero, Lope H. & Önkal, Dilek & Dennerlein, Jack T., 2017. "Expertise, credibility of system forecasts and integration methods in judgmental demand forecasting," International Journal of Forecasting, Elsevier, vol. 33(1), pages 298-313.
- Aysun Türkvatan, 2023. "Exports and imports in Turkey: A regime‐switching approach," The World Economy, Wiley Blackwell, vol. 46(3), pages 791-834, March.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018.
"“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”,"
AQR Working Papers
201801, University of Barcelona, Regional Quantitative Analysis Group, revised Jan 2018.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018. "Tracking economic growth by evolving expectations via genetic programming: A two-step approach," Working Papers XREAP2018-4, Xarxa de Referència en Economia Aplicada (XREAP), revised Oct 2018.
- Oscar Claveria & Enric Monte & Salvador Torra, 2018. "“Tracking economic growth by evolving expectations via genetic programming: A two-step approach”," IREA Working Papers 201801, University of Barcelona, Research Institute of Applied Economics, revised Jan 2018.
- Matthias Pannhorst & Florian Dost, 2022. "A Life-Course View on Ageing Consumers: Old-Age Trajectories and Gender Differences," Applied Research in Quality of Life, Springer;International Society for Quality-of-Life Studies, vol. 17(2), pages 1157-1180, April.
- Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Evolutionary Computation for Macroeconomic Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 833-849, February.
- de Silva, Ashton, 2008. "Forecasting macroeconomic variables using a structural state space model," MPRA Paper 11060, University Library of Munich, Germany.
- Lamichhane, Sabhyata & Mei, Bin & Siry, Jacek, 2023. "Forecasting pine sawtimber stumpage prices: A comparison between a time series hybrid model and an artificial neural network," Forest Policy and Economics, Elsevier, vol. 154(C).
- Bogdan Oancea & Richard Pospíšil & Marius Nicolae Jula & Cosmin-Ionuț Imbrișcă, 2021. "Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
- Costantino, Francesco & Di Gravio, Giulio & Patriarca, Riccardo & Petrella, Lea, 2018. "Spare parts management for irregular demand items," Omega, Elsevier, vol. 81(C), pages 57-66.
- Jaewon Lim & Jae Hong Kim, 2019. "Joint Determination of Residential Relocation and Commuting: A Forecasting Experiment for Sustainable Land Use and Transportation Planning," Sustainability, MDPI, vol. 11(1), pages 1-24, January.
- Claudia Furlan & Cinzia Mortarino & Mohammad Salim Zahangir, 2021. "Interaction among three substitute products: an extended innovation diffusion model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 269-293, March.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Linas Gelažanskas & Kelum A. A. Gamage, 2015. "Forecasting Hot Water Consumption in Residential Houses," Energies, MDPI, vol. 8(11), pages 1-16, November.
- Mirlatifi, A.M. & Egelioglu, F. & Atikol, U., 2015. "An econometric model for annual peak demand for small utilities," Energy, Elsevier, vol. 89(C), pages 35-44.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- Daniel Preve & Anders Eriksson & Jun Yu, 2009.
"Forecasting Realized Volatility Using A Nonnegative Semiparametric Model,"
Finance Working Papers
23049, East Asian Bureau of Economic Research.
- Daniel PREVE & Anders ERIKSSON & Jun YU, 2009. "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers 22-2009, Singapore Management University, School of Economics.
- Anders Eriksson & Daniel P. A. Preve & Jun Yu, 2019. "Forecasting Realized Volatility Using a Nonnegative Semiparametric Model," JRFM, MDPI, vol. 12(3), pages 1-23, August.
- Daniel Preve & Anders Eriksson & Jun Yu, "undated". "Forecasting Realized Volatility Using A Nonnegative Semiparametric Model," Working Papers CoFie-02-2007, Singapore Management University, Sim Kee Boon Institute for Financial Economics.
- Xiaogang Ding & Zhengyong Zhao & Zisheng Xing & Shengting Li & Xiaochuan Li & Yanmei Liu, 2021. "Comparison of Models for Spatial Distribution and Prediction of Cadmium in Subtropical Forest Soils, Guangdong, China," Land, MDPI, vol. 10(9), pages 1-21, August.
- Ireneous N Soyiri & Daniel D Reidpath, 2013. "The Use of Quantile Regression to Forecast Higher Than Expected Respiratory Deaths in a Daily Time Series: A Study of New York City Data 1987-2000," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-1, October.
- Brito, Ana C.M. & Silva, Filipi N. & de Arruda, Henrique F. & Comin, Cesar H. & Amancio, Diego R. & Costa, Luciano da F., 2021. "Classification of abrupt changes along viewing profiles of scientific articles," Journal of Informetrics, Elsevier, vol. 15(2).
- Radu Lucian Pânzaru & Daniela Firoiu & George H. Ionescu & Andi Ciobanu & Dragoș Mihai Medelete & Ramona Pîrvu, 2023. "Organic Agriculture in the Context of 2030 Agenda Implementation in European Union Countries," Sustainability, MDPI, vol. 15(13), pages 1-31, July.
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Öller, L-E & Stockhammar, P, 2009.
"On the Probability Distribution of Economic Growth,"
MPRA Paper
18581, University Library of Munich, Germany.
- Pär Stockhammar & Lars-Erik Öller, 2011. "On the probability distribution of economic growth," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(9), pages 2023-2041, November.
- Ganjeh-Ghazvini, Mostafa & Masihi, Mohsen & Baghalha, Morteza, 2015. "Study of heterogeneity loss in upscaling of geological maps by introducing a cluster-based heterogeneity number," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 1-13.
- Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Sewdien, V.N. & Preece, R. & Torres, J.L. Rueda & Rakhshani, E. & van der Meijden, M., 2020. "Assessment of critical parameters for artificial neural networks based short-term wind generation forecasting," Renewable Energy, Elsevier, vol. 161(C), pages 878-892.
- Guo-Yu Huang & Chi-Ju Lai & Ping-Feng Pai, 2022. "Forecasting Hourly Intermittent Rainfall by Deep Belief Networks with Simple Exponential Smoothing," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(13), pages 5207-5223, October.
- Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Choi, Insu & Kim, Woo Chang, 2023. "Estimating Historical Downside Risks of Global Financial Market Indices via Inflation Rate-Adjusted Dependence Graphs," Research in International Business and Finance, Elsevier, vol. 66(C).
- Löhndorf, Nils, 2016. "An empirical analysis of scenario generation methods for stochastic optimization," European Journal of Operational Research, Elsevier, vol. 255(1), pages 121-132.
- Blaskowitz, Oliver J. & Herwartz, Helmut, 2009. "On economic evaluation of directional forecasts," SFB 649 Discussion Papers 2009-052, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Brentnall, Adam R. & Crowder, Martin J. & Hand, David J., 2010. "Predictive-sequential forecasting system development for cash machine stocking," International Journal of Forecasting, Elsevier, vol. 26(4), pages 764-776, October.
- Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Andrew C. Chang & Tyler J. Hanson, 2015. "The Accuracy of Forecasts Prepared for the Federal Open Market Committee," Finance and Economics Discussion Series 2015-62, Board of Governors of the Federal Reserve System (U.S.).
- Le Son, Khanh & Fouladirad, Mitra & Barros, Anne & Levrat, Eric & Iung, Benoît, 2013. "Remaining useful life estimation based on stochastic deterioration models: A comparative study," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 165-175.
- Benevento, Elisabetta & Aloini, Davide & Squicciarini, Nunzia, 2023. "Towards a real-time prediction of waiting times in emergency departments: A comparative analysis of machine learning techniques," International Journal of Forecasting, Elsevier, vol. 39(1), pages 192-208.
- Zhipu Zhou & Alexander Shkolnik & Sang-Yun Oh, 2020. "Endogenous Representation of Asset Returns," Papers 2010.13245, arXiv.org, revised Nov 2020.
- Tim Köhler & Jörg Döpke, 2023. "Will the last be the first? Ranking German macroeconomic forecasters based on different criteria," Empirical Economics, Springer, vol. 64(2), pages 797-832, February.
- Mohamed Khalil Benzekri & Hatice Şehime Özütler, 2021. "On the Predictability of Bitcoin Price Movements: A Short-term Price Prediction with ARIMA," Journal of Economic Policy Researches, Istanbul University, Faculty of Economics, vol. 8(2), pages 293-309, July.
- Claveria, Oscar, 2019.
"Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations,"
Journal for Labour Market Research, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany], vol. 53(1), pages 1-3.
- Oscar Claveria, 2019. "Forecasting the unemployment rate using the degree of agreement in consumer unemployment expectations," Journal for Labour Market Research, Springer;Institute for Employment Research/ Institut für Arbeitsmarkt- und Berufsforschung (IAB), vol. 53(1), pages 1-10, December.
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
- Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
- Mahmood Ul Hassan & Pär Stockhammar, 2016. "Fitting probability distributions to economic growth: a maximum likelihood approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(9), pages 1583-1603, July.
- Bergsteinsson, Hjörleifur G. & Møller, Jan Kloppenborg & Nystrup, Peter & Pálsson, Ólafur Pétur & Guericke, Daniela & Madsen, Henrik, 2021. "Heat load forecasting using adaptive temporal hierarchies," Applied Energy, Elsevier, vol. 292(C).
- Nailya Maitanova & Jan-Simon Telle & Benedikt Hanke & Matthias Grottke & Thomas Schmidt & Karsten von Maydell & Carsten Agert, 2020. "A Machine Learning Approach to Low-Cost Photovoltaic Power Prediction Based on Publicly Available Weather Reports," Energies, MDPI, vol. 13(3), pages 1-23, February.
- Arkadiusz Jędrzejewski & Grzegorz Marcjasz & Rafał Weron, 2021.
"Importance of the Long-Term Seasonal Component in Day-Ahead Electricity Price Forecasting Revisited: Parameter-Rich Models Estimated via the LASSO,"
Energies, MDPI, vol. 14(11), pages 1-17, June.
- Arkadiusz Jedrzejewski & Grzegorz Marcjasz & Rafal Weron, 2021. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Parameter-rich models estimated via the LASSO," WORking papers in Management Science (WORMS) WORMS/21/04, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Sun, Bixuan & Eryilmaz, Derya & Konidena, Rao, 2018. "Transparency in Long-Term Electric Demand Forecast: A Perspective on Regional Load Forecasting," 2018 Annual Meeting, August 5-7, Washington, D.C. 274396, Agricultural and Applied Economics Association.
- Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
- van der Velde, M. & Nisini, L., 2019. "Performance of the MARS-crop yield forecasting system for the European Union: Assessing accuracy, in-season, and year-to-year improvements from 1993 to 2015," Agricultural Systems, Elsevier, vol. 168(C), pages 203-212.
- Cameron, Andrew & Nelson, Rohan, 2022. "Enabling Users to Evaluate the Accuracy of ABARES Agricultural Forecasts," Australasian Agribusiness Review, University of Melbourne, Department of Agriculture and Food Systems, vol. 30(7), November.
- Bratu (Simionescu) Mihaela & Marin Erika, 2012. "Short run and alternative macroeconomic forecasts for Romania and strategies to improve their accuracy," EuroEconomica, Danubius University of Galati, issue 4(31), pages 106-128, November.
- Meng, Ming & Niu, Dongxiao & Shang, Wei, 2014. "A small-sample hybrid model for forecasting energy-related CO2 emissions," Energy, Elsevier, vol. 64(C), pages 673-677.
- Bratu Simionescu Mihaela, 2012. "Variables Aggregation-Source of Uncertainty in Forecasting," Scientific Annals of Economics and Business, Sciendo, vol. 59(2), pages 1-13, December.
- Jindřich Pokora, 2017. "Hybrid ARIMA and Support Vector Regression in Short-term Electricity Price Forecasting," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 65(2), pages 699-708.
- Giuseppina Nicolosi & Roberto Volpe & Antonio Messineo, 2017. "An Innovative Adaptive Control System to Regulate Microclimatic Conditions in a Greenhouse," Energies, MDPI, vol. 10(5), pages 1-17, May.
- Kömm, Holger & Küsters, Ulrich, 2015. "Forecasting zero-inflated price changes with a Markov switching mixture model for autoregressive and heteroscedastic time series," International Journal of Forecasting, Elsevier, vol. 31(3), pages 598-608.
- Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
- Michael Wagner, 2010. "Forecasting Daily Demand in Cash Supply Chains," American Journal of Economics and Business Administration, Science Publications, vol. 2(4), pages 377-383, November.
- Pedro Cadahia & Antonio A. Golpe & Juan M. Mart'in 'Alvarez & E. Asensio, 2022. "Measuring anomalies in cigarette sales by using official data from Spanish provinces: Are there only the anomalies detected by the Empty Pack Surveys (EPS) used by Transnational Tobacco Companies (TTC," Papers 2203.06640, arXiv.org.
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Shi, Xiaohui & Chumnumpan, Pattarin, 2019. "Modelling market dynamics of multi-brand and multi-generational products," European Journal of Operational Research, Elsevier, vol. 279(1), pages 199-210.
- He, Kaijian & Yu, Lean & Tang, Ling, 2015. "Electricity price forecasting with a BED (Bivariate EMD Denoising) methodology," Energy, Elsevier, vol. 91(C), pages 601-609.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Cruz E. Borges & Yoseba K. Penya & Iván Fernández & Juan Prieto & Oscar Bretos, 2013. "Assessing Tolerance-Based Robust Short-Term Load Forecasting in Buildings," Energies, MDPI, vol. 6(4), pages 1-20, April.
- Montgomery, J.B. & O’Sullivan, F.M., 2017. "Spatial variability of tight oil well productivity and the impact of technology," Applied Energy, Elsevier, vol. 195(C), pages 344-355.
- Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
- Andrey Davydenko & Paul Goodwin, 2021. "Assessing Point Forecast Bias Across Multiple Time Series: Measures and Visual Tools," International Journal of Statistics and Probability, Canadian Center of Science and Education, vol. 10(5), pages 1-46, September.
- Armin Pourkhanali & Jonathan Keith & Xibin Zhang, 2021. "Conditional Heteroscedasticity Models with Time-Varying Parameters: Estimation and Asymptotics," Monash Econometrics and Business Statistics Working Papers 15/21, Monash University, Department of Econometrics and Business Statistics.
- Wenzheng Liu & Tonghai Liu & Jianxun Zhang & Fanzhen Wang, 2024. "Two-Stage Multimodal Method for Predicting Intramuscular Fat in Pigs," Agriculture, MDPI, vol. 14(10), pages 1-14, October.
- van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Jaewon Park & Minsoo Shin & Wookjae Heo, 2021. "Estimating the BIS Capital Adequacy Ratio for Korean Banks Using Machine Learning: Predicting by Variable Selection Using Random Forest Algorithms," Risks, MDPI, vol. 9(2), pages 1-19, February.
- Chen, Yuting & Fuellhart, Kurt & Grubesic, Tony H. & Zhang, Shengrun & Witlox, Frank, 2023. "Diverging spatiotemporal responses to COVID-19Â by airports: Evidence from China," Journal of Air Transport Management, Elsevier, vol. 113(C).
- Møller, Jan Kloppenborg & Nystrup, Peter & Madsen, Henrik, 2024. "Likelihood-based inference in temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 40(2), pages 515-531.
- Ogliari, Emanuele & Sakwa, Maciej & Cusa, Paolo, 2024. "Enhanced Convolutional Neural Network for solar radiation nowcasting: All-Sky camera infrared images embedded with exogeneous parameters," Renewable Energy, Elsevier, vol. 221(C).
- Cisneros-Magaña, Rafael & Medina-Rios, Aurelio & Fuerte-Esquivel, Claudio R. & Segundo-Ramírez, Juan, 2022. "Harmonic state estimation based on discrete exponential expansion, singular value decomposition and a variable measurement model," Energy, Elsevier, vol. 249(C).
- Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
- George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
- Martin Magris, 2019. "A Vine-copula extension for the HAR model," Papers 1907.08522, arXiv.org.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Marcos Álvarez-Díaz, 2020. "Is it possible to accurately forecast the evolution of Brent crude oil prices? An answer based on parametric and nonparametric forecasting methods," Empirical Economics, Springer, vol. 59(3), pages 1285-1305, September.
- Chih-Chung Yang & Yungho Leu & Chien-Pang Lee, 2014. "A Dynamic Weighted Distancedbased Fuzzy Time Series Neural Network with Bootstrap Model for Option Price Forecasting," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 115-129, June.
- Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
- Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).
- Mihaela BRATU, 2012. "Econometric Models For Determing The Exchange Rate," Romanian Statistical Review, Romanian Statistical Review, vol. 60(4), pages 49-64, May.
- Yan Bao & Yexin Zheng & Chao Tang & Xiaolin Meng & Zhe Sun & Dongliang Zhang & Li Wang, 2024. "Lateral Convergence Deformation Prediction of Subway Shield Tunnel Based on Kalman Model," Sustainability, MDPI, vol. 16(7), pages 1-21, March.
- Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
- Hiroyuki Kawakatsu, 2020. "Recovering Yield Curves from Dynamic Term Structure Models with Time-Varying Factors," Stats, MDPI, vol. 3(3), pages 1-46, August.
- Zied Babai, Mohamed & Syntetos, Aris & Teunter, Ruud, 2014. "Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence," International Journal of Production Economics, Elsevier, vol. 157(C), pages 212-219.
- Soukissian, Takvor H. & Karathanasi, Flora E., 2016. "On the use of robust regression methods in wind speed assessment," Renewable Energy, Elsevier, vol. 99(C), pages 1287-1298.
- La Tona, G. & Luna, M. & Di Piazza, M.C., 2024. "Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 63-75.
- Wachtmeister, Henrik & Henke, Petter & Höök, Mikael, 2018. "Oil projections in retrospect: Revisions, accuracy and current uncertainty," Applied Energy, Elsevier, vol. 220(C), pages 138-153.
- Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha, 2019. "Data-Driven Natural Gas Spot Price Forecasting with Least Squares Regression Boosting Algorithm," Energies, MDPI, vol. 12(6), pages 1-13, March.
- Roman Rodriguez-Aguilar & Jose Antonio Marmolejo-Saucedo & Brenda Retana-Blanco, 2019. "Prices of Mexican Wholesale Electricity Market: An Application of Alpha-Stable Regression," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
- Wagner Barreto-Souza & Marcelo Bourguignon, 2015. "A skew INAR(1) process on $${\mathbb {Z}}$$ Z," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 99(2), pages 189-208, April.
- von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- De Baets, Shari & Harvey, Nigel, 2018. "Forecasting from time series subject to sporadic perturbations: Effectiveness of different types of forecasting support," International Journal of Forecasting, Elsevier, vol. 34(2), pages 163-180.
- Sbrana, Giacomo & Silvestrini, Andrea, 2020. "Forecasting with the damped trend model using the structural approach," International Journal of Production Economics, Elsevier, vol. 226(C).
- Bouckaert, Nicolas & Van den Heede, Koen & Van de Voorde, Carine, 2018. "Improving the forecasting of hospital services: A comparison between projections and actual utilization of hospital services," Health Policy, Elsevier, vol. 122(7), pages 728-736.
- Sung, Ming-Chien & McDonald, David C.J. & Johnson, Johnnie E.V., 2016. "Probabilistic forecasting with discrete choice models: Evaluating predictions with pseudo-coefficients of determination," European Journal of Operational Research, Elsevier, vol. 248(3), pages 1021-1030.
- Mihaela Bratu (Simionescu), 2013. "Using The Econometric Approach To Improve The Accuracy Of Gdp Deflator Forecasts," EuroEconomica, Danubius University of Galati, issue 1(32), pages 70-76, May.
- Natanael Karjanto, 2022. "Bright Soliton Solution of the Nonlinear Schrödinger Equation: Fourier Spectrum and Fundamental Characteristics," Mathematics, MDPI, vol. 10(23), pages 1-22, December.
- Isabel Figuerola‐Ferretti & Alejandro Rodríguez & Eduardo Schwartz, 2021. "Oil price analysts' forecasts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(9), pages 1351-1374, September.
- Billingsley Kaambwa & Lucinda Billingham & Stirling Bryan, 2013. "Mapping utility scores from the Barthel index," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 14(2), pages 231-241, April.
- Ireneous N Soyiri & Daniel D Reidpath, 2012. "Humans as Animal Sentinels for Forecasting Asthma Events: Helping Health Services Become More Responsive," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-6, October.
- Sulaimon Olanrewaju ADEBIYI & Oluwayemisi Temitope SODOLAMU, 2022. "Application Of Autoregressive Integrated Moving Average And Holt Winters Methods For Optimum Sales Forecasting In The Manufacturing Sector," Contemporary Economy Journal, Constantin Brancoveanu University, vol. 7(2), pages 161-173.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Akram Qashou & Sufian Yousef & Firas Hazzaa & Kahtan Aziz, 2024. "Temporal forecasting by converting stochastic behaviour into a stable pattern in electric grid," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 15(9), pages 4426-4442, September.
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Papers
2008.08004, arXiv.org, revised Dec 2020.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
- Simionescu, Mihaela, 2014. "New Strategies to Improve the Accuracy of Predictions based on Monte Carlo and Bootstrap Simulations: An Application to Bulgarian and Romanian Inflation || Nuevas estrategias para mejorar la exactitud," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 18(1), pages 112-129, December.
- Pala, Zeydin, 2023. "Comparative study on monthly natural gas vehicle fuel consumption and industrial consumption using multi-hybrid forecast models," Energy, Elsevier, vol. 263(PC).
- Andrea Kolková & Aleksandr Kljuènikov, 2021. "Demand forecasting: an alternative approach based on technical indicator Pbands," Oeconomia Copernicana, Institute of Economic Research, vol. 12(4), pages 1063-1094, December.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Nam, KiJeon & Heo, SungKu & Li, Qian & Loy-Benitez, Jorge & Kim, MinJeong & Park, DuckShin & Yoo, ChangKyoo, 2020. "A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions," Applied Energy, Elsevier, vol. 266(C).
- Xiong, Tao & Bao, Yukun & Hu, Zhongyi, 2013. "Beyond one-step-ahead forecasting: Evaluation of alternative multi-step-ahead forecasting models for crude oil prices," Energy Economics, Elsevier, vol. 40(C), pages 405-415.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R. & Hnich, B., 2014. "Forecasting intermittent demand by hyperbolic-exponential smoothing," International Journal of Forecasting, Elsevier, vol. 30(4), pages 928-933.
- Herbert Amezquita & Cindy P. Guzman & Hugo Morais, 2024. "Forecasting Electric Vehicles’ Charging Behavior at Charging Stations: A Data Science-Based Approach," Energies, MDPI, vol. 17(14), pages 1-27, July.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Kang-Min Koo & Kuk-Heon Han & Kyung-Soo Jun & Gyumin Lee & Jung-Sik Kim & Kyung-Taek Yum, 2021. "Performance Assessment for Short-Term Water Demand Forecasting Models on Distinctive Water Uses in Korea," Sustainability, MDPI, vol. 13(11), pages 1-18, May.
- João Fausto L. de Oliveira & Paulo S. G. de Mattos Neto & Hugo Valadares Siqueira & Domingos S. de O. Santos & Aranildo R. Lima & Francisco Madeiro & Douglas A. P. Dantas & Mariana de Morais Cavalcant, 2023. "Forecasting Methods for Photovoltaic Energy in the Scenario of Battery Energy Storage Systems: A Comprehensive Review," Energies, MDPI, vol. 16(18), pages 1-20, September.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Cang, Shuang & Yu, Hongnian, 2014. "A combination selection algorithm on forecasting," European Journal of Operational Research, Elsevier, vol. 234(1), pages 127-139.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Li Li & Yanfei Kang & Fotios Petropoulos & Feng Li, 2022. "Feature-based intermittent demand forecast combinations: bias, accuracy and inventory implications," Papers 2204.08283, arXiv.org, revised Aug 2022.
- Shang, Han Lin & Kearney, Fearghal, 2022.
"Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
- Han Lin Shang & Fearghal Kearney, 2021. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," Papers 2107.14026, arXiv.org.
- Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
- Jiayan Kong & Yinghe An & Xian Shi & Zhongyi Sun & Lan Wu & Wei Cui, 2023. "Meteorological-Data-Driven Rubber Tree Powdery Mildew Model and Its Application on Spatiotemporal Patterns: A Case Study of Hainan Island," Sustainability, MDPI, vol. 15(16), pages 1-17, August.
- Mihaela Simionescu, 2015. "A New Technique based on Simulations for Improving the Inflation Rate Forecasts in Romania," Working Papers of Institute for Economic Forecasting 150206, Institute for Economic Forecasting.
- Amirhossein Hassani & Adisa Azapagic & Nima Shokri, 2021. "Global predictions of primary soil salinization under changing climate in the 21st century," Nature Communications, Nature, vol. 12(1), pages 1-17, December.
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018. "Exploring the sources of uncertainty: Why does bagging for time series forecasting work?," European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
- Carfora, Alfonso & Scandurra, Giuseppe & Thomas, Antonio, 2022. "Forecasting the COVID-19 effects on energy poverty across EU member states," Energy Policy, Elsevier, vol. 161(C).
- Ahmed Elsheikh & Soumaya Yacout & Mohamed-Salah Ouali & Yasser Shaban, 2020. "Failure time prediction using adaptive logical analysis of survival curves and multiple machining signals," Journal of Intelligent Manufacturing, Springer, vol. 31(2), pages 403-415, February.
- Halit Yanikkaya & Mehmet Halis Saka & Hasan Karaboga, 2019. "On the Geographical Determinants of Bilateral Trade: ANFIS Approach," Working Papers 2019-01, Gebze Technical University, Department of Economics.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Zhichao Li, 2022. "Forecasting Weekly Dengue Cases by Integrating Google Earth Engine-Based Risk Predictor Generation and Google Colab-Based Deep Learning Modeling in Fortaleza and the Federal District, Brazil," IJERPH, MDPI, vol. 19(20), pages 1-16, October.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2019. "Forecasting with a hybrid method utilizing data smoothing, a variation of the Theta method and shrinkage of seasonal factors," International Journal of Production Economics, Elsevier, vol. 209(C), pages 92-102.
- van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
- Cheng-Hong Yang & Po-Yin Chang, 2020. "Forecasting the Demand for Container Throughput Using a Mixed-Precision Neural Architecture Based on CNN–LSTM," Mathematics, MDPI, vol. 8(10), pages 1-17, October.
- Luh-Yu (Louie) Ren, 2016. "A Note about the Finance Journal Rankings and Citation Counts," Asian Academy of Management Journal of Accounting and Finance (AAMJAF), Penerbit Universiti Sains Malaysia, vol. 12(Suppl. 1), pages 183–194-1.
- Qiu, Richard T.R. & Wu, Doris Chenguang & Dropsy, Vincent & Petit, Sylvain & Pratt, Stephen & Ohe, Yasuo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Asia and Pacific team," Annals of Tourism Research, Elsevier, vol. 88(C).
- J. M. Torres & R. M. Aguilar, 2018. "Using Deep Learning to Predict Complex Systems: A Case Study in Wind Farm Generation," Complexity, Hindawi, vol. 2018, pages 1-10, April.
- Mihaela SIMIONESCU, 2015. "The Evaluation of Global Accuracy of Romanian Inflation Rate Predictions Using Mahalanobis Distance," Management Dynamics in the Knowledge Economy, College of Management, National University of Political Studies and Public Administration, vol. 3(1), pages 133-149, March.
- Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
- José Mantovani & Enner Alcântara & José A. Marengo & Luciana Londe & Edward Park & Ana Paula Cunha & Javier Tomasella, 2024. "Flood Risk Mapping during the Extreme February 2021 Flood in the Juruá River, Western Brazilian Amazonia, State of Acre," Sustainability, MDPI, vol. 16(7), pages 1-23, April.
- Nicholas G. Reich & Justin Lessler & Krzysztof Sakrejda & Stephen A. Lauer & Sopon Iamsirithaworn & Derek A. T. Cummings, 2016. "Case Study in Evaluating Time Series Prediction Models Using the Relative Mean Absolute Error," The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 285-292, July.
- Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
- Duca, Victor E.L.A. & Fonseca, Thaís C.O. & Cyrino Oliveira, Fernando L., 2021. "A generalized dynamical model for wind speed forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Athanasios Ioannis Arvanitidis & Lefteri H. Tsoukalas, 2022. "Error Compensation Enhanced Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 15(4), pages 1-21, February.
- K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
- Cheng, Xian & Wu, Peng & Liao, Stephen Shaoyi & Wang, Xuelian, 2023. "An integrated model for crude oil forecasting: Causality assessment and technical efficiency," Energy Economics, Elsevier, vol. 117(C).
- Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
- Borges, Patrick & Molinares, Fabio Fajardo & Bourguignon, Marcelo, 2016. "A geometric time series model with inflated-parameter Bernoulli counting series," Statistics & Probability Letters, Elsevier, vol. 119(C), pages 264-272.
- Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
- Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
- Dimitrios Kontogiannis & Dimitrios Bargiotas & Aspassia Daskalopulu & Lefteri H. Tsoukalas, 2021. "A Meta-Modeling Power Consumption Forecasting Approach Combining Client Similarity and Causality," Energies, MDPI, vol. 14(19), pages 1-19, September.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Peter Nielsen & Liping Jiang & Niels Gorm Malý Rytter & Gang Chen, 2014. "An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 667-682, December.
- Rahul Pathak & Daniel Williams, 2022. "Evaluating the Comparative Accuracy of COVID-19 Mortality Forecasts: An Analysis of the First-Wave Mortality Forecasts in the United States," Forecasting, MDPI, vol. 4(4), pages 1-21, September.
- Singh, Shiwangi & Dhir, Sanjay & Das, V. Mukunda & Sharma, Anuj, 2020. "Bibliometric overview of the Technological Forecasting and Social Change journal: Analysis from 1970 to 2018," Technological Forecasting and Social Change, Elsevier, vol. 154(C).
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Colin Singleton & Peter Grindrod, 2021. "Forecasting for Battery Storage: Choosing the Error Metric," Energies, MDPI, vol. 14(19), pages 1-11, October.
- Adedayo Ajayi & Patrick Chi-Kwong Luk & Liyun Lao & Mohammad Farhan Khan, 2023. "Energy Forecasting Model for Ground Movement Operation in Green Airport," Energies, MDPI, vol. 16(13), pages 1-19, June.
- Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
- Tasquia Mizan & Sharareh Taghipour, 2021. "A causal model for short‐term time series analysis to predict incoming Medicare workload," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 228-242, March.
- Eric Kalunda Panzi & Ngianga II Kandala & Emery Luzolo Kafinga & Bertin Mbenga Tampwo & Ngianga-Bakwin Kandala, 2022. "Forecasting Malaria Morbidity to 2036 Based on Geo-Climatic Factors in the Democratic Republic of Congo," IJERPH, MDPI, vol. 19(19), pages 1-28, September.
- Mousavizade, Mirsaeed & Bai, Feifei & Garmabdari, Rasoul & Sanjari, Mohammad & Taghizadeh, Foad & Mahmoudian, Ali & Lu, Junwei, 2023. "Adaptive control of V2Gs in islanded microgrids incorporating EV owner expectations," Applied Energy, Elsevier, vol. 341(C).
- Boehm, Martin, 2008. "Determining the impact of internet channel use on a customer's lifetime," Journal of Interactive Marketing, Elsevier, vol. 22(3), pages 2-22.
- Puah, Boon Keat & Chong, Lee Wai & Wong, Yee Wan & Begam, K.M. & Khan, Nafizah & Juman, Mohammed Ayoub & Rajkumar, Rajprasad Kumar, 2021. "A regression unsupervised incremental learning algorithm for solar irradiance prediction," Renewable Energy, Elsevier, vol. 164(C), pages 908-925.
- Li, Xian & Liu, Shuai & Tan, Kok Kiong & Wang, Qing-Guo & Cai, Wen-Jian & Xie, Lihua, 2016. "Dynamic modeling of a liquid desiccant dehumidifier," Applied Energy, Elsevier, vol. 180(C), pages 435-445.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Twumasi, Clement & Twumasi, Juliet, 2022. "Machine learning algorithms for forecasting and backcasting blood demand data with missing values and outliers: A study of Tema General Hospital of Ghana," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1258-1277.
- Oscar Claveria & Enric Monte & Salvador Torra, 2019. "Empirical modelling of survey-based expectations for the design of economic indicators in five European regions," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 46(2), pages 205-227, May.
- Xu, Kunliang & Niu, Hongli, 2022. "Do EEMD based decomposition-ensemble models indeed improve prediction for crude oil futures prices?," Technological Forecasting and Social Change, Elsevier, vol. 184(C).
- Meoli, Michele & Vismara, Silvio, 2022. "Machine-learning forecasting of successful ICOs," Journal of Economics and Business, Elsevier, vol. 121(C).
- Dongguo Shao & Zhuomin Wang & Bei Wang & Weiwei Luo, 2016. "A Water Quality Model with Three Dimensional Variational Data Assimilation for Contaminant Transport," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(13), pages 4501-4512, October.
- Shailesh Rana & William H. Bommer & G. Michael Phillips, 2020. "Predicting Returns for Growth and Value Stocks: A Forecast Assessment Approach Using Global Asset Pricing Models," International Journal of Economics and Financial Issues, Econjournals, vol. 10(4), pages 88-106.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Sørensen, Åse Lekang & Ludvigsen, Bjørn & Andresen, Inger, 2023. "Grid-connected cabin preheating of Electric Vehicles in cold climates – A non-flexible share of the EV energy use," Applied Energy, Elsevier, vol. 341(C).
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
- Beltrán, Sergio & Castro, Alain & Irizar, Ion & Naveran, Gorka & Yeregui, Imanol, 2022. "Framework for collaborative intelligence in forecasting day-ahead electricity price," Applied Energy, Elsevier, vol. 306(PA).
- Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
- Gioldasis, Georgios & Musolesi, Antonio & Simioni, Michel, 2023. "Interactive R&D spillovers: An estimation strategy based on forecasting-driven model selection," International Journal of Forecasting, Elsevier, vol. 39(1), pages 144-169.
- Nadia Shahraki & Safar Marofi & Sadegh Ghazanfari, 2019. "Modeling of Daily Rainfall Extremes, Using a Semi-Parametric Pareto Tail Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(2), pages 493-508, January.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Ioannis Nasios & Konstantinos Vogklis, 2023. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," Papers 2310.13029, arXiv.org.
- Lyon, Aidan & Wintle, Bonnie C. & Burgman, Mark, 2015. "Collective wisdom: Methods of confidence interval aggregation," Journal of Business Research, Elsevier, vol. 68(8), pages 1759-1767.
- Heo, Jae & Jung, Jaehoon & Kim, Byungil & Han, SangUk, 2020. "Digital elevation model-based convolutional neural network modeling for searching of high solar energy regions," Applied Energy, Elsevier, vol. 262(C).
- Fredo, Guilherme Luiz Minetto & Finardi, Erlon Cristian & de Matos, Vitor Luiz, 2019. "Assessing solution quality and computational performance in the long-term generation scheduling problem considering different hydro production function approaches," Renewable Energy, Elsevier, vol. 131(C), pages 45-54.
- BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
- Ljubotina Predrag & Raspor Andrej, 2022. "Recovery of Slovenian Tourism After Covid-19 and Ukraine Crisis," Economics, Sciendo, vol. 10(1), pages 55-72, June.
- Moting Su & Zongyi Zhang & Ye Zhu & Donglan Zha & Wenying Wen, 2019. "Data Driven Natural Gas Spot Price Prediction Models Using Machine Learning Methods," Energies, MDPI, vol. 12(9), pages 1-17, May.
- Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
- Ahmad B. Hassanat & Mohammad Khaled Alqaralleh & Ahmad S. Tarawneh & Khalid Almohammadi & Maha Alamri & Abdulkareem Alzahrani & Ghada A. Altarawneh & Rania Alhalaseh, 2024. "A Novel Outlier-Robust Accuracy Measure for Machine Learning Regression Using a Non-Convex Distance Metric," Mathematics, MDPI, vol. 12(22), pages 1-20, November.
- Jiao, Xiaoying & Li, Gang & Chen, Jason Li, 2020. "Forecasting international tourism demand: a local spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 83(C).
- Li, Xinzhe & Dong, Yufeng & Chang, Lu & Chen, Lifan & Wang, Guan & Zhuang, Yingping & Yan, Xuefeng, 2023. "Dynamic hybrid modeling of fuel ethanol fermentation process by integrating biomass concentration XGBoost model and kinetic parameter artificial neural network model into mechanism model," Renewable Energy, Elsevier, vol. 205(C), pages 574-582.
- Gao, Yuyang & Wang, Jianzhou & Yang, Hufang, 2022. "A multi-component hybrid system based on predictability recognition and modified multi-objective optimization for ultra-short-term onshore wind speed forecasting," Renewable Energy, Elsevier, vol. 188(C), pages 384-401.
- Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
- Jiří Mazurek, 2021. "The evaluation of COVID-19 prediction precision with a Lyapunov-like exponent," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-9, May.
- Hewage, Harsha Chamara & Perera, H. Niles & De Baets, Shari, 2022. "Forecast adjustments during post-promotional periods," European Journal of Operational Research, Elsevier, vol. 300(2), pages 461-472.
- Francesco Cantini & Giulio Castelli & Cristiano Foderi & Adalid Salazar Garcia & Teresa López de Armentia & Elena Bresci & Fabio Salbitano, 2019. "Evidence-Based Integrated Analysis of Environmental Hazards in Southern Bolivia," IJERPH, MDPI, vol. 16(12), pages 1-21, June.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Taeisha Nundlall & Terence L Van Zyl, 2023. "Machine Learning for Socially Responsible Portfolio Optimisation," Papers 2305.12364, arXiv.org.
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Erick Inácio Ferreira & Igor Viveiros Melo Souza, 2023. "Time series forecasting : a test of automated econometric methods," Textos para Discussão Cedeplar-UFMG 661, Cedeplar, Universidade Federal de Minas Gerais.
- Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
- Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
- Aysun Kapucugil Ikiz & Gizem Halil Utma, 2023. "Combined Forecasts of Intermittent Demand for Stock-keeping Units (SKUs)," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 9(1), pages 1-31, June.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Urko Aguirre-Larracoechea & Cruz E. Borges, 2021. "Imputation for Repeated Bounded Outcome Data: Statistical and Machine-Learning Approaches," Mathematics, MDPI, vol. 9(17), pages 1-27, August.
- Paolo Libenzio Brignoli & Alessandro Varacca & Cornelis Gardebroek & Paolo Sckokai, 2024. "Machine learning to predict grains futures prices," Agricultural Economics, International Association of Agricultural Economists, vol. 55(3), pages 479-497, May.
- Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
- Tosin Lambe & Emma Frew & Natalie J. Ives & Rebecca L. Woolley & Carole Cummins & Elizabeth A. Brettell & Emma N. Barsoum & Nicholas J. A. Webb, 2018. "Mapping the Paediatric Quality of Life Inventory (PedsQL™) Generic Core Scales onto the Child Health Utility Index–9 Dimension (CHU-9D) Score for Economic Evaluation in Children," PharmacoEconomics, Springer, vol. 36(4), pages 451-465, April.
- Rojas, Helder & Dias, David, 2021. "Transfer of macroeconomic shocks in stress tests modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
- Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
- Sosso Feindouno, 2019. "Improving the measurement of export instability in the Economic Vulnerability Index: A simple proposal," Post-Print hal-02167897, HAL.
- Ma, Shaohui & Fildes, Robert, 2017. "A retail store SKU promotions optimization model for category multi-period profit maximization," European Journal of Operational Research, Elsevier, vol. 260(2), pages 680-692.
- Frederik Kunze, 2020. "Predicting exchange rates in Asia: New insights on the accuracy of survey forecasts," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(2), pages 313-333, March.
- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
- Dong Liu & Youchun Pi & Zhengyang Tang & Hongpeng Hua & Xiaopeng Wang, 2024. "A Fusion Model for Predicting the Vibration Trends of Hydropower Units," Energies, MDPI, vol. 17(23), pages 1-16, November.
- Sosso Feindouno, 2019. "Improving the measurement of export instability in the Economic Vulnerability Index: A simple proposal," Post-Print hal-02128482, HAL.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
- Diogenis A. Kiziridis & Anna Mastrogianni & Magdalini Pleniou & Spyros Tsiftsis & Fotios Xystrakis & Ioannis Tsiripidis, 2023. "Simulating Future Land Use and Cover of a Mediterranean Mountainous Area: The Effect of Socioeconomic Demands and Climatic Changes," Land, MDPI, vol. 12(1), pages 1-23, January.
- Christopher Jung, 2016. "High Spatial Resolution Simulation of Annual Wind Energy Yield Using Near-Surface Wind Speed Time Series," Energies, MDPI, vol. 9(5), pages 1-20, May.
- Pokorný, Jiří & Froněk, Pavel, 2021. "Price Forecasting Accuracy of the OECD-FAO's Agricultural Outlook and the European Commission DG AGRI's Medium-Term Agricultural Outlook Report," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 13(3), September.
- Nuri Hacıevliyagil & Krzysztof Drachal & Ibrahim Halil Eksi, 2022. "Predicting House Prices Using DMA Method: Evidence from Turkey," Economies, MDPI, vol. 10(3), pages 1-27, March.
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
- Oh, Jiyoung & Min, Daiki, 2024. "Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics," Energy, Elsevier, vol. 300(C).
- Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
- Ahmad Nazrul Hakimi Ibrahim & Muhamad Nazri Borhan & Muhamad Razuhanafi Mat Yazid & Sitti Asmah Hassan & Ahmad Firdhaus Arham & Sharizal Hashim, 2023. "Modelling of Passenger Satisfaction and Reuse Intention with Monorail Services in Kuala Lumpur, Malaysia: A Hybrid SEM-ANN Approach," Mathematics, MDPI, vol. 11(15), pages 1-21, August.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Mihaela BRATU (SIMIONESCU), 2012. "A Strategy To Improve The Gdp Index Forcasts In Romania Using Moving Average Models Of Historical Errors Of The Dobrescu Macromodel," Romanian Journal of Economics, Institute of National Economy, vol. 35(2(44)), pages 128-138, December.
- García-Ascanio, Carolina & Maté, Carlos, 2010. "Electric power demand forecasting using interval time series: A comparison between VAR and iMLP," Energy Policy, Elsevier, vol. 38(2), pages 715-725, February.
- Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
- Karamaziotis, Panagiotis I. & Raptis, Achilleas & Nikolopoulos, Konstantinos & Litsiou, Konstantia & Assimakopoulos, Vassilis, 2020. "An empirical investigation of water consumption forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(2), pages 588-606.
- Potočnik, Primož & Soldo, Božidar & Šimunović, Goran & Šarić, Tomislav & Jeromen, Andrej & Govekar, Edvard, 2014. "Comparison of static and adaptive models for short-term residential natural gas forecasting in Croatia," Applied Energy, Elsevier, vol. 129(C), pages 94-103.
- Jenny Cifuentes & Geovanny Marulanda & Antonio Bello & Javier Reneses, 2020. "Air Temperature Forecasting Using Machine Learning Techniques: A Review," Energies, MDPI, vol. 13(16), pages 1-28, August.
- Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
- Toyin Clottey, 2016. "Development and evaluation of a rolling horizon purchasing policy for cores," International Journal of Production Research, Taylor & Francis Journals, vol. 54(9), pages 2780-2790, May.
- Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
- Warwick Smith & Anca M. Hanea & Mark A. Burgman, 2022. "Can Groups Improve Expert Economic and Financial Forecasts?," Forecasting, MDPI, vol. 4(3), pages 1-18, August.
- Ching-Hsue Cheng & Ming-Chi Tsai, 2022. "An Intelligent Homogeneous Model Based on an Enhanced Weighted Kernel Self-Organizing Map for Forecasting House Prices," Land, MDPI, vol. 11(8), pages 1-17, July.
- Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
- Hazem Krichene & Mhamed-Ali El-Aroui, 2018. "Agent-Based Simulation and Microstructure Modeling of Immature Stock Markets," Computational Economics, Springer;Society for Computational Economics, vol. 51(3), pages 493-511, March.
- Mona Faraji Niri & Jimiama Mafeni Mase & James Marco, 2022. "Performance Evaluation of Convolutional Auto Encoders for the Reconstruction of Li-Ion Battery Electrode Microstructure," Energies, MDPI, vol. 15(12), pages 1-20, June.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Ahmad Farid Osman & Maxwell L. King, 2015. "A new approach to forecasting based on exponential smoothing with independent regressors," Monash Econometrics and Business Statistics Working Papers 2/15, Monash University, Department of Econometrics and Business Statistics.
- Katsikopoulos, Konstantinos V. & Şimşek, Özgür & Buckmann, Marcus & Gigerenzer, Gerd, 2022. "Transparent modeling of influenza incidence: Big data or a single data point from psychological theory?," International Journal of Forecasting, Elsevier, vol. 38(2), pages 613-619.
- Bogdan Włodarczyk & Daniela Firoiu & George H. Ionescu & Florin Ghiocel & Marek Szturo & Lesław Markowski, 2021. "Assessing the Sustainable Development and Renewable Energy Sources Relationship in EU Countries," Energies, MDPI, vol. 14(8), pages 1-16, April.
- Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
- Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
- Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
- Ziaul Haque Munim & Hans-Joachim Schramm, 2021. "Forecasting container freight rates for major trade routes: a comparison of artificial neural networks and conventional models," Maritime Economics & Logistics, Palgrave Macmillan;International Association of Maritime Economists (IAME), vol. 23(2), pages 310-327, June.
- Fernández-Durán, J.J., 2014. "Modeling seasonal effects in the Bass Forecasting Diffusion Model," Technological Forecasting and Social Change, Elsevier, vol. 88(C), pages 251-264.
- Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
- Jitendra Parajuli & Kingsley E. Haynes, 2018. "Cellular mobile telephony in Nepal," Letters in Spatial and Resource Sciences, Springer, vol. 11(2), pages 209-222, July.
- Rodolfo Metulini & Maurizio Carpita, 2024. "Modeling and forecasting traffic flows with mobile phone big data in flooding risk areas to support a data-driven decision making," Annals of Operations Research, Springer, vol. 342(3), pages 1629-1654, November.
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
- Franses, Ph.H.B.F. & Maassen, N.R., 2015. "Consensus forecasters: How good are they individually and why?," Econometric Institute Research Papers EI2015-21, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Dominik Martin & Philipp Spitzer & Niklas Kuhl, 2020. "A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs," Papers 2004.10537, arXiv.org.
- da Silva, Sérgio Luiz E.F., 2021. "κ-generalised Gutenberg–Richter law and the self-similarity of earthquakes," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
- Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
- Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
- Michelle Sapitang & Wanie M. Ridwan & Khairul Faizal Kushiar & Ali Najah Ahmed & Ahmed El-Shafie, 2020. "Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy," Sustainability, MDPI, vol. 12(15), pages 1-19, July.
- Andrey Eliseyev & Tetiana Aksenova, 2016. "Penalized Multi-Way Partial Least Squares for Smooth Trajectory Decoding from Electrocorticographic (ECoG) Recording," PLOS ONE, Public Library of Science, vol. 11(5), pages 1-19, May.
- Suneel Maheshwari & Deepak Raghava Naik, 2024. "Predicting Mutual Fund Stress Levels Utilizing SEBI’s Stress Test Parameters in MidCap and SmallCap Funds Using Deep Learning Models," Risks, MDPI, vol. 12(11), pages 1-17, November.
- Sonali Swetapadma & C. S. P. Ojha, 2020. "Selection of a basin-scale model for flood frequency analysis in Mahanadi river basin, India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(1), pages 519-552, May.
- Oğuzhan Kivrak & Cüneyt Akar, 2020. "Effect of Social Media Interactions on CLV in Telecommunications," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 447-468, March.
- Milan Bašta, 2018. "Time series forecasting with a prior wavelet-based denoising step," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2018(1), pages 5-24.
- Trapero, Juan R. & Pedregal, Diego J. & Fildes, R. & Kourentzes, N., 2013. "Analysis of judgmental adjustments in the presence of promotions," International Journal of Forecasting, Elsevier, vol. 29(2), pages 234-243.
- Kelechi Igwe & Vaishali Sharda & Trevor Hefley, 2023. "Evaluating the Impact of Future Seasonal Climate Extremes on Crop Evapotranspiration of Maize in Western Kansas Using a Machine Learning Approach," Land, MDPI, vol. 12(8), pages 1-26, July.
- García-Ferrer, Antonio & González-Prieto, Ester, 2011. "Exploring ICA for time series decomposition," DES - Working Papers. Statistics and Econometrics. WS ws111611, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Yang, Yitao & Jia, Bin & Yan, Xiao-Yong & Chen, Yan & Song, Dongdong & Zhi, Danyue & Wang, Yiyun & Gao, Ziyou, 2023. "Estimating intercity heavy truck mobility flows using the deep gravity framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
- Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
- Jiucheng Xu & Keqiang Xu & Zhichao Li & Fengxia Meng & Taotian Tu & Lei Xu & Qiyong Liu, 2020. "Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method," IJERPH, MDPI, vol. 17(2), pages 1-14, January.
- García-Ferrer, Antonio & González-Prieto, Ester, 2008. "A multivariate generalized independent factor GARCH model with an application to financial stock returns," DES - Working Papers. Statistics and Econometrics. WS ws087528, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Pasichnyi, Oleksii & Wallin, Jörgen & Kordas, Olga, 2019. "Data-driven building archetypes for urban building energy modelling," Energy, Elsevier, vol. 181(C), pages 360-377.
- Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
- Pui Hing Chau & Paul Siu Fai Yip & Eric Ho Yin Lau & Yee Ting Ip & Frances Yik Wa Law & Rainbow Tin Hung Ho & Angela Yee Man Leung & Janet Yuen Ha Wong & Jean Woo, 2020. "Hot Weather and Suicide Deaths among Older Adults in Hong Kong, 1976–2014: A Retrospective Study," IJERPH, MDPI, vol. 17(10), pages 1-16, May.
- Yi Liang & Dongxiao Niu & Minquan Ye & Wei-Chiang Hong, 2016. "Short-Term Load Forecasting Based on Wavelet Transform and Least Squares Support Vector Machine Optimized by Improved Cuckoo Search," Energies, MDPI, vol. 9(10), pages 1-17, October.
- Seyma Caliskan Cavdar & Alev Dilek Aydin, 2015. "An Empirical Analysis for the Prediction of a Financial Crisis in Turkey through the Use of Forecast Error Measures," JRFM, MDPI, vol. 8(3), pages 1-18, August.
- Zheng, Hao & Feng, Suzhen & Chen, Cheng & Wang, Jinwen, 2022. "A new three-triangle based method to linearly concave hydropower output in long-term reservoir operation," Energy, Elsevier, vol. 250(C).
- Azlan, F. & Tan, M.K. & Tan, B.T. & Ismadi, M.-Z., 2023. "Passive flow-field control using dimples for performance enhancement of horizontal axis wind turbine," Energy, Elsevier, vol. 271(C).
- Jianying Xie, 2021. "A New Multivariate Predictive Model for Stock Returns," Papers 2110.01873, arXiv.org.
- Athanasopoulos, George & Kourentzes, Nikolaos, 2023. "On the evaluation of hierarchical forecasts," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1502-1511.
- David T. L. Siu & John Okunev, 2009. "Forecasting exchange rate volatility: a multiple horizon comparison using historical, realized and implied volatility measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(6), pages 465-486.
- Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- Theocharides, Spyros & Makrides, George & Livera, Andreas & Theristis, Marios & Kaimakis, Paris & Georghiou, George E., 2020. "Day-ahead photovoltaic power production forecasting methodology based on machine learning and statistical post-processing," Applied Energy, Elsevier, vol. 268(C).
- Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
- Yoon, Yourim & Kim, Yong-Hyuk, 2016. "Effective scheduling of residential energy storage systems under dynamic pricing," Renewable Energy, Elsevier, vol. 87(P2), pages 936-945.
- Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
- Lin, Aiwen & Zou, Ling & Wang, Lunche & Gong, Wei & Zhu, Hongji & Salazar, Germán Ariel, 2016. "Estimation of atmospheric turbidity coefficient β over Zhengzhou, China during 1961–2013 using an improved hybrid model," Renewable Energy, Elsevier, vol. 86(C), pages 1134-1144.
- Aiping Jiang & Kwok Leung Tam & Xiaoyun Guo & Yufeng Zhang, 2020. "A new approach to forecasting intermittent demand based on the mixed zero‐truncated Poisson model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 69-83, January.
- Ana Teixeira & Maribel Teixeira & Maria Teresa Herdeiro & Viviana Vasconcelos & Rita Correia & Maria Fernanda Bahia & Isabel F. Almeida & Diogo Guedes Vidal & Hélder Fernando Pedrosa e Sousa & Maria A, 2021. "Knowledge and Practices of Community Pharmacists in Topical Dermatological Treatments," IJERPH, MDPI, vol. 18(6), pages 1-13, March.
- Zafar, Raja Fawad & Qayyum, Abdul & Ghouri, Saghir Pervaiz, 2015. "Forecasting Inflation using Functional Time Series Analysis," MPRA Paper 67208, University Library of Munich, Germany.
- Lucian Liviu ALBU & Carlos MatéJIMÉNEZ & Mihaela SIMIONESCU, 2015. "The Assessment of Some Macroeconomic Forecasts for Spain using Aggregated Accuracy Indicators," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 30-47, June.
- Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
- Raheem Bux Soomro & Sanam Gul Memon & Nisar Ahmed Dahri & Waleed Mugahed Al-Rahmi & Khalid Aldriwish & Anas A. Salameh & Ahmad Samed Al-Adwan & Atif Saleem, 2024. "The Adoption of Digital Technologies by Small and Medium-Sized Enterprises for Sustainability and Value Creation in Pakistan: The Application of a Two-Staged Hybrid SEM-ANN Approach," Sustainability, MDPI, vol. 16(17), pages 1-29, August.
- Bozos, Konstantinos & Nikolopoulos, Konstantinos, 2011. "Forecasting the value effect of seasoned equity offering announcements," European Journal of Operational Research, Elsevier, vol. 214(2), pages 418-427, October.
- Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Jacobs, Bas & Tobi, Hilde & Hengeveld, Geerten M., 2024. "Linking error measures to model questions," Ecological Modelling, Elsevier, vol. 487(C).
- Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
- Kaneko, Naoya & Okazawa, Kazuki & Zhao, Dafang & Nishikawa, Hiroki & Taniguchi, Ittetsu & Murayama, Hiroyuki & Yura, Yoshinori & Okamoto, Masakazu & Catthoor, Francky & Onoye, Takao, 2024. "Non-intrusive thermal load disaggregation and forecasting for effective HVAC systems," Applied Energy, Elsevier, vol. 367(C).
- Ruixue Zhang & Yongtao Hao, 2024. "Time Series Prediction Based on Multi-Scale Feature Extraction," Mathematics, MDPI, vol. 12(7), pages 1-18, March.
- Apostolos Ampountolas, 2021. "Modeling and Forecasting Daily Hotel Demand: A Comparison Based on SARIMAX, Neural Networks, and GARCH Models," Forecasting, MDPI, vol. 3(3), pages 1-16, August.
- Bergsteinsson, Hjörleifur G. & Sørensen, Mikkel Lindstrøm & Møller, Jan Kloppenborg & Madsen, Henrik, 2023. "Heat load forecasting using adaptive spatial hierarchies," Applied Energy, Elsevier, vol. 350(C).
- Jiří Šindelář, 2022. "The accuracy of state budget planning: case of the Czech Republic [Úspěšnost plánování státního rozpočtu ČR]," Český finanční a účetní časopis, Prague University of Economics and Business, vol. 2022(1), pages 35-58.
- Paweł Piotrowski & Inajara Rutyna & Dariusz Baczyński & Marcin Kopyt, 2022. "Evaluation Metrics for Wind Power Forecasts: A Comprehensive Review and Statistical Analysis of Errors," Energies, MDPI, vol. 15(24), pages 1-38, December.
- Tassadit Kourat & Dalila Smadhi & Brahim Mouhouche & Nerdjes Gourari & M. G. Mostofa Amin & Christopher Robin Bryant, 2021. "Assessment of future climate change impact on rainfed wheat yield in the semi-arid Eastern High Plain of Algeria using a crop model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 107(3), pages 2175-2203, July.
- Ziaul Haque Munim & Mohammad Hassan Shakil & Ilan Alon, 2019. "Next-Day Bitcoin Price Forecast," JRFM, MDPI, vol. 12(2), pages 1-15, June.
- Mohammad Taghi Sattari & Anca Avram & Halit Apaydin & Oliviu Matei, 2020. "Soil Temperature Estimation with Meteorological Parameters by Using Tree-Based Hybrid Data Mining Models," Mathematics, MDPI, vol. 8(9), pages 1-21, August.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
- Nigitz, Thomas & Gölles, Markus, 2019. "A generally applicable, simple and adaptive forecasting method for the short-term heat load of consumers," Applied Energy, Elsevier, vol. 241(C), pages 73-81.
- KSM Tozammel Hossain & Shuyang Gao & Brendan Kennedy & Aram Galstyan & Prem Natarajan, 2020. "Forecasting violent events in the Middle East and North Africa using the Hidden Markov Model and regularized autoregressive models," The Journal of Defense Modeling and Simulation, , vol. 17(3), pages 269-283, July.
- Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
- Kleyton da Costa & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro Coelho & Andr'e de Melo Modenesi, 2020. "A Systematic Comparison of Forecasting for Gross Domestic Product in an Emergent Economy," Papers 2010.13259, arXiv.org, revised Mar 2022.
- Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Switching Nelson-Siegel Models," BAFFI CAREFIN Working Papers 19106, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
- Jair Andrade & Jim Duggan, 2021. "A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo," System Dynamics Review, System Dynamics Society, vol. 37(4), pages 283-309, October.
- Richard Bean, 2023. "Forecasting the Monash Microgrid for the IEEE-CIS Technical Challenge," Energies, MDPI, vol. 16(3), pages 1-23, January.
- Lee, Dae-Jin, 2019. "Out-of-sample prediction in multidimensional P-spline models," DES - Working Papers. Statistics and Econometrics. WS 28630, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Yuchen Wang & Zhengshan Luo & Yulei Kong & Jihao Luo, 2024. "Advancing Spatiotemporal Pollutant Dispersion Forecasting with an Integrated Deep Learning Framework for Crucial Information Capture," Sustainability, MDPI, vol. 16(11), pages 1-19, May.
- Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007. "The vector innovation structural time series framework: a simple approach to multivariate forecasting," Monash Econometrics and Business Statistics Working Papers 3/07, Monash University, Department of Econometrics and Business Statistics.
- Manahov, Viktor & Hudson, Robert & Hoque, Hafiz, 2015. "Return predictability and the ‘wisdom of crowds’: Genetic Programming trading algorithms, the Marginal Trader Hypothesis and the Hayek Hypothesis," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 37(C), pages 85-98.
- Christopher E.S. WARBURTON & Jared PEMBERTON, 2023. "Volatile Financial Conditions, Asset Prices, and Investment Decisions: Analysis of daily data of DJIA and S&P500, from January to April of 2022," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 23(1), pages 101-124.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Matej Mihelčić & Marko Bohanec, 2017. "Approximating incompletely defined utility functions of qualitative multi-criteria modeling method DEX," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 25(3), pages 627-649, September.
- Dilip Kumar Roy & Mohamed Anower Hossain & Mohamed Panjarul Haque & Abed Alataway & Ahmed Z. Dewidar & Mohamed A. Mattar, 2024. "Automated Model Selection Using Bayesian Optimization and the Asynchronous Successive Halving Algorithm for Predicting Daily Minimum and Maximum Temperatures," Agriculture, MDPI, vol. 14(2), pages 1-30, February.
- Luisa Ferrari & Giuseppe Gerardi & Giancarlo Manzi & Alessandra Micheletti & Federica Nicolussi & Elia Biganzoli & Silvia Salini, 2021. "Modeling Provincial Covid-19 Epidemic Data Using an Adjusted Time-Dependent SIRD Model," IJERPH, MDPI, vol. 18(12), pages 1-20, June.
- Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
- Jinfeng Wang & Wenshan Hu & Lingfeng Xuan & Feiwu He & Chaojie Zhong & Guowei Guo, 2024. "TransPVP: A Transformer-Based Method for Ultra-Short-Term Photovoltaic Power Forecasting," Energies, MDPI, vol. 17(17), pages 1-19, September.
- Manahov, Viktor & Hudson, Robert & Linsley, Philip, 2014. "New evidence about the profitability of small and large stocks and the role of volume obtained using Strongly Typed Genetic Programming," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 33(C), pages 299-316.
- Petropoulos, Fotios & Kourentzes, Nikolaos & Nikolopoulos, Konstantinos, 2016. "Another look at estimators for intermittent demand," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 154-161.
- Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
- Wenlong Fu & Kai Wang & Jianzhong Zhou & Yanhe Xu & Jiawen Tan & Tie Chen, 2019. "A Hybrid Approach for Multi-Step Wind Speed Forecasting Based on Multi-Scale Dominant Ingredient Chaotic Analysis, KELM and Synchronous Optimization Strategy," Sustainability, MDPI, vol. 11(6), pages 1-24, March.
- Mehmet Türker Takcı & Tuba Gözel, 2022. "Effects of Predictors on Power Consumption Estimation for IT Rack in a Data Center: An Experimental Analysis," Sustainability, MDPI, vol. 14(21), pages 1-19, November.
- Man Sing Wong & Tingneng Wang & Hung Chak Ho & Coco Y. T. Kwok & Keru Lu & Sawaid Abbas, 2018. "Towards a Smart City: Development and Application of an Improved Integrated Environmental Monitoring System," Sustainability, MDPI, vol. 10(3), pages 1-16, February.
- Michael R. Johnson & Hiten Naik & Wei Siang Chan & Jesse Greiner & Matt Michaleski & Dong Liu & Bruno Silvestre & Ian P. McCarthy, 2023. "Forecasting ward-level bed requirements to aid pandemic resource planning: Lessons learned and future directions," Health Care Management Science, Springer, vol. 26(3), pages 477-500, September.
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Lu, Shin-Li, 2019. "Integrating heuristic time series with modified grey forecasting for renewable energy in Taiwan," Renewable Energy, Elsevier, vol. 133(C), pages 1436-1444.
- Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2014. "The value of competitive information in forecasting FMCG retail product sales and the variable selection problem," European Journal of Operational Research, Elsevier, vol. 237(2), pages 738-748.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Marie Angèle Cathleen Alijean & Jason Narsoo, 2018. "Evaluation of the Kou-Modified Lee-Carter Model in Mortality Forecasting: Evidence from French Male Mortality Data," Risks, MDPI, vol. 6(4), pages 1-26, October.
- Bastos, Bruno Quaresma & Cyrino Oliveira, Fernando Luiz & Milidiú, Ruy Luiz, 2021. "U-Convolutional model for spatio-temporal wind speed forecasting," International Journal of Forecasting, Elsevier, vol. 37(2), pages 949-970.
- Adrian Chmielewski & Jakub Możaryn & Piotr Piórkowski & Krzysztof Bogdziński, 2018. "Comparison of NARX and Dual Polarization Models for Estimation of the VRLA Battery Charging/Discharging Dynamics in Pulse Cycle," Energies, MDPI, vol. 11(11), pages 1-28, November.
- Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Wolters, Jannik & Huchzermeier, Arnd, 2021. "Joint In-Season and Out-of-Season Promotion Demand Forecasting in a Retail Environment," Journal of Retailing, Elsevier, vol. 97(4), pages 726-745.
- Lee, Dae-Jin & Durbán, María, 2012. "Seasonal modulation mixed models for time series forecasting," DES - Working Papers. Statistics and Econometrics. WS ws122519, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
- Moody Chu & Matthew Lin & Liqi Wang, 2014. "A study of singular spectrum analysis with global optimization techniques," Journal of Global Optimization, Springer, vol. 60(3), pages 551-574, November.
- Abouarghoub, Wessam & Nomikos, Nikos K. & Petropoulos, Fotios, 2018. "On reconciling macro and micro energy transport forecasts for strategic decision making in the tanker industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 113(C), pages 225-238.
- Evgeny A. Antipov & Elena B. Pokryshevskaya, 2017. "Are box office revenues equally unpredictable for all movies? Evidence from a Random forest-based model," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 16(3), pages 295-307, June.
- Gao, Ruobin & Li, Ruilin & Hu, Minghui & Suganthan, Ponnuthurai Nagaratnam & Yuen, Kum Fai, 2023. "Dynamic ensemble deep echo state network for significant wave height forecasting," Applied Energy, Elsevier, vol. 329(C).
- Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
- Kadir Özen & Dilem Yıldırım, 2021. "Application of Bagging in Day-Ahead Electricity Price Forecasting and Factor Augmentation," ERC Working Papers 2101, ERC - Economic Research Center, Middle East Technical University, revised Apr 2021.
- Georgios Gioldasis & Antonio Musolesi & Michel Simioni, 2021. "Interactive R&D Spillovers: An estimation strategy based on forecasting-driven model selection," SEEDS Working Papers 0621, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Jun 2021.
- Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
- Aleksander Grechuta, 2018. "Porównanie trafności jednorocznych prognoz polskiej koniunktury sporządzanych przez krajowe i międzynarodowe instytucje ekonomiczne," Bank i Kredyt, Narodowy Bank Polski, vol. 49(1), pages 63-92.
- Yingjun Shen & Taohong Wang & Zhe Song, 2024. "Online performance and proactive maintenance assessment of data driven prediction models," Journal of Intelligent Manufacturing, Springer, vol. 35(8), pages 3959-3993, December.
- Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
- Cheng, Ziqiang & Tenny, Kevin M. & Pizzolato, Alberto & Forner-Cuenca, Antoni & Verda, Vittorio & Chiang, Yet-Ming & Brushett, Fikile R. & Behrou, Reza, 2020. "Data-driven electrode parameter identification for vanadium redox flow batteries through experimental and numerical methods," Applied Energy, Elsevier, vol. 279(C).
- Lei Kou & Mykola Sysyn & Jianxing Liu & Olga Nabochenko & Yue Han & Dai Peng & Szabolcs Fischer, 2022. "Evolution of Rail Contact Fatigue on Crossing Nose Rail Based on Long Short-Term Memory," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
- Zou, Xiaojing & He, Changyu & Guan, Wei & Zhou, Yan & Zhao, Hongyang & Cai, Mingyu, 2023. "Reservoir tortuosity prediction: Coupling stochastic generation of porous media and machine learning," Energy, Elsevier, vol. 285(C).
- Gourav Kumar & Uday Pratap Singh & Sanjeev Jain, 2022. "Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 60(3), pages 991-1039, October.
- Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
- Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
- Paul Goodwin & Fotios Petropoulos & Rob J. Hyndman, 2017. "A note on upper bounds for forecast-value-added relative to naïve forecasts," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1082-1084, September.
- Helder Rojas & David Dias, 2018. "Transmission of Macroeconomic Shocks to Risk Parameters: Their uses in Stress Testing," Papers 1809.07401, arXiv.org, revised May 2019.
- Tilottama Chakraborty & Mrinmoy Majumder, 2019. "Application of statistical charts, multi-criteria decision making and polynomial neural networks in monitoring energy utilization of wave energy converters," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(1), pages 199-219, February.
- Marcos Álvarez-Díaz & Rangan Gupta, 2015. "Forecasting the US CPI: Does Nonlinearity Matter?," Working Papers 201512, University of Pretoria, Department of Economics.
- George Athanasopoulos & Nikolaos Kourentzes, 2021. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 10/21, Monash University, Department of Econometrics and Business Statistics.
- Kunze, Frederik & Wegener, Christoph & Bizer, Kilian & Spiwoks, Markus, 2017. "Forecasting European interest rates in times of financial crisis – What insights do we get from international survey forecasts?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 48(C), pages 192-205.
- Sosso Feindouno, 2019. "Improving the measurement of export instability in the Economic Vulnerability Index: A simple proposal," Economics Bulletin, AccessEcon, vol. 39(2), pages 1629-1638.
- Jurado, Sergio & Nebot, Àngela & Mugica, Fransisco & Avellana, Narcís, 2015. "Hybrid methodologies for electricity load forecasting: Entropy-based feature selection with machine learning and soft computing techniques," Energy, Elsevier, vol. 86(C), pages 276-291.
- Alya A Alhendi & Ameena S Al-Sumaiti & Feruz K Elmay & James Wescaot & Abdollah Kavousi-Fard & Ehsan Heydarian-Forushani & Hassan Haes Alhelou, 2022. "Artificial intelligence for water–energy nexus demand forecasting: a review [Modeling and co-optimization of a micro water-energy nexus for smart communities]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 520-534.
- Mamonov, Nikolay & Golubyatnikov, Evgeny & Kanevskiy, Daniel & Gusakov, Igor, 2022. "GoodsForecast second-place solution in M5 Uncertainty track: Combining heterogeneous models for a quantile estimation task," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1434-1441.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
- Wagner Barreto‐Souza & Hernando Ombao, 2022. "The negative binomial process: A tractable model with composite likelihood‐based inference," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 49(2), pages 568-592, June.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Richard T.R. Qiu & Doris Chenguang Wu & Vincent Dropsy & Sylvain Petit & Stephen Pratt & Yasuo Ohe, 2021. "TOURIST ARRIVAL FORECAST AMID COVID-19: A perspective from the Asia and Pacific team," Post-Print hal-03138092, HAL.
- Hoornweg, V., 2013. "Some Tools for Robustifying Econometric Analyses," Econometric Institute Research Papers 50163, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Petropoulos, Fotios & Fildes, Robert & Goodwin, Paul, 2016. "Do ‘big losses’ in judgmental adjustments to statistical forecasts affect experts’ behaviour?," European Journal of Operational Research, Elsevier, vol. 249(3), pages 842-852.
- Christine Mpundu-Kaambwa & Gang Chen & Remo Russo & Katherine Stevens & Karin Dam Petersen & Julie Ratcliffe, 2017. "Mapping CHU9D Utility Scores from the PedsQLTM 4.0 SF-15," PharmacoEconomics, Springer, vol. 35(4), pages 453-467, April.
- Gomes-Gonçalves, Erika & Gzyl, Henryk & Mayoral, Silvia, 2016. "Loss data analysis: Analysis of the sample dependence in density reconstruction by maxentropic methods," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 145-153.
- Döpke, Jörg & Müller, Karsten & Tegtmeier, Lars, 2018. "The economic value of business cycle forecasts for potential investors – Evidence from Germany," Research in International Business and Finance, Elsevier, vol. 46(C), pages 445-461.
- Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Kate J. Li & Duncan K. H. Fong & Susan H. Xu, 2011. "Managing Trade-in Programs Based on Product Characteristics and Customer Heterogeneity in Business-to-Business Markets," Manufacturing & Service Operations Management, INFORMS, vol. 13(1), pages 108-123, October.
- Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
- García-Ferrer, Antonio & González-Prieto, Ester & Peña, Daniel, 2012. "A conditionally heteroskedastic independent factor model with an application to financial stock returns," International Journal of Forecasting, Elsevier, vol. 28(1), pages 70-93.
- Yueling Xu & Wenyu Zhang & Haijun Bao & Shuai Zhang & Ying Xiang, 2019. "A SEM–Neural Network Approach to Predict Customers’ Intention to Purchase Battery Electric Vehicles in China’s Zhejiang Province," Sustainability, MDPI, vol. 11(11), pages 1-19, June.
- Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
- Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
- Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
- Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
- Nikolopoulos, Konstantinos & Petropoulos, Fotios & Rodrigues, Vasco Sanchez & Pettit, Stephen & Beresford, Anthony, 2022. "A disaster response model driven by spatial–temporal forecasts," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1214-1220.
- Cheng-Hong Yang & Tshimologo Molefyane & Yu-Da Lin, 2023. "The Forecasting of a Leading Country’s Government Expenditure Using a Recurrent Neural Network with a Gated Recurrent Unit," Mathematics, MDPI, vol. 11(14), pages 1-17, July.
- Schreiber, Thomas & Netsch, Christoph & Eschweiler, Sören & Wang, Tianyuan & Storek, Thomas & Baranski, Marc & Müller, Dirk, 2021. "Application of data-driven methods for energy system modelling demonstrated on an adaptive cooling supply system," Energy, Elsevier, vol. 230(C).
- Gorr, Wilpen L., 2009. "Forecast accuracy measures for exception reporting using receiver operating characteristic curves," International Journal of Forecasting, Elsevier, vol. 25(1), pages 48-61.
- Arroyo, Javier & Maté, Carlos, 2009. "Forecasting histogram time series with k-nearest neighbours methods," International Journal of Forecasting, Elsevier, vol. 25(1), pages 192-207.
- Sakine Koohi & Asghar Azizian & Luca Brocca, 2022. "Calibration of a Distributed Hydrological Model (VIC-3L) Based on Global Water Resources Reanalysis Datasets," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 36(4), pages 1287-1306, March.
- Jacie Jia Liu, 2021. "A Study on Link Functions for Modelling and Forecasting Old-Age Survival Probabilities of Australia and New Zealand," Risks, MDPI, vol. 9(1), pages 1-18, January.
- Frank J. Fabozzi & Francesco A. Fabozzi & Diana Tunaru, 2023. "A comparison of multi-factor term structure models for interbank rates," Review of Quantitative Finance and Accounting, Springer, vol. 61(1), pages 323-356, July.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
Cited by:
- Hampel, Katharina & Kunz, Marcus & Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2007.
"Regional employment forecasts with spatial interdependencies,"
IAB-Discussion Paper
200702, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, Norbert & Wapler, Rüdiger & Weyh, Antje, 2008. "Regional unemployment forecasts with spatial interdependencies," IAB-Discussion Paper 200828, Institut für Arbeitsmarkt- und Berufsforschung (IAB), Nürnberg [Institute for Employment Research, Nuremberg, Germany].
- Schanne, N. & Wapler, R. & Weyh, A., 2010. "Regional unemployment forecasts with spatial interdependencies," International Journal of Forecasting, Elsevier, vol. 26(4), pages 908-926, October.
- Filelis - Papadopoulos, Christos K. & Kyziropoulos, Panagiotis E. & Morrison, John P. & O‘Reilly, Philip, 2022. "Modelling and forecasting based on recursive incomplete pseudoinverse matrices," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 197(C), pages 358-376.
- Katharina Hampel & Marcus Kunz & Norbert Schanne & Ruediger Wapler & Antje Weyh, 2006. "Regional Unemployment Forecasting Using Structural Component Models With Spatial Autocorrelation," ERSA conference papers ersa06p196, European Regional Science Association.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R. & Hnich, B., 2014. "Forecasting intermittent demand by hyperbolic-exponential smoothing," International Journal of Forecasting, Elsevier, vol. 30(4), pages 928-933.
- Sanchez-Ubeda, Eugenio Fco. & Berzosa, Ana, 2007. "Modeling and forecasting industrial end-use natural gas consumption," Energy Economics, Elsevier, vol. 29(4), pages 710-742, July.
- Ahmad Alsharef & Sonia & Karan Kumar & Celestine Iwendi, 2022. "Time Series Data Modeling Using Advanced Machine Learning and AutoML," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
- Phillip Gould & Anne B. Koehler & Farshid Vahid-Araghi & Ralph D. Snyder & J. Keith Ord & Rob J. Hyndman, 2004.
"Forecasting Time-Series with Correlated Seasonality,"
Monash Econometrics and Business Statistics Working Papers
28/04, Monash University, Department of Econometrics and Business Statistics, revised Oct 2005.
Cited by:
- Masseran, Nurulkamal, 2016. "Modeling the fluctuations of wind speed data by considering their mean and volatility effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 777-784.
- Rob L. Hyndman & Xibin Zhang & Maxwell L. King,, 2004.
"Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC,"
Econometric Society 2004 Australasian Meetings
120, Econometric Society.
- Xibin Zhang & Maxwell L. King & Rob J. Hyndman, 2004. "Bandwidth Selection for Multivariate Kernel Density Estimation Using MCMC," Monash Econometrics and Business Statistics Working Papers 9/04, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Chauveau, Didier & Hoang, Vy Thuy Lynh, 2016. "Nonparametric mixture models with conditionally independent multivariate component densities," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 1-16.
- Kenneth L. Sørensen & Rune Vejlin, 2014.
"Return To Experience And Initial Wage Level: Do Low Wage Workers Catch Up?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 984-1006, September.
- Kenneth L. Sørensen & Rune Vejlin, 2012. "Return to Experience and Initial Wage Level: Do Low Wage Workers Catch Up?," Economics Working Papers 2012-02, Department of Economics and Business Economics, Aarhus University.
- Zhang, Xibin & King, Maxwell L., 2008.
"Box-Cox stochastic volatility models with heavy-tails and correlated errors,"
Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
- Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
- H. Poulos, 2010. "Spatially explicit mapping of hurricane risk in New England, USA using ArcGIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 1015-1023, September.
- Peter G. Hall & Rob J. Hyndman & Yanan Fan, 2003.
"Non Parametric Confidence Intervals for Receiver Operating Characteristic Curves,"
Monash Econometrics and Business Statistics Working Papers
12/03, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Lahiri, Kajal & Wang, J. George, 2013. "Evaluating probability forecasts for GDP declines using alternative methodologies," International Journal of Forecasting, Elsevier, vol. 29(1), pages 175-190.
- Kajal Lahiri & Liu Yang, 2018.
"Confidence Bands for ROC Curves With Serially Dependent Data,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 36(1), pages 115-130, January.
- Kajal Lahiri & Liu Yang, 2013. "Confidence Bands for ROC Curves with Serially Dependent Data," Discussion Papers 13-07, University at Albany, SUNY, Department of Economics.
- Òscar Jordà & Alan M. Taylor, 2011. "Performance Evaluation of Zero Net-Investment Strategies," NBER Working Papers 17150, National Bureau of Economic Research, Inc.
- Kaushik Ghosh & Ram Tiwari, 2007. "Empirical process approach to some two-sample problems based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 757-787, December.
- Gong, Yun & Peng, Liang & Qi, Yongcheng, 2010. "Smoothed jackknife empirical likelihood method for ROC curve," Journal of Multivariate Analysis, Elsevier, vol. 101(6), pages 1520-1531, July.
- Eugene Demidenko, 2012. "Confidence intervals and bands for the binormal ROC curve revisited," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(1), pages 67-79, March.
- Md B. Billah & R.J. Hyndman & A.B. Koehler, 2003.
"Empirical Information Criteria for Time Series Forecasting Model Selection,"
Monash Econometrics and Business Statistics Working Papers
2/03, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
- Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.
- Lydia Shenstone & Rob J. Hyndman, 2003.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Monash Econometrics and Business Statistics Working Papers
1/03, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Lydia Shenstone, 2005. "Stochastic models underlying Croston's method for intermittent demand forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
Cited by:
- Grzegorz, Chodak, 2016. "The Nuisance of Slow Moving Products in Electronic Commerce," MPRA Paper 69817, University Library of Munich, Germany.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Lindsey, Matthew & Pavur, Robert, 2009. "Prediction intervals for future demand of existing products with an observed demand of zero," International Journal of Production Economics, Elsevier, vol. 119(1), pages 75-89, May.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Omar, Haytham & Klibi, Walid & Babai, M. Zied & Ducq, Yves, 2023. "Basket data-driven approach for omnichannel demand forecasting," International Journal of Production Economics, Elsevier, vol. 257(C).
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Grzegorz Chodak, 2020.
"The problem of shelf-warmers in electronic commerce: a proposed solution,"
Information Systems and e-Business Management, Springer, vol. 18(2), pages 259-280, June.
- Grzegorz Chodak, 0. "The problem of shelf-warmers in electronic commerce: a proposed solution," Information Systems and e-Business Management, Springer, vol. 0, pages 1-22.
- Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
- Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
- Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
- Zied Babai, Mohamed & Syntetos, Aris & Teunter, Ruud, 2014. "Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence," International Journal of Production Economics, Elsevier, vol. 157(C), pages 212-219.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
- Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.
- Svetunkov, Ivan & Boylan, John Edward, 2017. "Multiplicative state-space models for intermittent time series," MPRA Paper 82487, University Library of Munich, Germany.
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- A V Kostenko & R J Hyndman, 2006. "A note on the categorization of demand patterns," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1256-1257, October.
- Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
- Yelland, Phillip M., 2009. "Bayesian forecasting for low-count time series using state-space models: An empirical evaluation for inventory management," International Journal of Production Economics, Elsevier, vol. 118(1), pages 95-103, March.
- Hasni, M. & Babai, M.Z. & Aguir, M.S. & Jemai, Z., 2019. "An investigation on bootstrapping forecasting methods for intermittent demands," International Journal of Production Economics, Elsevier, vol. 209(C), pages 20-29.
- Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
- Gary Mitchell & Meike Niederhausen, 2010. "On Replenishing Items with Seasonal Intermittent Demand," American Journal of Economics and Business Administration, Science Publications, vol. 2(1), pages 90-102, March.
- Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
- Rob J. Hyndman & Muhammad Akram & Blyth Archibald, 2003.
"Invertibility Conditions for Exponential Smoothing Models,"
Monash Econometrics and Business Statistics Working Papers
3/03, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Ralph D. Snyder, 2004. "Exponential Smoothing: A Prediction Error Decomposition Principle," Monash Econometrics and Business Statistics Working Papers 15/04, Monash University, Department of Econometrics and Business Statistics.
- Ralph D Snyder, 2005. "A Pedant's Approach to Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 5/05, Monash University, Department of Econometrics and Business Statistics.
- Yao, Qiwei & Hyndman, Rob J., 2002.
"Nonparametric estimation and symmetry tests for conditional density functions,"
LSE Research Online Documents on Economics
6092, London School of Economics and Political Science, LSE Library.
- Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Li, Rui & Reich, Brian J. & Bondell, Howard D., 2021. "Deep distribution regression," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
- Manfred Fischer & Peter Stumpner, 2008. "Income distribution dynamics and cross-region convergence in Europe," Journal of Geographical Systems, Springer, vol. 10(2), pages 109-139, June.
- Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
- Qi Li & Juan Lin & Jeffrey S. Racine, 2012.
"Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions,"
Department of Economics Working Papers
2012-10, McMaster University.
- Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
- Ann-Kathrin Bott & Michael Kohler, 2016. "Adaptive Estimation of a Conditional Density," International Statistical Review, International Statistical Institute, vol. 84(2), pages 291-316, August.
- Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
- Bonaccolto, G. & Caporin, M. & Gupta, R., 2018.
"The dynamic impact of uncertainty in causing and forecasting the distribution of oil returns and risk,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 507(C), pages 446-469.
- Giovanni Bonaccolto & Massimiliano Caporin & Rangan Gupta, 2015. "The Dynamic Impact of Uncertainty in Causing and Forecasting the Distribution of Oil Returns and Risk," Working Papers 201564, University of Pretoria, Department of Economics.
- Halkos, George & Tzeremes, Nickolaos, 2012.
"Ranking the ‘Diamond Core’ economic journals: A note,"
MPRA Paper
36589, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking agricultural, environmental and natural resource economics journals: A note," MPRA Paper 36233, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking socio-demographic journals," MPRA Paper 36803, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking mainstream economics journals: A note," MPRA Paper 36198, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking policy and political economic journals," MPRA Paper 36951, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking accounting, banking and finance journals: A note," MPRA Paper 36166, University Library of Munich, Germany.
- Angelos Liontakis & Christos T. Papadas, 2010. "Distribution Dynamics of Food Price Inflation Rates in EU: An Alternative Conditional Density Estimator Approach," Working Papers 2010-6, Agricultural University of Athens, Department Of Agricultural Economics.
- Wen, Kuangyu & Wu, Ximing, 2017. "Smoothed kernel conditional density estimation," Economics Letters, Elsevier, vol. 152(C), pages 112-116.
- Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
- Serge Rey & Olivier Peron, 2012.
"Trade and Convergence of Per Capita Income in the Indian Ocean Zone, 1950-2008,"
Post-Print
hal-01885296, HAL.
- Olivier Peron & Serge Rey, 2012. "Trade and convergence of per capita income in the Indian Ocean Zone, 1950–2008," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(3), pages 657-683, December.
- Roberto Basile, 2007.
"Productivity polarization across regions in Europe,"
Quaderni del Dipartimento di Economia, Finanza e Statistica
31/2007, Università di Perugia, Dipartimento Economia.
- Roberto Basile, 2009. "Productivity Polarization across Regions in Europe," International Regional Science Review, , vol. 32(1), pages 92-115, January.
- Delgado, Miguel A. & Song, Xiaojun, 2018. "Nonparametric tests for conditional symmetry," Journal of Econometrics, Elsevier, vol. 206(2), pages 447-471.
- Bashtannyk, David M. & Hyndman, Rob J., 2001.
"Bandwidth selection for kernel conditional density estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
- Bashtannyk, D.M. & Hyndman, R.J., 1998. "Bandwidth Selection for Kernel Conditional Density Estimation," Monash Econometrics and Business Statistics Working Papers 16/98, Monash University, Department of Econometrics and Business Statistics.
- Manzan, S. & Zerom, D., 2005. "A Multi-Step Forecast Density," CeNDEF Working Papers 05-05, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
- Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
- Liu, Yang & Liang, Yanzi & Lan, Xinchen & Lu, Zheng, 2024. "Nonparametric statistical inference for stochastic optimal control problems and its applications for financial investment," Finance Research Letters, Elsevier, vol. 64(C).
- Ray, Subhash C. & Das, Abhiman, 2010. "Distribution of cost and profit efficiency: Evidence from Indian banking," European Journal of Operational Research, Elsevier, vol. 201(1), pages 297-307, February.
- Niu, Cuizhen & Guo, Xu & Li, Yong & Zhu, Lixing, 2018. "Pairwise distance-based tests for conditional symmetry," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 145-162.
- Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2024. "Goodness-of-fit test for point processes first-order intensity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
- Hyndman, R.J. & Grunwald, G.K., 1999. "Generalized Additive Modelling of Mixed Distribution Markov Models with Application to Melbourne's Rainfall," Monash Econometrics and Business Statistics Working Papers 2/99, Monash University, Department of Econometrics and Business Statistics.
- Roberto Basile, 2007.
"Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators,"
ISAE Working Papers
75, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Roberto Basile, 2010. "Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 3-22.
- Otneim, Håkon & Tjøstheim, Dag, 2016. "Non-parametric estimation of conditional densities: A new method," Discussion Papers 2016/22, Norwegian School of Economics, Department of Business and Management Science.
- Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
- Yan Shang & David Dunson & Jing-Sheng Song, 2017. "Exploiting Big Data in Logistics Risk Assessment via Bayesian Nonparametrics," Operations Research, INFORMS, vol. 65(6), pages 1574-1588, December.
- Chen, Tao & Tripathi, Gautam, 2017.
"A simple consistent test of conditional symmetry in symmetrically trimmed tobit models,"
Journal of Econometrics, Elsevier, vol. 198(1), pages 29-40.
- Tao Chen & Gautam Tripathi, 2014. "A simple consistent test of conditional symmetry in symmetrically trimmed tobit models," DEM Discussion Paper Series 14-04, Department of Economics at the University of Luxembourg.
- Kuosmanen, Timo & Fosgerau, Mogens, 2009.
"Neoclassical versus frontier production models? Testing for the skewness of regression residuals,"
MPRA Paper
24208, University Library of Munich, Germany.
- Timo Kuosmanen & Mogens Fosgerau, 2009. "Neoclassical versus Frontier Production Models? Testing for the Skewness of Regression Residuals," Scandinavian Journal of Economics, Wiley Blackwell, vol. 111(2), pages 351-367, June.
- Daniel Kosiorowski, 2015. "Two procedures for robust monitoring of probability distributions of economic data stream induced by depth functions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 25(1), pages 55-79.
- Tao Chen & Gautam Tripathi, 2013.
"Testing conditional symmetry without smoothing,"
Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 25(2), pages 273-313, June.
- Tao Chen & Gautam Tripathi, 2011. "Testing Conditional Symmetry Without Smoothing," Working papers 2011-01, University of Connecticut, Department of Economics.
- Beyaert, Arielle & García-Solanes, José & Lopez-Gomez, Laura, 2019. "Do institutions of the euro area converge?," Economic Systems, Elsevier, vol. 43(3).
- Tang, Yongqiang & Ghosal, Subhashis, 2007. "A consistent nonparametric Bayesian procedure for estimating autoregressive conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4424-4437, May.
- Stefano Magrini, 2007. "Analysing Convergence through the Distribution Dynamics Approach: Why and how?," Working Papers 2007_13, Department of Economics, University of Venice "Ca' Foscari".
- Halkos, George E. & Tzeremes, Nickolaos G., 2012. "Analyzing the Greek renewable energy sector: A Data Envelopment Analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2884-2893.
- Tomas Ruzgas & Mantas Lukauskas & Gedmantas Čepkauskas, 2021. "Nonparametric Multivariate Density Estimation: Case Study of Cauchy Mixture Model," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
- Liangjun Su & Sainan Jin, 2005. "A Bootstrap Test for Conditional Symmetry," Annals of Economics and Finance, Society for AEF, vol. 6(2), pages 251-261, November.
- Liontakis, Angelos E. & Papadas, Christos T., 2009. "Distribution Dynamics of Food Price Inflation Rates in EU: An Alternative Conditional Density Estimator Approach," 113th Seminar, September 3-6, 2009, Chania, Crete, Greece 58084, European Association of Agricultural Economists.
- Neumeyer, Natalie & Dette, Holger, 2003. "Testing for symmetric error distribution in nonparametric regression models," Technical Reports 2003,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Evaluating professional tennis players’ career performance: A Data Envelopment Analysis approach," MPRA Paper 41516, University Library of Munich, Germany.
- Rob J Hyndman & Maxwell L. King & Ivet Pitrun & Baki Billah, 2002.
"Local Linear Forecasts Using Cubic Smoothing Splines,"
Monash Econometrics and Business Statistics Working Papers
10/02, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Gao, Jiti, 2007. "Nonlinear time series: semiparametric and nonparametric methods," MPRA Paper 39563, University Library of Munich, Germany, revised 01 Sep 2007.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Peter Hall & Rob J. Hyndman, 2002.
"An Improved Method for Bandwidth Selection when Estimating ROC Curves,"
Monash Econometrics and Business Statistics Working Papers
11/02, Monash University, Department of Econometrics and Business Statistics.
- Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
Cited by:
- Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
- Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
- Kaushik Ghosh & Ram Tiwari, 2007. "Empirical process approach to some two-sample problems based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 757-787, December.
- Chang, Yuan-chin Ivan & Park, Eunsik, 2009. "Constructing the best linear combination of diagnostic markers via sequential sampling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1921-1927, September.
- Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
- Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
- Dongliang Wang & Xueya Cai, 2021. "Smooth ROC curve estimation via Bernstein polynomials," PLOS ONE, Public Library of Science, vol. 16(5), pages 1-12, May.
- Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
- Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
- Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
- Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001.
"Prediction Intervals for Exponential Smoothing State Space Models,"
Monash Econometrics and Business Statistics Working Papers
11/01, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
- Rob J Hyndman & Muhammad Akram, 2006. "Some Nonlinear Exponential Smoothing Models are Unstable," Monash Econometrics and Business Statistics Working Papers 3/06, Monash University, Department of Econometrics and Business Statistics.
- Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Maxwell L. King & Ivet Pitrun & Baki Billah, 2002. "Local Linear Forecasts Using Cubic Smoothing Splines," Monash Econometrics and Business Statistics Working Papers 10/02, Monash University, Department of Econometrics and Business Statistics.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
- J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
- Mick Silver, 2006. "Core Inflation Measures and Statistical Issues in Choosing Among Them," IMF Working Papers 2006/097, International Monetary Fund.
- Robert R. Andrawis & Amir F. Atiya, 2009. "A new Bayesian formulation for Holt's exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 218-234.
- Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
- Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
- Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
- Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
- Ralph D. Snyder & Anne B. Koehler & Rob J. Hyndman & J. Keith Ord, 2002. "Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand," Monash Econometrics and Business Statistics Working Papers 3/02, Monash University, Department of Econometrics and Business Statistics.
- James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
- Racine, J & Hyndman, R.J., 2001.
"Using R to Teach Econometrics,"
Monash Econometrics and Business Statistics Working Papers
10/01, Monash University, Department of Econometrics and Business Statistics.
- Jeff Racine & Rob Hyndman, 2002. "Using R to teach econometrics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 175-189.
Cited by:
- A. Talha Yalta & Riccardo Lucchetti, 2010.
"The GNU/Linux Platform and Freedom Respecting Software for Economists,"
Working Papers
1005, TOBB University of Economics and Technology, Department of Economics.
- A. Talha Yalta & Riccardo Lucchetti, 2008. "The GNU|Linux platform and freedom respecting software for economists," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(2), pages 279-286.
- Kurt Hornik & Friedrich Leisch & Christian Kleiber & Achim Zeileis, 2005.
"Monitoring structural change in dynamic econometric models,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121.
- Zeileis, Achim & Leisch, Friedrich & Kleiber, Christian & Hornik, Kurt, 2002. "Monitoring structural change in dynamic econometric models," Technical Reports 2002,07, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
- Achim Zeileis & Friedrich Leisch & Christian Kleiber & Kurt Hornik, 2005. "Monitoring structural change in dynamic econometric models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(1), pages 99-121, January.
- Wilson, Paul W., 2008. "FEAR: A software package for frontier efficiency analysis with R," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 247-254, December.
- Zeileis, Achim, 2006. "Implementing a class of structural change tests: An econometric computing approach," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 2987-3008, July.
- Miguel Rodrigues, 2005. "Regression with R," Econometrics 0508016, University Library of Munich, Germany.
- Ryan J. Smith & J. Wilson Mixon Jr, 2006.
"Teaching undergraduate econometrics with GRETL,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1103-1107.
- J. Wilson Mixon Jr & Ryan J. Smith, 2006. "Teaching undergraduate econometrics with GRETL," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(7), pages 1103-1107, November.
- Shahram Amini & Christopher F. Parmeter, 2011. "A Review of the `BMS' Package for R," Working Papers 2011-8, University of Miami, Department of Economics.
- Robert Finger, 2010. "Review of ‘Robustbase’ software for R," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(7), pages 1205-1210, November/.
- Christine Choirat & Raffello Seri, 2009. "Econometrics with Python," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 24(4), pages 698-704.
- Jinhu Li & Jeffrey S. Racine, 2008. "Maxima: An open source computer algebra system," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 23(4), pages 515-523.
- Giovanni Baiocchi, 2007. "Reproducible research in computational economics: guidelines, integrated approaches, and open source software," Computational Economics, Springer;Society for Computational Economics, vol. 30(1), pages 19-40, August.
- Hyndman, R.J. & Billah, B., 2001.
"Unmasking the Theta Method,"
Monash Econometrics and Business Statistics Working Papers
5/01, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Billah, Baki, 2003. "Unmasking the Theta method," International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
Cited by:
- Jo~ao B. Assunc{c}~ao & Pedro Afonso Fernandes, 2022. "Nowcasting the Portuguese GDP with Monthly Data," Papers 2206.06823, arXiv.org.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- E S Gardner & E McKenzie, 2011. "Why the damped trend works," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1177-1180, June.
- Rob J Hyndman & Maxwell L. King & Ivet Pitrun & Baki Billah, 2002. "Local Linear Forecasts Using Cubic Smoothing Splines," Monash Econometrics and Business Statistics Working Papers 10/02, Monash University, Department of Econometrics and Business Statistics.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- He, Miao & Jiang, Weiwei & Gu, Weixi, 2024. "TriChronoNet: Advancing electricity price prediction with Multi-module fusion," Applied Energy, Elsevier, vol. 371(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Bruzda, Joanna, 2019. "Quantile smoothing in supply chain and logistics forecasting," International Journal of Production Economics, Elsevier, vol. 208(C), pages 122-139.
- Al Hajj Hassan, Lama & Mahmassani, Hani S. & Chen, Ying, 2020. "Reinforcement learning framework for freight demand forecasting to support operational planning decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 137(C).
- João A. Bastos, 2019.
"Forecasting the capacity of mobile networks,"
Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 72(2), pages 231-242, October.
- Bastos, João A., 2019. "Forecasting the capacity of mobile networks," MPRA Paper 92727, University Library of Munich, Germany.
- Dean W. Wichern & Benito E. Flores, 2005. "Evaluating forecasts: a look at aggregate bias and accuracy measures," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 433-451.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
- Sbrana, Giacomo & Silvestrini, Andrea, 2020. "Forecasting with the damped trend model using the structural approach," International Journal of Production Economics, Elsevier, vol. 226(C).
- Aleksandr N. Grekov & Elena V. Vyshkvarkova & Aleksandr S. Mavrin, 2024. "Forecasting and Anomaly Detection in BEWS: Comparative Study of Theta, Croston, and Prophet Algorithms," Forecasting, MDPI, vol. 6(2), pages 1-14, May.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Gardner, Everette S., 2015. "Conservative forecasting with the damped trend," Journal of Business Research, Elsevier, vol. 68(8), pages 1739-1741.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2019. "Forecasting with a hybrid method utilizing data smoothing, a variation of the Theta method and shrinkage of seasonal factors," International Journal of Production Economics, Elsevier, vol. 209(C), pages 92-102.
- Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
- João B. Assunção & Pedro Afonso Fernandes, 2022. "Nowcasting GDP: An Application to Portugal," Forecasting, MDPI, vol. 4(3), pages 1-15, August.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2013.
"Forecasting multivariate time series with the Theta Method,"
Working Papers
13004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2015. "Forecasting Multivariate Time Series with the Theta Method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 220-229, April.
- Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Godahewa, Rakshitha & Bergmeir, Christoph & Webb, Geoffrey I. & Montero-Manso, Pablo, 2023. "An accurate and fully-automated ensemble model for weekly time series forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 641-658.
- Franses, Ph.H.B.F., 2019.
"IMA(1,1) as a new benchmark for forecast evaluation,"
Econometric Institute Research Papers
EI2019-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Philip Hans Franses, 2020. "IMA(1,1) as a new benchmark for forecast evaluation," Applied Economics Letters, Taylor & Francis Journals, vol. 27(17), pages 1419-1423, October.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Felix Divo & Eric Endress & Kevin Endler & Kristian Kersting & Devendra Singh Dhami, 2024. "Forecasting Company Fundamentals," Papers 2411.05791, arXiv.org.
- Gardner Jr., Everette S. & Diaz-Saiz, Joaquin, 2008. "Exponential smoothing in the telecommunications data," International Journal of Forecasting, Elsevier, vol. 24(1), pages 170-174.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
- Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
- Cai, T. & Hyndman, R.J. & Wand, M.P., 2000.
"Mixed Model-Based Hazard Estimation,"
Monash Econometrics and Business Statistics Working Papers
11/00, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Kauermann, Goran & Khomski, Pavel, 2006. "Additive two-way hazards model with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 1944-1956, December.
- Kauermann, Goran, 2005. "Penalized spline smoothing in multivariable survival models with varying coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 169-186, April.
- Kneib, Thomas, 2006. "Mixed model-based inference in geoadditive hazard regression for interval-censored survival times," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 777-792, November.
- Kauermann, Goran & Xu, Ronghui & Vaida, Florin, 2008. "Stacked Laplace-EM algorithm for duration models with time-varying and random effects," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2514-2528, January.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000.
"A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods,"
Monash Econometrics and Business Statistics Working Papers
9/00, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
Cited by:
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
- Rob J Hyndman & Muhammad Akram, 2006. "Some Nonlinear Exponential Smoothing Models are Unstable," Monash Econometrics and Business Statistics Working Papers 3/06, Monash University, Department of Econometrics and Business Statistics.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
- Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- José Manuel Oliveira & Patrícia Ramos, 2024. "Evaluating the Effectiveness of Time Series Transformers for Demand Forecasting in Retail," Mathematics, MDPI, vol. 12(17), pages 1-28, August.
- Yelland, Phillip M., 2010. "Bayesian forecasting of parts demand," International Journal of Forecasting, Elsevier, vol. 26(2), pages 374-396, April.
- Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
- Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Snyder, Ralph D. & Koehler, Anne B., 2009. "Incorporating a tracking signal into a state space model," International Journal of Forecasting, Elsevier, vol. 25(3), pages 526-530, July.
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- Nikolaos Kourentzes & George Athanasopoulos, 2018.
"Cross-temporal coherent forecasts for Australian tourism,"
Monash Econometrics and Business Statistics Working Papers
24/18, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
- Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006.
"Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions,"
Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
- Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Makridakis, Spyros & Stylianou, Neophytos, 2022. "COVID-19: Forecasting confirmed cases and deaths with a simple time series model," International Journal of Forecasting, Elsevier, vol. 38(2), pages 439-452.
- Rob J Hyndman & Maxwell L. King & Ivet Pitrun & Baki Billah, 2002. "Local Linear Forecasts Using Cubic Smoothing Splines," Monash Econometrics and Business Statistics Working Papers 10/02, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- M A Rahman & B R Sarker & L A Escobar, 2011. "Peak demand forecasting for a seasonal product using Bayesian approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1019-1028, June.
- A. Ntamjokouen & S. Haberman & G. Consigli, 2017. "Projecting the long run relationship of Multi-population life expectancy by race," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(2), pages 1-3.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Ariyarathne, Sakitha & Gangammanavar, Harsha & Sundararajan, Raanju R., 2022. "Change point detection-based simulation of nonstationary sub-hourly wind time series," Applied Energy, Elsevier, vol. 310(C).
- Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
- Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
- Udenio, Maximiliano & Vatamidou, Eleni & Fransoo, Jan C., 2023. "Exponential smoothing forecasts: Taming the Bullwhip Effect when demand is seasonal," Other publications TiSEM 8fca6329-83b9-4a49-a2aa-e, Tilburg University, School of Economics and Management.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
- Zhiwei Qin & John Bowman & Jagtej Bewli, 2018. "A Bayesian framework for large-scale geo-demand estimation in on-line retailing," Annals of Operations Research, Springer, vol. 263(1), pages 231-245, April.
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
- Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
- Marlon Mesquita Lopes Cabreira & Felipe Leite Coelho da Silva & Josiane da Silva Cordeiro & Ronald Miguel Serrano Hernández & Paulo Canas Rodrigues & Javier Linkolk López-Gonzales, 2024. "A Hybrid Approach for Hierarchical Forecasting of Industrial Electricity Consumption in Brazil," Energies, MDPI, vol. 17(13), pages 1-15, June.
- Fantazzini, Dean, 2020.
"Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries,"
MPRA Paper
102315, University Library of Munich, Germany.
- Fantazzini, Dean, 2020. "Short-term forecasting of the COVID-19 pandemic using Google Trends data: Evidence from 158 countries," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 59, pages 33-54.
- Rostami-Tabar, Bahman & Babai, Mohamed Zied & Ducq, Yves & Syntetos, Aris, 2015. "Non-stationary demand forecasting by cross-sectional aggregation," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 297-309.
- Goodness C. Aye & Mehmet Balcilar Author-Name-First Mehmet & Rangan Gupta & Anandamayee Majumdar, 2014.
"Forecasting Aggregate Retail Sales: The Case of South Africa,"
Working Papers
15-21, Eastern Mediterranean University, Department of Economics.
- Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015. "Forecasting aggregate retail sales: The case of South Africa," International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
- Niematallah Elamin & Mototsugu Fukushige, 2016. "Forecasting extreme seasonal tourism demand," Discussion Papers in Economics and Business 16-23, Osaka University, Graduate School of Economics.
- Gunter, Ulrich & Önder, Irem, 2016. "Forecasting city arrivals with Google Analytics," Annals of Tourism Research, Elsevier, vol. 61(C), pages 199-212.
- Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Ingel, Anti & Shahroudi, Novin & Kängsepp, Markus & Tättar, Andre & Komisarenko, Viacheslav & Kull, Meelis, 2020. "Correlated daily time series and forecasting in the M4 competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 121-128.
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Francois, Joseph & Fernández-Amador, Octavio & Oberdabernig, Doris & Tomberger, Patrick, 2019.
"The methane footprint of nations: Stylized facts from a global panel dataset,"
CEPR Discussion Papers
14125, C.E.P.R. Discussion Papers.
- Fernández-Amador, Octavio & Francois, Joseph & Oberdabernig, Doris & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Papers 1272, World Trade Institute.
- Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017.
"Visualising forecasting algorithm performance using time series instance spaces,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016. "Visualising forecasting Algorithm Performance using Time Series Instance Spaces," Monash Econometrics and Business Statistics Working Papers 10/16, Monash University, Department of Econometrics and Business Statistics.
- Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
- Fildes, Robert & Petropoulos, Fotios, 2015. "Simple versus complex selection rules for forecasting many time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1692-1701.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- de Silva, Ashton & Hyndman, Rob J. & Snyder, Ralph, 2009.
"A multivariate innovations state space Beveridge-Nelson decomposition,"
Economic Modelling, Elsevier, vol. 26(5), pages 1067-1074, September.
- de Silva, Ashton, 2007. "A multivariate innovations state space Beveridge Nelson decomposition," MPRA Paper 5431, University Library of Munich, Germany.
- Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
- Cui, Can & Wu, Teresa & Hu, Mengqi & Weir, Jeffery D. & Li, Xiwang, 2016. "Short-term building energy model recommendation system: A meta-learning approach," Applied Energy, Elsevier, vol. 172(C), pages 251-263.
- Zietz, Joachim & Traian, Anca, 2014. "When was the U.S. housing downturn predictable? A comparison of univariate forecasting methods," The Quarterly Review of Economics and Finance, Elsevier, vol. 54(2), pages 271-281.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Thabang Mathonsi & Terence L. van Zyl, 2021. "A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling," Forecasting, MDPI, vol. 4(1), pages 1-25, December.
- Ozancan Ozdemir & Ceylan Yozgatligil, 2024. "Forecasting performance of machine learning, time series, and hybrid methods for low‐ and high‐frequency time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 78(2), pages 441-474, May.
- Andrea Kolková, 2024. "Data Analysis in Demand Forecasting: A Case Study of Poetry Book Sales in the European Area," Central European Business Review, Prague University of Economics and Business, vol. 2024(5), pages 51-69.
- Gonghao Duan & Ruiqing Niu, 2018. "Lake Area Analysis Using Exponential Smoothing Model and Long Time-Series Landsat Images in Wuhan, China," Sustainability, MDPI, vol. 10(1), pages 1-16, January.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Saeed, Adnan & Li, Chaoshun & Gan, Zhenhao & Xie, Yuying & Liu, Fangjie, 2022. "A simple approach for short-term wind speed interval prediction based on independently recurrent neural networks and error probability distribution," Energy, Elsevier, vol. 238(PC).
- Fotios Petropoulos & Enno Siemsen, 2023. "Forecast Selection and Representativeness," Management Science, INFORMS, vol. 69(5), pages 2672-2690, May.
- Hyndman, Rob J., 2004. "The interaction between trend and seasonality," International Journal of Forecasting, Elsevier, vol. 20(4), pages 561-563.
- Boning Yang & Xinyi Tang & Chun Yip Yau, 2024. "Empirical prediction intervals for additive Holt–Winters methods under misspecification," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(3), pages 754-770, April.
- Ralph D. Snyder & Anne B. Koehler, 2008. "A View of Damped Trend as Incorporating a Tracking Signal into a State Space Model," Monash Econometrics and Business Statistics Working Papers 7/08, Monash University, Department of Econometrics and Business Statistics.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Katsikopoulos, Konstantinos V. & Durbach, Ian N. & Stewart, Theodor J., 2018. "When should we use simple decision models? A synthesis of various research strands," Omega, Elsevier, vol. 81(C), pages 17-25.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Wang, Jianzhou & Zhu, Suling & Zhang, Wenyu & Lu, Haiyan, 2010. "Combined modeling for electric load forecasting with adaptive particle swarm optimization," Energy, Elsevier, vol. 35(4), pages 1671-1678.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- McElroy Tucker S. & Maravall Agustin, 2014. "Optimal Signal Extraction with Correlated Components," Journal of Time Series Econometrics, De Gruyter, vol. 6(2), pages 237-273, July.
- Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Avci, Ezgi & Ketter, Wolfgang & van Heck, Eric, 2018. "Managing electricity price modeling risk via ensemble forecasting: The case of Turkey," Energy Policy, Elsevier, vol. 123(C), pages 390-403.
- Trapero, Juan R. & Kourentzes, N. & Fildes, R., 2012. "Impact of information exchange on supplier forecasting performance," Omega, Elsevier, vol. 40(6), pages 738-747.
- Magdalena Sycińska-Dziarnowska & Liliana Szyszka-Sommerfeld & Karolina Kłoda & Michele Simeone & Krzysztof Woźniak & Gianrico Spagnuolo, 2021. "Mental Health Interest and Its Prediction during the COVID-19 Pandemic Using Google Trends," IJERPH, MDPI, vol. 18(23), pages 1-14, November.
- Bermúdez, José D. & Corberán-Vallet, Ana & Vercher, Enriqueta, 2009. "Multivariate exponential smoothing: A Bayesian forecast approach based on simulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1761-1769.
- Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
- Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
- Kosiorowski Daniel & Mielczarek Dominik & Rydlewski Jerzy P. & Snarska Małgorzata, 2018. "Generalized Exponential Smoothing In Prediction Of Hierarchical Time Series," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 331-350, June.
- Yamagata, Yoshiki & Murakami, Daisuke & Seya, Hajime, 2015. "A comparison of grid-level residential electricity demand scenarios in Japan for 2050," Applied Energy, Elsevier, vol. 158(C), pages 255-262.
- Thiyanga S Talagala & Rob J Hyndman & George Athanasopoulos, 2018. "Meta-learning how to forecast time series," Monash Econometrics and Business Statistics Working Papers 6/18, Monash University, Department of Econometrics and Business Statistics.
- Hayat, Aziz & Narayan, Paresh Kumar, 2010. "The oil stock fluctuations in the United States," Applied Energy, Elsevier, vol. 87(1), pages 178-184, January.
- Avgustin Milanov, 2020. "Forecasting Of Some Key Indicators Of The Rfi And Rfp Processes Of The Bulgarian Mobile Telecommunication Operators," Economics & Law, Faculty of Economics, SOUTH-WEST UNIVERSITY "NEOFIT RILSKI", BLAGOEVGRAD, vol. 2(2), pages 62-70.
- Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
- Asmita Mahajan & Nonita Sharma & Silvia Aparicio-Obregon & Hashem Alyami & Abdullah Alharbi & Divya Anand & Manish Sharma & Nitin Goyal, 2022. "A Novel Stacking-Based Deterministic Ensemble Model for Infectious Disease Prediction," Mathematics, MDPI, vol. 10(10), pages 1-15, May.
- Łukasz Lenart & Agnieszka Leszczyńska-Paczesna, 2016. "Do market prices improve the accuracy of inflation forecasting in Poland? A disaggregated approach," Bank i Kredyt, Narodowy Bank Polski, vol. 47(5), pages 365-394.
- Lahiri, Kajal & Yin, Yimeng, 2024. "Seasonality in U.S. disability applications, labor market, and the pandemic echoes," Labour Economics, Elsevier, vol. 87(C).
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
- Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
- Hyndman, Rob J. & Billah, Baki, 2003.
"Unmasking the Theta method,"
International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
- Hyndman, R.J. & Billah, B., 2001. "Unmasking the Theta Method," Monash Econometrics and Business Statistics Working Papers 5/01, Monash University, Department of Econometrics and Business Statistics.
- Gunter, Ulrich & Zekan, Bozana, 2021. "Forecasting air passenger numbers with a GVAR model," Annals of Tourism Research, Elsevier, vol. 89(C).
- Cristiana Tudor, 2016. "Predicting the Evolution of CO 2 Emissions in Bahrain with Automated Forecasting Methods," Sustainability, MDPI, vol. 8(9), pages 1-10, September.
- Tryggvi Jónsson & Pierre Pinson & Henrik Aa. Nielsen & Henrik Madsen, 2014. "Exponential Smoothing Approaches for Prediction in Real-Time Electricity Markets," Energies, MDPI, vol. 7(6), pages 1-23, June.
- J W Taylor, 2011. "Multi-item sales forecasting with total and split exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 555-563, March.
- Giusto Andrea & İşcan Talan B., 2018. "The Rescaled VAR Model with an Application to Mixed-Frequency Macroeconomic Forecasting," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-16, September.
- Robert R. Andrawis & Amir F. Atiya, 2009. "A new Bayesian formulation for Holt's exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 218-234.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Han, Weiwei & Wang, Xun & Petropoulos, Fotios & Wang, Jing, 2019. "Brain imaging and forecasting: Insights from judgmental model selection," Omega, Elsevier, vol. 87(C), pages 1-9.
- Fofana, Ismaël & Goundan, Anatole & Magne Domgho, Léa Vicky, 2014.
"Impact simulation of ECOWAS rice self-sufficiency policy:,"
IFPRI discussion papers
1405, International Food Policy Research Institute (IFPRI).
- Fofana, Ismael & Goundan, Anatole & Magne Domgho, Lea, 2015. "Impact Simulation of ECOWAS Rice Self-Sufficiency Policy," 2015 Conference, August 9-14, 2015, Milan, Italy 212211, International Association of Agricultural Economists.
- Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Michael Safo OFORI & Abel FUMEY & Edward NKETIAH-AMPONSAH, 2020. "Forecasting Value Added Tax Revenue in Ghana," Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 4(2), pages 63-99.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
- Li, Gang & Wu, Doris Chenguang & Zhou, Menglin & Liu, Anyu, 2019. "The combination of interval forecasts in tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 363-378.
- G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
- Ralph D. Snyder, 2004. "Exponential Smoothing: A Prediction Error Decomposition Principle," Monash Econometrics and Business Statistics Working Papers 15/04, Monash University, Department of Econometrics and Business Statistics.
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
- Sérgio C. Lagoa & Emanuel R. Leão & Diptes P. Bhimjee, 2022. "Dynamics of the public-debt-to-gdp ratio: can it explain the risk premium of treasury bonds?," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 49(4), pages 1089-1122, November.
- Zeynep Ozsut Bogar & Askiner Gungor, 2023. "Forecasting Waste Mobile Phone (WMP) Quantity and Evaluating the Potential Contribution to the Circular Economy: A Case Study of Turkey," Sustainability, MDPI, vol. 15(4), pages 1-38, February.
- Ralph D Snyder, 2005. "A Pedant's Approach to Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 5/05, Monash University, Department of Econometrics and Business Statistics.
- Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011.
"Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
- Jae H. Kim & Haiyang Song & Kevin Wong & George Athanasopoulos & Shen Liu, 2008. "Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals," Monash Econometrics and Business Statistics Working Papers 11/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
- Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
- Daniel C Medina & Sally E Findley & Boubacar Guindo & Seydou Doumbia, 2007. "Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali," PLOS ONE, Public Library of Science, vol. 2(11), pages 1-13, November.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Monika Zielińska-Sitkiewicz & Mariola Chrzanowska & Konrad Furmańczyk & Kacper Paczutkowski, 2021. "Analysis of Electricity Consumption in Poland Using Prediction Models and Neural Networks," Energies, MDPI, vol. 14(20), pages 1-21, October.
- Nikolaos Kourentzes & Dong Li & Arne K. Strauss, 2019. "Unconstraining methods for revenue management systems under small demand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(1), pages 27-41, February.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006.
"Exponential smoothing model selection for forecasting,"
International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
- Baki Billah & Maxwell L King & Ralph D Snyder & Anne B Koehler, 2005. "Exponential Smoothing Model Selection for Forecasting," Monash Econometrics and Business Statistics Working Papers 6/05, Monash University, Department of Econometrics and Business Statistics.
- Xi Wu & Adam Blake, 2023. "Does the combination of models with different explanatory variables improve tourism demand forecasting performance?," Tourism Economics, , vol. 29(8), pages 2032-2056, December.
- Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008. "The admissible parameter space for exponential smoothing models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
- Ralph D. Snyder & J. Keith Ord, 2009. "Exponential Smoothing and the Akaike Information Criterion," Monash Econometrics and Business Statistics Working Papers 4/09, Monash University, Department of Econometrics and Business Statistics.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
- Rob J Hyndman & Heather Booth, 2006.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
Monash Econometrics and Business Statistics Working Papers
14/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
- Moro Matheus Fernando & Weise Andreas Dittmar & Bornia Antonio Cezar, 2020. "Model Hybrid for Sales Forecast for the Housing Market of São Paulo," Real Estate Management and Valuation, Sciendo, vol. 28(3), pages 45-64, September.
- Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Shiyu Liu & Ou Liu & Junyang Chen, 2023. "A Review on Business Analytics: Definitions, Techniques, Applications and Challenges," Mathematics, MDPI, vol. 11(4), pages 1-20, February.
- Antonis A. Michis & Guy P. Nason, 2015. "Estimation and Prediction of Shipping Trends with the Data-Driven Haar-Fisz Transform," Working Papers 2015-1, Central Bank of Cyprus.
- Fiorucci, Jose A. & Pellegrini, Tiago R. & Louzada, Francisco & Petropoulos, Fotios & Koehler, Anne B., 2016. "Models for optimising the theta method and their relationship to state space models," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1151-1161.
- Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004. "Exponential smoothing models: Means and variances for lead-time demand," European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Sagaert, Yves R. & Kourentzes, Nikolaos & De Vuyst, Stijn & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "Incorporating macroeconomic leading indicators in tactical capacity planning," International Journal of Production Economics, Elsevier, vol. 209(C), pages 12-19.
- Moon, Seongmin & Hicks, Christian & Simpson, Andrew, 2012. "The development of a hierarchical forecasting method for predicting spare parts demand in the South Korean Navy—A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 794-802.
- Sinclair Davidson & Ashton de Silva, 2014. "The Plain Truth about Plain Packaging: An Econometric Analysis of the Australian 2011 Tobacco Plain Packaging Act," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 21(1), pages 27-44.
- José Francisco Lima & Fernanda Catarina Pereira & Arminda Manuela Gonçalves & Marco Costa, 2023. "Bootstrapping State-Space Models: Distribution-Free Estimation in View of Prediction and Forecasting," Forecasting, MDPI, vol. 6(1), pages 1-19, December.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Van Belle, Jente & Crevits, Ruben & Verbeke, Wouter, 2023. "Improving forecast stability using deep learning," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1333-1350.
- Miller, Don M. & Williams, Dan, 2004. "Damping seasonal factors: Shrinkage estimators for the X-12-ARIMA program," International Journal of Forecasting, Elsevier, vol. 20(4), pages 529-549.
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2013.
"Forecasting multivariate time series with the Theta Method,"
Working Papers
13004, Bangor Business School, Prifysgol Bangor University (Cymru / Wales).
- Dimitrios D. Thomakos & Konstantinos Nikolopoulos, 2015. "Forecasting Multivariate Time Series with the Theta Method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 34(3), pages 220-229, April.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Hoeltgebaum, Henrique & Borenstein, Denis & Fernandes, Cristiano & Veiga, Álvaro, 2021. "A score-driven model of short-term demand forecasting for retail distribution centers," Journal of Retailing, Elsevier, vol. 97(4), pages 715-725.
- Zografidou, Eleni & Petridis, Konstantinos & Petridis, Nikolaos E. & Arabatzis, Garyfallos, 2017. "A financial approach to renewable energy production in Greece using goal programming," Renewable Energy, Elsevier, vol. 108(C), pages 37-51.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Beaumont, Adrian N., 2014. "Data transforms with exponential smoothing methods of forecasting," International Journal of Forecasting, Elsevier, vol. 30(4), pages 918-927.
- Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
- Li, Shicheng & Huang, Xiaoyong & Cheng, Zhonghou & Zou, Wei & Yi, Yugen, 2023. "AE-ACG: A novel deep learning-based method for stock price movement prediction," Finance Research Letters, Elsevier, vol. 58(PA).
- J. D. Bermudez & J. V. Segura & E. Vercher, 2007. "Holt-Winters Forecasting: An Alternative Formulation Applied to UK Air Passenger Data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 34(9), pages 1075-1090.
- Hyndman, R.J. & Koehler, A.B. & Ord, J.K. & Snyder, R.D., 2001. "Prediction Intervals for Exponential Smoothing State Space Models," Monash Econometrics and Business Statistics Working Papers 11/01, Monash University, Department of Econometrics and Business Statistics.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
- Svetunkov, Ivan & Boylan, John Edward, 2017. "Multiplicative state-space models for intermittent time series," MPRA Paper 82487, University Library of Munich, Germany.
- Kourentzes, Nikolaos & Saayman, Andrea & Jean-Pierre, Philippe & Provenzano, Davide & Sahli, Mondher & Seetaram, Neelu & Volo, Serena, 2021.
"Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team,"
Annals of Tourism Research, Elsevier, vol. 88(C).
- Nikolaos Kourentzes & Andrea Saayman & Philippe Jean-Pierre & Davide Provenzano & Mondher Sahli & Neelu Seetaram & Serena Volo, 2021. "Visitor arrivals forecasts amid COVID-19: A perspective from the Africa team," Post-Print hal-03286786, HAL.
- Chinloy, Peter & Jiang, Cheng & John, Kose, 2020. "Investment, depreciation and obsolescence of R&D," Journal of Financial Stability, Elsevier, vol. 49(C).
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
- Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
- Bekiroglu, Korkut & Duru, Okan & Gulay, Emrah & Su, Rong & Lagoa, Constantino, 2018. "Predictive analytics of crude oil prices by utilizing the intelligent model search engine," Applied Energy, Elsevier, vol. 228(C), pages 2387-2397.
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
- Supraja Malladi & Qiqi Lu, 2023. "Intervention Time Series Analysis and Forecasting of Organ Donor Transplants in the US during the COVID-19 Era," Forecasting, MDPI, vol. 5(1), pages 1-27, February.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
- Ruben Loaiza-Maya & Gael M Martin & David T. Frazier, 2020.
"Focused Bayesian Prediction,"
Monash Econometrics and Business Statistics Working Papers
1/20, Monash University, Department of Econometrics and Business Statistics.
- Ruben Loaiza-Maya & Gael M. Martin & David T. Frazier, 2019. "Focused Bayesian Prediction," Papers 1912.12571, arXiv.org, revised Aug 2020.
- Ruben Loaiza‐Maya & Gael M. Martin & David T. Frazier, 2021. "Focused Bayesian prediction," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(5), pages 517-543, August.
- Xi Wu & Adam Blake, 2023. "The Impact of the COVID-19 Crisis on Air Travel Demand: Some Evidence From China," SAGE Open, , vol. 13(1), pages 21582440231, January.
- Francisco Zamora-Martínez & Pablo Romeu & Paloma Botella-Rocamora & Juan Pardo, 2013. "Towards Energy Efficiency: Forecasting Indoor Temperature via Multivariate Analysis," Energies, MDPI, vol. 6(9), pages 1-21, September.
- Linlin Zhao & Zhansheng Liu & Jasper Mbachu, 2019. "Energy Management through Cost Forecasting for Residential Buildings in New Zealand," Energies, MDPI, vol. 12(15), pages 1-24, July.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
- Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
- Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
- Fildes, Robert & Petropoulos, Fotios, 2013. "An evaluation of simple forecasting model selection rules," MPRA Paper 51772, University Library of Munich, Germany.
- Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
- Josu Arteche & Javier García‐Enríquez, 2022. "Singular spectrum analysis for value at risk in stochastic volatility models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 3-16, January.
- Ma, Shaohui & Fildes, Robert & Huang, Tao, 2016. "Demand forecasting with high dimensional data: The case of SKU retail sales forecasting with intra- and inter-category promotional information," European Journal of Operational Research, Elsevier, vol. 249(1), pages 245-257.
- Diogo de Prince & Emerson Fernandes Marçal & Pedro L. Valls Pereira, 2022. "Forecasting Industrial Production Using Its Aggregated and Disaggregated Series or a Combination of Both: Evidence from One Emerging Market Economy," Econometrics, MDPI, vol. 10(2), pages 1-34, June.
- Anna Garus-Pakowska & Agnieszka Kolmaga & Ewelina Gaszyńska & Magdalena Ulrichs, 2022. "The Scale of Intoxications with New Psychoactive Substances over the Period 2014–2020—Characteristics of the Trends and Impacts of the COVID-19 Pandemic on the Example of Łódź Province, Poland," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
- Milad Delavary Foroutaghe & Abolfazl Mohammadzadeh Moghaddam & Vahid Fakoor, 2019. "Time trends in gender-specific incidence rates of road traffic injuries in Iran," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-15, May.
- Ehsan Ahmadi & Dale T. Masel & Seth Hostetler & Reza Maihami & Iman Ghalehkhondabi, 2020. "A centralized stochastic inventory control model for perishable products considering age-dependent purchase price and lead time," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 231-269, April.
- Wang, Xiaolei & Xie, Naiming & Yang, Lu, 2022. "A flexible grey Fourier model based on integral matching for forecasting seasonal PM2.5 time series," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
- Rossetti Renato, 2019. "Forecasting the Sales of Console Games for the Italian Market," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(3), pages 76-88, September.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Sun, Zhentian & Li, Xuhong & Xie, Yuanchang, 2014. "A comparison of innovative financing and general fiscal investment strategies for second-class highways: Perspectives for building a sustainable financing strategy," Transport Policy, Elsevier, vol. 35(C), pages 193-201.
- Gaojun Zhang & Jinfeng Wu & Bing Pan & Junyi Li & Minjie Ma & Muzi Zhang & Jian Wang, 2017. "Improving daily occupancy forecasting accuracy for hotels based on EEMD-ARIMA model," Tourism Economics, , vol. 23(7), pages 1496-1514, November.
- Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
- Barrow, Devon K. & Kourentzes, Nikolaos, 2016. "Distributions of forecasting errors of forecast combinations: Implications for inventory management," International Journal of Production Economics, Elsevier, vol. 177(C), pages 24-33.
- George Athanasopoulos & Rob J. Hyndman, 2006. "Modelling and forecasting Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 19/06, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Fernando, Angeline Gautami & Aw, Eugene Cheng-Xi, 2023. "What do consumers want? A methodological framework to identify determinant product attributes from consumers’ online questions," Journal of Retailing and Consumer Services, Elsevier, vol. 73(C).
- Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
- Fotios Petropoulos & Spyros Makridakis, 2020. "Forecasting the novel coronavirus COVID-19," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-8, March.
- Seabold,Skipper & Coppola,Andrea, 2015. "Nowcasting prices using Google trends : an application to Central America," Policy Research Working Paper Series 7398, The World Bank.
- Fang-Fang Li & Zhi-Yu Wang & Xiao Zhao & En Xie & Jun Qiu, 2019. "Decomposition-ANN Methods for Long-Term Discharge Prediction Based on Fisher’s Ordered Clustering with MESA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(9), pages 3095-3110, July.
- Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
- Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
- Eisfeld, Rupert-Klaas & Just, Tobias, . "Die Auswirkungen der COVID-19-Pandemie auf die deutschen Wohnungsmärkte. Eine Studie im Auftrag der Hans-Böckler-Stiftung," Beiträge zur Immobilienwirtschaft, University of Regensburg, Department of Economics, number 26, August.
- Chew Lian Chua & G. C. Lim & Sarantis Tsiaplias, 2012.
"A latent variable approach to forecasting the unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(3), pages 229-244, April.
- C. L. Chua & G. C. Lim & Sarantis Tsiaplias, 2009. "A Latent Variable Approach to Forecasting the Unemployment Rate," Melbourne Institute Working Paper Series wp2009n19, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Sbrana, Giacomo & Silvestrini, Andrea, 2023. "The RWDAR model: A novel state-space approach to forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 922-937.
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz & Varela Repolho, Hugo Miguel, 2017. "Air transportation demand forecast through Bagging Holt Winters methods," Journal of Air Transport Management, Elsevier, vol. 59(C), pages 116-123.
- Niematallah Elamin & Mototsugu Fukushige, 2018. "Forecasting extreme seasonal tourism demand: the case of Rishiri Island in Japan," Asia-Pacific Journal of Regional Science, Springer, vol. 2(2), pages 279-296, August.
- Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
- J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
- Petropoulos, Fotios & Svetunkov, Ivan, 2020. "A simple combination of univariate models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 110-115.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007.
"Hierarchical forecasts for Australian domestic tourism,"
Monash Econometrics and Business Statistics Working Papers
12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
- Oliver Doelle & Nico Klinkenberg & Arvid Amthor & Christoph Ament, 2023. "Probabilistic Intraday PV Power Forecast Using Ensembles of Deep Gaussian Mixture Density Networks," Energies, MDPI, vol. 16(2), pages 1-17, January.
- Ulrich Gunter, 2021. "Improving Hotel Room Demand Forecasts for Vienna across Hotel Classes and Forecast Horizons: Single Models and Combination Techniques Based on Encompassing Tests," Forecasting, MDPI, vol. 3(4), pages 1-36, November.
- J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
- Gunter, Ulrich & Önder, Irem, 2015. "Forecasting international city tourism demand for Paris: Accuracy of uni- and multivariate models employing monthly data," Tourism Management, Elsevier, vol. 46(C), pages 123-135.
- Sagaert, Yves R. & Aghezzaf, El-Houssaine & Kourentzes, Nikolaos & Desmet, Bram, 2018. "Tactical sales forecasting using a very large set of macroeconomic indicators," European Journal of Operational Research, Elsevier, vol. 264(2), pages 558-569.
- Ashton de Silva & Rob J. Hyndman & Ralph D. Snyder, 2007. "The vector innovation structural time series framework: a simple approach to multivariate forecasting," Monash Econometrics and Business Statistics Working Papers 3/07, Monash University, Department of Econometrics and Business Statistics.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Bermudez, J.D. & Segura, J.V. & Vercher, E., 2006. "A decision support system methodology for forecasting of time series based on soft computing," Computational Statistics & Data Analysis, Elsevier, vol. 51(1), pages 177-191, November.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Jaganathan, Srihari & Prakash, P.K.S., 2020. "A combination-based forecasting method for the M4-competition," International Journal of Forecasting, Elsevier, vol. 36(1), pages 98-104.
- Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
- Taylor, James W., 2008. "Exponentially weighted information criteria for selecting among forecasting models," International Journal of Forecasting, Elsevier, vol. 24(3), pages 513-524.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
- Ulrich Gunter & Irem Önder & Stefan Gindl, 2019. "Exploring the predictive ability of LIKES of posts on the Facebook pages of four major city DMOs in Austria," Tourism Economics, , vol. 25(3), pages 375-401, May.
- Hassani, Hossein & Webster, Allan & Silva, Emmanuel Sirimal & Heravi, Saeed, 2015. "Forecasting U.S. Tourist arrivals using optimal Singular Spectrum Analysis," Tourism Management, Elsevier, vol. 46(C), pages 322-335.
- Mun, Mak Kit & Chong, Choo Wei, 2018. "Forecasting Movie Demand Using Total and Split Exponential Smoothing," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 52(2), pages 81-94.
- Md Monjur Hossain Bhuiyan & Ahmed Nazmus Sakib & Syed Ishmam Alawee & Talayeh Razzaghi, 2024. "Fueling the Future: A Comprehensive Analysis and Forecast of Fuel Consumption Trends in U.S. Electricity Generation," Sustainability, MDPI, vol. 16(6), pages 1-30, March.
- George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
- J D Bermúdez & J V Segura & E Vercher, 2010. "Bayesian forecasting with the Holt–Winters model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 164-171, January.
- Ralph D. Snyder & Anne B. Koehler & Rob J. Hyndman & J. Keith Ord, 2002. "Exponential Smoothing for Inventory Control: Means and Variances of Lead-Time Demand," Monash Econometrics and Business Statistics Working Papers 3/02, Monash University, Department of Econometrics and Business Statistics.
- Hakeem‐Ur Rehman & Guohua Wan & Raza Rafique, 2023. "A hybrid approach with step‐size aggregation to forecasting hierarchical time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 176-192, January.
- Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
- Mirko Kremer & Brent Moritz & Enno Siemsen, 2011. "Demand Forecasting Behavior: System Neglect and Change Detection," Management Science, INFORMS, vol. 57(10), pages 1827-1843, October.
- Qi, Lingzhi & Li, Xixi & Wang, Qiang & Jia, Suling, 2023. "fETSmcs: Feature-based ETS model component selection," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1303-1317.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- James W. Taylor, 2004. "Smooth transition exponential smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 385-404.
- Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
- Sipos-Gug Sebastian & Badulescu Alina, 2014. "Entrepreneurship In Constructions Sector - Explanatory Economic Factors And Forecasts For Romania," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 379-389, July.
- Filip Stanv{e}k, 2024. "Designing Time-Series Models With Hypernetworks & Adversarial Portfolios," Papers 2407.20352, arXiv.org.
- Graff, Mario & Peña, Rafael & Medina, Aurelio & Escalante, Hugo Jair, 2014. "Wind speed forecasting using a portfolio of forecasters," Renewable Energy, Elsevier, vol. 68(C), pages 550-559.
- Svetunkov, Ivan & Boylan, John E., 2023. "iETS: State space model for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 265(C).
- Hyndman, R.J. & Grunwald, G.K., 1999.
"Generalized Additive Modelling of Mixed Distribution Markov Models with Application to Melbourne's Rainfall,"
Monash Econometrics and Business Statistics Working Papers
2/99, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- Sean D. Campbell & Francis X. Diebold, 2005.
"Weather Forecasting for Weather Derivatives,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
- Campbell, Sean D. & Diebold, Francis X., 2004. "Weather forecasting for weather derivatives," CFS Working Paper Series 2004/10, Center for Financial Studies (CFS).
- Sean D. Campbell & Francis X. Diebold, 2003. "Weather Forecasting for Weather Derivatives," NBER Working Papers 10141, National Bureau of Economic Research, Inc.
- Sean D. Campbell & Francis X. Diebold, 2002. "Weather Forecasting for Weather Derivatives," Center for Financial Institutions Working Papers 02-42, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Sharda, V.N. & Das, P.K., 2005. "Modelling weekly rainfall data for crop planning in a sub-humid climate of India," Agricultural Water Management, Elsevier, vol. 76(2), pages 120-138, August.
- Sean D. Campbell & Francis X. Diebold, 2005.
"Weather Forecasting for Weather Derivatives,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
- Bashtannyk, D.M. & Hyndman, R.J., 1998.
"Bandwidth Selection for Kernel Conditional Density Estimation,"
Monash Econometrics and Business Statistics Working Papers
16/98, Monash University, Department of Econometrics and Business Statistics.
- Bashtannyk, David M. & Hyndman, Rob J., 2001. "Bandwidth selection for kernel conditional density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
Cited by:
- Maza, Adolfo & Villaverde, José, 2011. "EU regional convergence and policy: Does the concept of region matter?," Journal of Policy Modeling, Elsevier, vol. 33(6), pages 889-900.
- Carlos Mendez-Guerra, 2018.
"On the distribution dynamics of human development: Evidence from the metropolitan regions of Bolivia,"
Economics Bulletin, AccessEcon, vol. 38(4), pages 2467-2475.
- Mendez, Carlos, 2018. "On the Distribution Dynamics of Human Development: Evidence from the Metropolitan Regions of Bolivia," MPRA Paper 87571, University Library of Munich, Germany.
- Liang, Han-Ying & Peng, Liang, 2010. "Asymptotic normality and Berry-Esseen results for conditional density estimator with censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 101(5), pages 1043-1054, May.
- Manfred Fischer & Peter Stumpner, 2008. "Income distribution dynamics and cross-region convergence in Europe," Journal of Geographical Systems, Springer, vol. 10(2), pages 109-139, June.
- Lin, Yi-Chen, 2016. "The global distribution of the burden of road traffic injuries: Evolution and intra-distribution mobility," Journal of Transport Geography, Elsevier, vol. 56(C), pages 77-91.
- Qi Li & Juan Lin & Jeffrey S. Racine, 2012.
"Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions,"
Department of Economics Working Papers
2012-10, McMaster University.
- Qi Li & Juan Lin & Jeffrey S. Racine, 2013. "Optimal Bandwidth Selection for Nonparametric Conditional Distribution and Quantile Functions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 31(1), pages 57-65, January.
- Ann-Kathrin Bott & Michael Kohler, 2016. "Adaptive Estimation of a Conditional Density," International Statistical Review, International Statistical Institute, vol. 84(2), pages 291-316, August.
- Obbey Elamin & Len Gill & Martyn Andrews, 2020. "Insights from kernel conditional-probability estimates into female labour force participation decision in the UK," Empirical Economics, Springer, vol. 58(6), pages 2981-3006, June.
- Hall, Peter & Yao, Qiwei, 2005. "Approximating conditional distribution functions using dimension reduction," LSE Research Online Documents on Economics 16333, London School of Economics and Political Science, LSE Library.
- Halkos, George & Tzeremes, Nickolaos, 2012.
"Ranking the ‘Diamond Core’ economic journals: A note,"
MPRA Paper
36589, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking agricultural, environmental and natural resource economics journals: A note," MPRA Paper 36233, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking socio-demographic journals," MPRA Paper 36803, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking mainstream economics journals: A note," MPRA Paper 36198, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking policy and political economic journals," MPRA Paper 36951, University Library of Munich, Germany.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Ranking accounting, banking and finance journals: A note," MPRA Paper 36166, University Library of Munich, Germany.
- Wen‐Shuenn Deng & Yi‐Chen Lin & Ming‐Tien Tsai, 2018. "Polarization of life expectancy across countries: Does biological and cultural distance to the health technological frontier matter?," Scottish Journal of Political Economy, Scottish Economic Society, vol. 65(3), pages 248-270, July.
- Wen, Kuangyu & Wu, Ximing, 2017. "Smoothed kernel conditional density estimation," Economics Letters, Elsevier, vol. 152(C), pages 112-116.
- Liang, Han-Ying & Liu, Ai-Ai, 2013. "Kernel estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 120(C), pages 40-58.
- Serge Rey & Olivier Peron, 2012.
"Trade and Convergence of Per Capita Income in the Indian Ocean Zone, 1950-2008,"
Post-Print
hal-01885296, HAL.
- Olivier Peron & Serge Rey, 2012. "Trade and convergence of per capita income in the Indian Ocean Zone, 1950–2008," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 49(3), pages 657-683, December.
- Xiong, Xianzhu & Ou, Meijuan & Chen, Ailian, 2021. "Reweighted Nadaraya–Watson estimation of conditional density function in the right-censored model," Statistics & Probability Letters, Elsevier, vol. 168(C).
- Roberto Basile, 2007.
"Productivity polarization across regions in Europe,"
Quaderni del Dipartimento di Economia, Finanza e Statistica
31/2007, Università di Perugia, Dipartimento Economia.
- Roberto Basile, 2009. "Productivity Polarization across Regions in Europe," International Regional Science Review, , vol. 32(1), pages 92-115, January.
- Maza, Adolfo & Villaverde, José, 2008. "The world per capita electricity consumption distribution: Signs of convergence?," Energy Policy, Elsevier, vol. 36(11), pages 4255-4261, November.
- Jooyoung Jeon & James W. Taylor, 2012. "Using Conditional Kernel Density Estimation for Wind Power Density Forecasting," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 107(497), pages 66-79, March.
- Lin, Yi-Chen & Deng, Wen-Shuenn, 2018. "Are per capita international tourist arrivals converging?," International Review of Economics & Finance, Elsevier, vol. 57(C), pages 274-290.
- Adland, Roar & Jia, Haiying & Lu, Jing, 2008. "Price dynamics in the market for Liquid Petroleum Gas transport," Energy Economics, Elsevier, vol. 30(3), pages 818-828, May.
- Ray, Subhash C. & Das, Abhiman, 2010. "Distribution of cost and profit efficiency: Evidence from Indian banking," European Journal of Operational Research, Elsevier, vol. 201(1), pages 297-307, February.
- Catalina Bolancé & Ricardo Cao & Montserrat Guillen, 2018. "“Flexible maximum conditional likelihood estimation for single-index models to predict accident severity with telematics data”," IREA Working Papers 201829, University of Barcelona, Research Institute of Applied Economics, revised Dec 2018.
- João Amador & Sónia Cabral & José Maria, 2011. "A Simple Cross-Country Index of Trade Specialization," Open Economies Review, Springer, vol. 22(3), pages 447-461, July.
- Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
- José Villaverde & Adolfo Maza & María Hierro, 2014. "Health care expenditure disparities in the European Union and underlying factors: a distribution dynamics approach," International Journal of Health Economics and Management, Springer, vol. 14(3), pages 251-268, September.
- José Villaverde & Adolfo Maza & Bala Ramasamy, 2010. "Provincial Disparities in Post‐reform China," China & World Economy, Institute of World Economics and Politics, Chinese Academy of Social Sciences, vol. 18(2), pages 73-95, March.
- Yang, Yandong & Li, Shufang & Li, Wenqi & Qu, Meijun, 2018. "Power load probability density forecasting using Gaussian process quantile regression," Applied Energy, Elsevier, vol. 213(C), pages 499-509.
- Chiang, Harold D. & Sasaki, Yuya, 2019. "Causal inference by quantile regression kink designs," Journal of Econometrics, Elsevier, vol. 210(2), pages 405-433.
- Roberto Basile, 2007.
"Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators,"
ISAE Working Papers
75, ISTAT - Italian National Institute of Statistics - (Rome, ITALY).
- Roberto Basile, 2010. "Intra-distribution dynamics of regional per-capita income in Europe: evidence from alternative conditional density estimators," Statistica, Department of Statistics, University of Bologna, vol. 70(1), pages 3-22.
- Arribas Fernández Iván & Pérez García Francisco & Tortosa-Ausina Emili, 2008.
"On the Dynamics of Globalization,"
Working Papers
201088, Fundacion BBVA / BBVA Foundation.
- Arribas, Iván & Pérez, Francisco & Tortosa-Ausina, Emili, 2008. "On the Dynamics of Globalization," MPRA Paper 16007, University Library of Munich, Germany, revised 2008.
- Otneim, Håkon & Tjøstheim, Dag, 2016. "Non-parametric estimation of conditional densities: A new method," Discussion Papers 2016/22, Norwegian School of Economics, Department of Business and Management Science.
- Ichimura, Tsuyoshi & Fukuda, Daisuke, 2010. "A fast algorithm for computing least-squares cross-validations for nonparametric conditional kernel density functions," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 3404-3410, December.
- Wang, Xiao-Feng & Ye, Deping, 2015. "Conditional density estimation in measurement error problems," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 38-50.
- Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
- Marj Tonini & Mário Gonzalez Pereira & Joana Parente & Carmen Vega Orozco, 2017. "Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(3), pages 1489-1510, February.
- Kim Huynh & David Jacho-Chavez, 2007. "Conditional density estimation: an application to the Ecuadorian manufacturing sector," Economics Bulletin, AccessEcon, vol. 3(62), pages 1-6.
- Gery Geenens & Richard Dunn, 2017. "A nonparametric copula approach to conditional Value-at-Risk," Papers 1712.05527, arXiv.org, revised Oct 2019.
- M. Illueca & J. Lafuente, 2008.
"Introducing the mini-futures contract on Ibex 35: implications for price discovery and volatility transmission,"
Spanish Economic Review, Springer;Spanish Economic Association, vol. 10(3), pages 197-219, September.
- Juan A. Lafuente & Manuel Illueca Muñoz, 2004. "Introducing The Mini-Futures Contract On Ibex-35: Implications For Price Discovery And Volatility Transmission," Working Papers. Serie EC 2004-13, Instituto Valenciano de Investigaciones Económicas, S.A. (Ivie).
- José Villaverde & Adolfo Maza, 2012. "Chinese per Capita Income Distribution, 1992–2007: A Regional Perspective," Asian Economic Journal, East Asian Economic Association, vol. 26(4), pages 313-331, December.
- Chopin, Nicolas & Gadat, Sébastien & Guedj, Benjamin & Guyader, Arnaud & Vernet, Elodie, 2015. "On some recent advances in high dimensional Bayesian Statistics," TSE Working Papers 15-557, Toulouse School of Economics (TSE).
- Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
- Adolfo Maza & José Villaverde & María Hierro, 2009. "Regional Productivity Distribution in the European Union: Which are the Influencing Factors?," European Planning Studies, Taylor & Francis Journals, vol. 17(1), pages 149-159, January.
- Angelos Liontakis & Dimitris Kremmydas, 2013. "Food Inflation in EU: Distribution Analysis and Spatial Effects," Working Papers 2013-3, Agricultural University of Athens, Department Of Agricultural Economics.
- Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
- Saqib Saleem & Paul D Teal & W Bastiaan Kleijn & Terrence O’Donnell & Trevor Witter & Yu-Chieh Tzeng, 2015. "Non-Linear Characterisation of Cerebral Pressure-Flow Dynamics in Humans," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-19, September.
- Holmes, Michael P. & Gray, Alexander G. & Isbell Jr., Charles Lee, 2010. "Fast kernel conditional density estimation: A dual-tree Monte Carlo approach," Computational Statistics & Data Analysis, Elsevier, vol. 54(7), pages 1707-1718, July.
- Beyaert, Arielle & García-Solanes, José & Lopez-Gomez, Laura, 2019. "Do institutions of the euro area converge?," Economic Systems, Elsevier, vol. 43(3).
- Kateřina Konečná & Ivanka Horová, 2019. "Maximum likelihood method for bandwidth selection in kernel conditional density estimate," Computational Statistics, Springer, vol. 34(4), pages 1871-1887, December.
- Kurisu, Daisuke & Otsu, Taisuke, 2023. "Subsampling inference for nonparametric extremal conditional quantiles," LSE Research Online Documents on Economics 120365, London School of Economics and Political Science, LSE Library.
- Hyndman, R.J. & Yao, Q., 1998.
"Nonparametric Estimation and Symmetry Tests for Conditional Density Functions,"
Monash Econometrics and Business Statistics Working Papers
17/98, Monash University, Department of Econometrics and Business Statistics.
- Yao, Qiwei & Hyndman, Rob J., 2002. "Nonparametric estimation and symmetry tests for conditional density functions," LSE Research Online Documents on Economics 6092, London School of Economics and Political Science, LSE Library.
- Halkos, George E. & Tzeremes, Nickolaos G., 2012. "Analyzing the Greek renewable energy sector: A Data Envelopment Analysis approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2884-2893.
- Manuel Illueca & José Pastor & Emili Tortosa-Ausina, 2009. "The effects of geographic expansion on the productivity of Spanish savings banks," Journal of Productivity Analysis, Springer, vol. 32(2), pages 119-143, October.
- Pui Sun Tam, 2018. "Economic Transition and Growth Dynamics in Asia: Harmony or Discord?," Comparative Economic Studies, Palgrave Macmillan;Association for Comparative Economic Studies, vol. 60(3), pages 361-387, September.
- Maza, Adolfo & Hierro, María & Villaverde, José, 2012. "Income distribution dynamics across European regions: Re-examining the role of space," Economic Modelling, Elsevier, vol. 29(6), pages 2632-2640.
- Adolfo Maza & María Hierro & José Villaverde, 2010. "Measuring intra-distribution income dynamics: an application to the European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 45(2), pages 313-329, October.
- Maza, Adolfo & Hierro, María & Villaverde, José, 2010. "Renewable electricity consumption in the EU-27: Are cross-country differences diminishing?," Renewable Energy, Elsevier, vol. 35(9), pages 2094-2101.
- Ji-Eun Choi & Dong Wan Shin, 2022. "Quantile correlation coefficient: a new tail dependence measure," Statistical Papers, Springer, vol. 63(4), pages 1075-1104, August.
- Halkos, George & Tzeremes, Nickolaos, 2012. "Evaluating professional tennis players’ career performance: A Data Envelopment Analysis approach," MPRA Paper 41516, University Library of Munich, Germany.
- Fraccaro, R. & Hyndman, R. & Veevers, A., 1998.
"Residual Diagnostic Plots for Checking for model Mis-Specification in Time Series Regression,"
Monash Econometrics and Business Statistics Working Papers
12/98, Monash University, Department of Econometrics and Business Statistics.
Cited by:
- E. Andres Houseman & Louise Ryan & Brent Coull, 2004. "Cholesky Residuals for Assessing Normal Errors in a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1019, Berkeley Electronic Press.
- Xie, Feng-Chang & Lin, Jin-Guan & Wei, Bo-Cheng, 2009. "Diagnostics for skew-normal nonlinear regression models with AR(1) errors," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4403-4416, October.
- E. Andres Houseman & Brent Coull & Louise Ryan, 2004. "A Functional-Based Distribution Diagnostic for a Linear Model with Correlated Outcomes: Technical Report," Harvard University Biostatistics Working Paper Series 1018, Berkeley Electronic Press.
- Hyndman, R.J. & Wand, M.P., "undated".
"Nonparametric autocovariance function estimation,"
Statistics Working Paper
_006, Australian Graduate School of Management.
Cited by:
- Stefano Magrini & Margherita Gerolimetto, 2015. "Spatial Distribution Dynamics," ERSA conference papers ersa15p1172, European Regional Science Association.
- Roberto Buizza & James W. Taylor, 2004. "A comparison of temperature density forecasts from GARCH and atmospheric models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(5), pages 337-355.
- Grunwald, Gary K. & Hyndman, Rob J., 1998. "Smoothing non-Gaussian time series with autoregressive structure," Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 171-191, August.
- Franses, Ph.H.B.F. & Neele, J. & van Dijk, D.J.C., 1998. "Modeling asymmetric volatility in weekly Dutch temperature data," Econometric Institute Research Papers EI 9840, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Margherita Gerolimetto & Stefano Magrini, 2016. "Distribution Dynamics in the US. A Spatial Perspective," Working Papers 2016:02, Department of Economics, University of Venice "Ca' Foscari".
Articles
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
See citations under working paper version above.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023.
"Probabilistic forecast reconciliation: Properties, evaluation and score optimisation,"
European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
See citations under working paper version above.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation," Monash Econometrics and Business Statistics Working Papers 26/20, Monash University, Department of Econometrics and Business Statistics.
- Wang, Xiaoqian & Kang, Yanfei & Hyndman, Rob J. & Li, Feng, 2023.
"Distributed ARIMA models for ultra-long time series,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1163-1184.
See citations under working paper version above.
- Xiaoqian Wang & Yanfei Kang & Rob J Hyndman & Feng Li, 2020. "Distributed ARIMA Models for Ultra-long Time Series," Monash Econometrics and Business Statistics Working Papers 29/20, Monash University, Department of Econometrics and Business Statistics.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023.
"LoMEF: A framework to produce local explanations for global model time series forecasts,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
Cited by:
- Binrong Wu & Zhongrui Wang & Lin Wang, 2024. "Interpretable corn future price forecasting with multivariate time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1575-1594, August.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023.
"Forecast combinations: An over 50-year review,"
International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
Cited by:
- Alexandra Bozhechkova & Urmat Dzhunkeev, 2024. "CLARA and CARLSON: Combination of Ensemble and Neural Network Machine Learning Methods for GDP Forecasting," Russian Journal of Money and Finance, Bank of Russia, vol. 83(3), pages 45-69, September.
- Vincenzo Candila & Oguzhan Cepni & Giampiero M. Gallo & Rangan Gupta, 2024.
"Influence of Local and Global Economic Policy Uncertainty on the Volatility of US State-Level Equity Returns: Evidence from a GARCH-MIDAS Approach with Shrinkage and Cluster Analysis,"
Working Papers
202437, University of Pretoria, Department of Economics.
- V. Candila & O. Cepni & G. M. Gallo & R. Gupta, 2024. "Influence of Local and Global Economic Policy Uncertainty on the volatility of US state-level equity returns: Evidence from a GARCH-MIDAS approach with Shrinkage and Cluster Analysis," Working Paper CRENoS 202414, Centre for North South Economic Research, University of Cagliari and Sassari, Sardinia.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Faria, Gonçalo & Verona, Fabio, 2024. "Enhancing forecast accuracy through frequencydomain combination: Applications to financial and economic indicators," Bank of Finland Research Discussion Papers 14/2024, Bank of Finland.
- Astafyeva, Ekaterina & Turuntseva, Marina, 2024. "Forecast evaluation improving using the simplest methods of individual forecasts’ combination," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 74, pages 78-103.
- Philippe Goulet Coulombe & Karin Klieber & Christophe Barrette & Maximilian Goebel, 2024. "Maximally Forward-Looking Core Inflation," Papers 2404.05209, arXiv.org.
- Dengao Li & Qi Liu & Ding Feng & Zhichao Chen, 2024. "A Medium- and Long-Term Residential Load Forecasting Method Based on Discrete Cosine Transform-FEDformer," Energies, MDPI, vol. 17(15), pages 1-14, July.
- Li, Zhao-Chen & Xie, Chi & Wang, Gang-Jin & Zhu, You & Zeng, Zhi-Jian & Gong, Jue, 2024. "Forecasting global stock market volatilities: A shrinkage heterogeneous autoregressive (HAR) model with a large cross-market predictor set," International Review of Economics & Finance, Elsevier, vol. 93(PB), pages 673-711.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Kozyrev, Boris, 2024. "Forecast combination and interpretability using random subspace," IWH Discussion Papers 21/2024, Halle Institute for Economic Research (IWH).
- Philippe Goulet Coulombe & Maximilian Goebel & Karin Klieber, 2024. "Dual Interpretation of Machine Learning Forecasts," Papers 2412.13076, arXiv.org.
- Michael Pedersen, 2024. "Judgment in macroeconomic output growth predictions: Efficiency, accuracy and persistence," Papers 2404.04105, arXiv.org.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022.
"Forecasting for social good,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
See citations under working paper version above.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020. "Forecasting for Social Good," Monash Econometrics and Business Statistics Working Papers 37/20, Monash University, Department of Econometrics and Business Statistics.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J. Hyndman, 2022.
"Seasonal functional autoregressive models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 43(2), pages 197-218, March.
See citations under working paper version above.
- Atefeh Zamani & Hossein Haghbin & Maryam Hashemi & Rob J Hyndman, 2019. "Seasonal Functional Autoregressive Models," Monash Econometrics and Business Statistics Working Papers 16/19, Monash University, Department of Econometrics and Business Statistics.
- Alexander Dokumentov & Rob J. Hyndman, 2022.
"STR: Seasonal-Trend Decomposition Using Regression,"
INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 50-62, April.
Cited by:
- Jiang, Haiyang & Du, Ershun & He, Boyu & Zhang, Ning & Wang, Peng & Li, Fuqiang & Ji, Jie, 2023. "Analysis and modeling of seasonal characteristics of renewable energy generation," Renewable Energy, Elsevier, vol. 219(P1).
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021.
"Non‐linear mixed‐effects models for time series forecasting of smart meter demand,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
See citations under working paper version above.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020. "Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand," Monash Econometrics and Business Statistics Working Papers 41/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021.
"Forecast reconciliation: A geometric view with new insights on bias correction,"
International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
See citations under working paper version above.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 23/20, Monash University, Department of Econometrics and Business Statistics.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2019. "Forecast Reconciliation: A geometric View with New Insights on Bias Correction," Monash Econometrics and Business Statistics Working Papers 18/19, Monash University, Department of Econometrics and Business Statistics.
- Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021.
"Forecasting Swiss exports using Bayesian forecast reconciliation,"
European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
See citations under working paper version above.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports Using Bayesian Forecast Reconciliation," Monash Econometrics and Business Statistics Working Papers 14/19, Monash University, Department of Econometrics and Business Statistics.
- Florian Eckert & Rob J Hyndman & Anastasios Panagiotelis, 2019. "Forecasting Swiss Exports using Bayesian Forecast Reconciliation," KOF Working papers 19-457, KOF Swiss Economic Institute, ETH Zurich.
- Li, Han & Hyndman, Rob J., 2021.
"Assessing mortality inequality in the U.S.: What can be said about the future?,"
Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
Cited by:
- Jan L. M. Dhaene & Moshe A. Milevsky, 2024. "Egalitarian pooling and sharing of longevity risk', a.k.a. 'The many ways to skin a tontine cat," Papers 2402.00855, arXiv.org.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Tom Wilson & Irina Grossman & Monica Alexander & Phil Rees & Jeromey Temple, 2022. "Methods for Small Area Population Forecasts: State-of-the-Art and Research Needs," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 41(3), pages 865-898, June.
- Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
- Anastasios Panagiotelis & Puwasala Gamakumara & George Athanasopoulos & Rob J Hyndman, 2020.
"Probabilistic Forecast Reconciliation: Properties, Evaluation and Score Optimisation,"
Monash Econometrics and Business Statistics Working Papers
26/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
- Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2021.
"Hierarchical Probabilistic Forecasting of Electricity Demand With Smart Meter Data,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 27-43, March.
Cited by:
- Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
- Mikkel L. Sørensen & Peter Nystrup & Mathias B. Bjerregård & Jan K. Møller & Peder Bacher & Henrik Madsen, 2023. "Recent developments in multivariate wind and solar power forecasting," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
- Pesantez, Jorge E. & Li, Binbin & Lee, Christopher & Zhao, Zhizhen & Butala, Mark & Stillwell, Ashlynn S., 2023. "A Comparison Study of Predictive Models for Electricity Demand in a Diverse Urban Environment," Energy, Elsevier, vol. 283(C).
- Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Pellini, Elisabetta, 2021. "Estimating income and price elasticities of residential electricity demand with Autometrics," Energy Economics, Elsevier, vol. 101(C).
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Jonathan Gumz & Diego Castro Fettermann & Enzo Morosini Frazzon & Mirko Kück, 2022. "Using Industry 4.0’s Big Data and IoT to Perform Feature-Based and Past Data-Based Energy Consumption Predictions," Sustainability, MDPI, vol. 14(20), pages 1-34, October.
- Mengchen Zhao & Santiago Gomez-Rosero & Hooman Nouraei & Craig Zych & Miriam A. M. Capretz & Ayan Sadhu, 2024. "Toward Prediction of Energy Consumption Peaks and Timestamping in Commercial Supermarkets Using Deep Learning," Energies, MDPI, vol. 17(7), pages 1-24, April.
- Sakai Ando & Futoshi Narita, 2024. "An Alternative Proof of Minimum Trace Reconciliation," Forecasting, MDPI, vol. 6(2), pages 1-6, June.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021.
"Principles and algorithms for forecasting groups of time series: Locality and globality,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
See citations under working paper version above.
- Pablo Montero-Manso & Rob J Hyndman, 2020. "Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality," Monash Econometrics and Business Statistics Working Papers 45/20, Monash University, Department of Econometrics and Business Statistics.
- Stephanie Clark & Rob J. Hyndman & Dan Pagendam & Louise M. Ryan, 2020.
"Modern Strategies for Time Series Regression,"
International Statistical Review, International Statistical Institute, vol. 88(S1), pages 179-204, December.
Cited by:
- Stephanie R. Clark & Dan Pagendam & Louise Ryan, 2022. "Forecasting Multiple Groundwater Time Series with Local and Global Deep Learning Networks," IJERPH, MDPI, vol. 19(9), pages 1-31, April.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
See citations under working paper version above.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Athanasopoulos, George & Hyndman, Rob J. & Talagala, Thiyanga S., 2020.
"FFORMA: Feature-based forecast model averaging,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 86-92.
See citations under working paper version above.
- Pablo Montero-Manso & George Athanasopoulos & Rob J Hyndman & Thiyanga S Talagala, 2018. "FFORMA: Feature-based forecast model averaging," Monash Econometrics and Business Statistics Working Papers 19/18, Monash University, Department of Econometrics and Business Statistics.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020.
"Forecasting in social settings: The state of the art,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
Cited by:
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wesley Marcos Almeida & Claudimar Pereira Veiga, 2023. "Does demand forecasting matter to retailing?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 219-232, June.
- Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
- Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
- Dag Tjøstheim & Martin Jullum & Anders Løland, 2023. "Some recent trends in embeddings of time series and dynamic networks," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(5-6), pages 686-709, September.
- Evangelos Spiliotis & Fotios Petropoulos & Konstantinos Nikolopoulos, 2020. "The Impact of Imperfect Weather Forecasts on Wind Power Forecasting Performance: Evidence from Two Wind Farms in Greece," Energies, MDPI, vol. 13(8), pages 1-18, April.
- Christoph Schlembach & Sascha L. Schmidt & Dominik Schreyer & Linus Wunderlich, 2020. "Forecasting the Olympic medal distribution during a pandemic: a socio-economic machine learning model," Papers 2012.04378, arXiv.org, revised Jun 2021.
- Kurt Graden Lunsford & Kenneth D. West, 2024. "An Empirical Evaluation of Some Long-Horizon Macroeconomic Forecasts," Working Papers 24-20, Federal Reserve Bank of Cleveland.
- Rajaguru, Rajesh & Matanda, Margaret Jekanyika & Verma, Prikshat, 2023. "Information system integration, forecast information quality and market responsiveness: Role of socio-technical congruence," Technological Forecasting and Social Change, Elsevier, vol. 186(PA).
- Zeydin Pala & Fatih Şevgin, 2024. "Statistical modeling for long-term meteorological forecasting: a case study in Van Lake Basin," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(15), pages 14101-14116, December.
- Romanus, Eduardo E. & Silva, Eugênio & Goldschmidt, Ronaldo R., 2024. "Empirical probabilistic forecasting: An approach solely based on deterministic explanatory variables for the selection of past forecast errors," International Journal of Forecasting, Elsevier, vol. 40(1), pages 184-201.
- Shen, Dongxu & Yang, Dazhi & Lyu, Chao & Ma, Jingyan & Hinds, Gareth & Sun, Qingmin & Du, Limei & Wang, Lixin, 2024. "Multi-sensor multi-mode fault diagnosis for lithium-ion battery packs with time series and discriminative features," Energy, Elsevier, vol. 290(C).
- Schlembach, Christoph & Schmidt, Sascha L. & Schreyer, Dominik & Wunderlich, Linus, 2022. "Forecasting the Olympic medal distribution – A socioeconomic machine learning model," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
- Zhang, Xiaomi & Yang, Dazhi & Zhang, Hao & Liu, Bai & Li, Mengying & Chu, Yinghao & Wang, Jingnan & Xia, Xiang’ao, 2024. "Spatial solar forecast verification with the neighborhood method and automatic threshold segmentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Wilson, Tom & Grossman, Irina & Temple, Jeromey, 2023. "Evaluation of the best M4 competition methods for small area population forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 110-122.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on New Car Sales in South Africa," Data, MDPI, vol. 8(5), pages 1-16, April.
- Elghafghuf, Adel & Vanderstichel, Raphael & Hammell, Larry & Stryhn, Henrik, 2021. "State-space modeling for inter-site spread of sea lice with short-term population predictions," Ecological Modelling, Elsevier, vol. 452(C).
- Gonca Gürses-Tran & Antonello Monti, 2022. "Advances in Time Series Forecasting Development for Power Systems’ Operation with MLOps," Forecasting, MDPI, vol. 4(2), pages 1-24, May.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
See citations under working paper version above.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Catherine Leigh & Sevvandi Kandanaarachchi & James M McGree & Rob J Hyndman & Omar Alsibai & Kerrie Mengersen & Erin E Peterson, 2019.
"Predicting sediment and nutrient concentrations from high-frequency water-quality data,"
PLOS ONE, Public Library of Science, vol. 14(8), pages 1-22, August.
Cited by:
- Claire Kermorvant & Benoit Liquet & Guy Litt & Jeremy B. Jones & Kerrie Mengersen & Erin E. Peterson & Rob J. Hyndman & Catherine Leigh, 2021. "Reconstructing Missing and Anomalous Data Collected from High-Frequency In-Situ Sensors in Fresh Waters," IJERPH, MDPI, vol. 18(23), pages 1-14, December.
- Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
- Sarah C. Gadd & Alexis Comber & Mark S. Gilthorpe & Keiran Suchak & Alison J. Heppenstall, 2022. "Simplifying the interpretation of continuous time models for spatio-temporal networks," Journal of Geographical Systems, Springer, vol. 24(2), pages 171-198, April.
- Puwasala Gamakumara & Edgar Santos-Fernandez & Priyanga Dilini Talagala & Rob J Hyndman & Kerrie Mengersen & Catherine Leigh, 2023. "Conditional Normalization in Time Series Analysis," Monash Econometrics and Business Statistics Working Papers 10/23, Monash University, Department of Econometrics and Business Statistics.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019.
"Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
See citations under working paper version above.
- Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2017. "Optimal forecast reconciliation for hierarchical and grouped time series through trace minimization," Monash Econometrics and Business Statistics Working Papers 22/17, Monash University, Department of Econometrics and Business Statistics.
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018.
"A note on the validity of cross-validation for evaluating autoregressive time series prediction,"
Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
Cited by:
- Pablo Montero-Manso & Rob J Hyndman, 2020.
"Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality,"
Monash Econometrics and Business Statistics Working Papers
45/20, Monash University, Department of Econometrics and Business Statistics.
- Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
- Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
- Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020.
"Deep Dynamic Factor Models,"
Papers
2007.11887, arXiv.org, revised May 2023.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2023. "Deep Dynamic Factor Models," Working Papers 2023-08, Center for Research in Economics and Statistics.
- Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
- Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
- Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
- Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021.
"Macroeconomic data transformations matter,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Papers 2008.01714, arXiv.org, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2020. "Macroeconomic Data Transformations Matter," CIRANO Working Papers 2020s-42, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Working Papers 20-17, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020.
"How is Machine Learning Useful for Macroeconomic Forecasting?,"
Working Papers
20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2019.
"lassopack: Model selection and prediction with regularized regression in Stata,"
Papers
1901.05397, arXiv.org.
- Ahrens, Achim & Hansen, Christian B. & Schaffer, Mark E, 2019. "lassopack: Model Selection and Prediction with Regularized Regression in Stata," IZA Discussion Papers 12081, Institute of Labor Economics (IZA).
- Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LP, vol. 20(1), pages 176-235, March.
- Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024.
"Econometrics of machine learning methods in economic forecasting,"
Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273,
Edward Elgar Publishing.
- Andrii Babii & Eric Ghysels & Jonas Striaukas, 2023. "Econometrics of Machine Learning Methods in Economic Forecasting," Papers 2308.10993, arXiv.org.
- Giovanni Ballarin & Petros Dellaportas & Lyudmila Grigoryeva & Marcel Hirt & Sophie van Huellen & Juan-Pablo Ortega, 2022.
"Reservoir Computing for Macroeconomic Forecasting with Mixed Frequency Data,"
Papers
2211.00363, arXiv.org, revised Jan 2024.
- Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
- Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
- Philippe Goulet Coulombe, 2020. "To Bag is to Prune," Papers 2008.07063, arXiv.org, revised Sep 2024.
- Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2021. "Short-Term Exuberance and Long-Term Stability: A Simultaneous Optimization of Stock Return Predictions for Short and Long Horizons," Mathematics, MDPI, vol. 9(6), pages 1-19, March.
- Philippe Goulet Coulombe, 2021. "The Macroeconomy as a Random Forest," Working Papers 21-05, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Panagiotelis, Anastasios & Athanasopoulos, George & Hyndman, Rob J. & Jiang, Bin & Vahid, Farshid, 2019.
"Macroeconomic forecasting for Australia using a large number of predictors,"
International Journal of Forecasting, Elsevier, vol. 35(2), pages 616-633.
- Bin Jiang & George Athanasopoulos & Rob J Hyndman & Anastasios Panagiotelis & Farshid Vahid, 2017. "Macroeconomic forecasting for Australia using a large number of predictors," Monash Econometrics and Business Statistics Working Papers 2/17, Monash University, Department of Econometrics and Business Statistics.
- Thompson, Ryan & Qian, Yilin & Vasnev, Andrey L., 2024.
"Flexible global forecast combinations,"
Omega, Elsevier, vol. 126(C).
- Ryan Thompson & Yilin Qian & Andrey L. Vasnev, 2022. "Flexible global forecast combinations," Papers 2207.07318, arXiv.org, revised Mar 2024.
- Lv, Sheng-Xiang & Wang, Lin, 2022. "Deep learning combined wind speed forecasting with hybrid time series decomposition and multi-objective parameter optimization," Applied Energy, Elsevier, vol. 311(C).
- Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
- Richard Schnorrenberger & Aishameriane Schmidt & Guilherme Valle Moura, 2024. "Harnessing Machine Learning for Real-Time Inflation Nowcasting," Working Papers 806, DNB.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2023.
"Nowcasting consumer price inflation using high-frequency scanner data: Evidence from Germany,"
Discussion Papers
34/2023, Deutsche Bundesbank.
- Beck, Günter W. & Carstensen, Kai & Menz, Jan-Oliver & Schnorrenberger, Richard & Wieland, Elisabeth, 2024. "Nowcasting consumer price inflation using high-frequency scanner data: evidence from Germany," Working Paper Series 2930, European Central Bank.
- Tomáš Plíhal, 2021. "Scheduled macroeconomic news announcements and Forex volatility forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1379-1397, December.
- Francisco Martínez-Álvarez & Amandine Schmutz & Gualberto Asencio-Cortés & Julien Jacques, 2018. "A Novel Hybrid Algorithm to Forecast Functional Time Series Based on Pattern Sequence Similarity with Application to Electricity Demand," Energies, MDPI, vol. 12(1), pages 1-18, December.
- Laura Felber & Simon Beyeler, 2023. "Nowcasting economic activity using transaction payments data," Working Papers 2023-01, Swiss National Bank.
- Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
- Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
- Steven Y. K. Wong & Jennifer Chan & Lamiae Azizi & Richard Y. D. Xu, 2020. "Time-varying neural network for stock return prediction," Papers 2003.02515, arXiv.org, revised Jan 2021.
- Atiyeh Bozorgi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany & Rouzbeh Abbassi, 2021. "Development of Multi-Hazard Risk Assessment Model for Agricultural Water Supply and Distribution Systems Using Bayesian Network," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3139-3159, August.
- Arthur Charpentier & Molly James & Hani Ali, 2021. "Predicting Drought and Subsidence Risks in France," Papers 2107.07668, arXiv.org.
- Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
- Beatriz González-Pérez & Concepción Núñez & José L. Sánchez & Gabriel Valverde & José Manuel Velasco, 2021. "Expert System to Model and Forecast Time Series of Epidemiological Counts with Applications to COVID-19," Mathematics, MDPI, vol. 9(13), pages 1-34, June.
- Momin M. Malik, 2020. "A Hierarchy of Limitations in Machine Learning," Papers 2002.05193, arXiv.org, revised Feb 2020.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- DeMiguel, Victor & Gil-Bazo, Javier & Nogales, Francisco J. & Santos, André A.P., 2023. "Machine learning and fund characteristics help to select mutual funds with positive alpha," Journal of Financial Economics, Elsevier, vol. 150(3).
- Zhentao Shi & Liangjun Su & Tian Xie, 2020. "L2-Relaxation: With Applications to Forecast Combination and Portfolio Analysis," Papers 2010.09477, arXiv.org, revised Aug 2022.
- Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," PSE Working Papers halshs-03626503, HAL.
- Philippe Goulet Coulombe & Maximilian Goebel, 2023. "Maximally Machine-Learnable Portfolios," Papers 2306.05568, arXiv.org, revised Apr 2024.
- Chathurika Hettiarachchige & Stefan von Cavallar & Timothy Lynar & Roslyn I Hickson & Manoj Gambhir, 2018. "Risk prediction system for dengue transmission based on high resolution weather data," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
- Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," Working Papers halshs-02235543, HAL.
- Tomokaze Shiratori & Ken Kobayashi & Yuichi Takano, 2020. "Prediction of hierarchical time series using structured regularization and its application to artificial neural networks," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-23, November.
- Oscar Trull & Angel Peiró-Signes & J. Carlos García-Díaz, 2019. "Electricity Forecasting Improvement in a Destination Using Tourism Indicators," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
- Caio Vigo Pereira, 2020.
"Portfolio Efficiency with High-Dimensional Data as Conditioning Information,"
WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS
202015, University of Kansas, Department of Economics, revised Sep 2020.
- Vigo Pereira, Caio, 2021. "Portfolio efficiency with high-dimensional data as conditioning information," International Review of Financial Analysis, Elsevier, vol. 77(C).
- Carvajal-Patiño, Daniel & Ramos-Pollán, Raul, 2022. "Synthetic data generation with deep generative models to enhance predictive tasks in trading strategies," Research in International Business and Finance, Elsevier, vol. 62(C).
- Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
- Philippe Goulet Coulombe & Maximilian Gobel, 2023. "Maximally Machine-Learnable Portfolios," Working Papers 23-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Apr 2023.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021.
"Can Machine Learning Catch the COVID-19 Recession?,"
Working Papers
21-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Goulet Coulombe, Philippe & Marcellino, Massimiliano & Stevanović, Dalibor, 2021. "Can Machine Learning Catch The Covid-19 Recession?," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 71-109, May.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CIRANO Working Papers 2021s-09, CIRANO.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Papers 2103.01201, arXiv.org.
- Marcellino, Massimiliano & Stevanovic, Dalibor & Goulet Coulombe, Philippe, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CEPR Discussion Papers 15867, C.E.P.R. Discussion Papers.
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Short-Term Exuberance and long-term stability: A simultaneous optimization of stock return predictions for short and long horizons," Graz Economics Papers 2020-20, University of Graz, Department of Economics.
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2019.
"Generative Adversarial Networks for Financial Trading Strategies Fine-Tuning and Combination,"
Papers
1901.01751, arXiv.org, revised Mar 2019.
- Adriano Koshiyama & Nick Firoozye & Philip Treleaven, 2021. "Generative adversarial networks for financial trading strategies fine-tuning and combination," Quantitative Finance, Taylor & Francis Journals, vol. 21(5), pages 797-813, May.
- Philippe Goulet Coulombe, 2020. "Time-Varying Parameters as Ridge Regressions," Papers 2009.00401, arXiv.org, revised Nov 2024.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Li, Baibing, 2022. "Stochastic modeling and adaptive forecasting for parking space availability with drivers’ time-varying arrival/departure behavior," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 313-332.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021.
"Can machine learning help to select portfolios of mutual funds?,"
Economics Working Papers
1772, Department of Economics and Business, Universitat Pompeu Fabra.
- Victor DeMiguel & Javier Gil-Bazo & Francisco J. Nogales & André A. P. Santos, 2021. "Can Machine Learning Help to Select Portfolios of Mutual Funds?," Working Papers 1245, Barcelona School of Economics.
- In, YeonJun & Jung, Jae-Yoon, 2022. "Simple averaging of direct and recursive forecasts via partial pooling using machine learning," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1386-1399.
- Bollerslev, Tim & Medeiros, Marcelo C. & Patton, Andrew J. & Quaedvlieg, Rogier, 2022. "From zero to hero: Realized partial (co)variances," Journal of Econometrics, Elsevier, vol. 231(2), pages 348-360.
- Camehl, Annika, 2023. "Penalized estimation of panel vector autoregressive models: A panel LASSO approach," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1185-1204.
- Schnücker, A.M., 2019. "Penalized Estimation of Panel Vector Autoregressive Models," Econometric Institute Research Papers EI-2019-33, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
- Thomas Despois & Catherine Doz, 2021. "Identifying and interpreting the factors in factor models via sparsity: Different approaches," PSE Working Papers halshs-02235543, HAL.
- O. Didkovskyi & N. Jean & G. Le Pera & C. Nordio, 2024. "Cross-Domain Behavioral Credit Modeling: transferability from private to central data," Papers 2401.09778, arXiv.org.
- Xiaodan Zhu & Anh Ninh & Hui Zhao & Zhenming Liu, 2021. "Demand Forecasting with Supply‐Chain Information and Machine Learning: Evidence in the Pharmaceutical Industry," Production and Operations Management, Production and Operations Management Society, vol. 30(9), pages 3231-3252, September.
- Zachary F. Fisher & Younghoon Kim & Barbara L. Fredrickson & Vladas Pipiras, 2022. "Penalized Estimation and Forecasting of Multiple Subject Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 1-29, June.
- Bledar Fazlija & Pedro Harder, 2022. "Using Financial News Sentiment for Stock Price Direction Prediction," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
- Olson, Luke M. & Qi, Min & Zhang, Xiaofei & Zhao, Xinlei, 2021. "Machine learning loss given default for corporate debt," Journal of Empirical Finance, Elsevier, vol. 64(C), pages 144-159.
- Jo~ao B. Assunc{c}~ao & Pedro Afonso Fernandes, 2024. "The Surprising Robustness of Partial Least Squares," Papers 2409.05713, arXiv.org.
- Paolo Maranzano & Matteo Maria Pelagatti, 2022. "Spatio-temporal Event Studies for Air Quality Assessment under Cross-sectional Dependence," Papers 2210.17529, arXiv.org.
- Pierre Dodin & Jingyi Xiao & Yossiri Adulyasak & Neda Etebari Alamdari & Lea Gauthier & Philippe Grangier & Paul Lemaitre & William L. Hamilton, 2023. "Bombardier Aftermarket Demand Forecast with Machine Learning," Interfaces, INFORMS, vol. 53(6), pages 425-445, November.
- Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Kraay,Aart C. & Spencer,Phoebe Girouard & Wang,Dieter, 2020. "Predicting Food Crises," Policy Research Working Paper Series 9412, The World Bank.
- Steven Y. K. Wong & Jennifer S. K. Chan & Lamiae Azizi & Richard Y. D. Xu, 2022. "Time‐varying neural network for stock return prediction," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 29(1), pages 3-18, January.
- Smeekes, Stephan & Wijler, Etiënne, 2016.
"Macroeconomic Forecasting Using Penalized Regression Methods,"
Research Memorandum
039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Smeekes, Stephan & Wijler, Etienne, 2018. "Macroeconomic forecasting using penalized regression methods," International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Johanna M. Orozco-Castañeda & Sebastián Alzate-Vargas & Danilo Bedoya-Valencia, 2024. "Evaluating Volatility Using an ANFIS Model for Financial Time Series Prediction," Risks, MDPI, vol. 12(10), pages 1-15, September.
- Cheng, Tingting & Liu, Junli & Yao, Wenying & Zhao, Albert Bo, 2022. "The impact of COVID-19 pandemic on the volatility connectedness network of global stock market," Pacific-Basin Finance Journal, Elsevier, vol. 71(C).
- George Milunovich, 2020. "Forecasting Australia's real house price index: A comparison of time series and machine learning methods," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(7), pages 1098-1118, November.
- Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
- Lin Huang & Lin Wang & Xiaomeng Hu & Sen Chen & Yunwen Tao & Haiyang Su & Jing Yang & Wei Xu & Vadanasundari Vedarethinam & Shu Wu & Bin Liu & Xinze Wan & Jiatao Lou & Qian Wang & Kun Qian, 2020. "Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
- Julien Chevallier & Bangzhu Zhu & Lyuyuan Zhang, 2021. "Forecasting Inflection Points: Hybrid Methods with Multiscale Machine Learning Algorithms," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 537-575, February.
- Lv, Sheng-Xiang & Wang, Lin, 2023. "Multivariate wind speed forecasting based on multi-objective feature selection approach and hybrid deep learning model," Energy, Elsevier, vol. 263(PE).
- Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
- Marie K. Schellens & Salim Belyazid, 2020. "Revisiting the Contested Role of Natural Resources in Violent Conflict Risk through Machine Learning," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
- Paolo Andreini & Donato Ceci, 2019. "A Horse Race in High Dimensional Space," CEIS Research Paper 452, Tor Vergata University, CEIS, revised 14 Feb 2019.
- Felix Brunner & Ruben Hipp, 2021. "Estimating Large-Dimensional Connectedness Tables: The Great Moderation Through the Lens of Sectoral Spillovers," Staff Working Papers 21-37, Bank of Canada.
- Wang, Dieter & Andrée, Bo Pieter Johannes & Chamorro, Andres Fernando & Spencer, Phoebe Girouard, 2022. "Transitions into and out of food insecurity: A probabilistic approach with panel data evidence from 15 countries," World Development, Elsevier, vol. 159(C).
- James T. E. Chapman & Ajit Desai, 2022.
"Macroeconomic Predictions using Payments Data and Machine Learning,"
Papers
2209.00948, arXiv.org.
- James T. E. Chapman & Ajit Desai, 2023. "Macroeconomic Predictions Using Payments Data and Machine Learning," Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
- Fabian Kruger & Hendrik Plett, 2022. "Prediction intervals for economic fixed-event forecasts," Papers 2210.13562, arXiv.org, revised Mar 2024.
- David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
- Rodolfo Metulini & Maurizio Carpita, 2024. "Modeling and forecasting traffic flows with mobile phone big data in flooding risk areas to support a data-driven decision making," Annals of Operations Research, Springer, vol. 342(3), pages 1629-1654, November.
- Meira, Erick & Lila, Maurício Franca & Cyrino Oliveira, Fernando Luiz, 2023. "A novel reconciliation approach for hierarchical electricity consumption forecasting based on resistant regression," Energy, Elsevier, vol. 269(C).
- Christian Giovanelli & Seppo Sierla & Ryutaro Ichise & Valeriy Vyatkin, 2018. "Exploiting Artificial Neural Networks for the Prediction of Ancillary Energy Market Prices," Energies, MDPI, vol. 11(7), pages 1-22, July.
- Boyao Wu & Difang Huang & Muzi Chen, 2024. "Estimating Contagion Mechanism in Global Equity Market with Time-Zone Effect," Papers 2404.04335, arXiv.org.
- Md Saif Hassan Onim & Zubayar Mahatab Md Sakif & Adil Ahnaf & Ahsan Kabir & Abul Kalam Azad & Amanullah Maung Than Oo & Rafina Afreen & Sumaita Tanjim Hridy & Mahtab Hossain & Taskeed Jabid & Md Sawka, 2022. "SolNet: A Convolutional Neural Network for Detecting Dust on Solar Panels," Energies, MDPI, vol. 16(1), pages 1-19, December.
- Michael D. Hunter & Haya Fatimah & Marina A. Bornovalova, 2022. "Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 477-505, June.
- Konstantinos Plakas & Ioannis Karampinis & Panayiotis Alefragis & Alexios Birbas & Michael Birbas & Alex Papalexopoulos, 2023. "A Predictive Fuzzy Logic Model for Forecasting Electricity Day-Ahead Market Prices for Scheduling Industrial Applications," Energies, MDPI, vol. 16(10), pages 1-21, May.
- Qian, Yilin & Thompson, Ryan & Vasnev, Andrey L, 2022. "Global combinations of expert forecasts," Working Papers BAWP-2022-02, University of Sydney Business School, Discipline of Business Analytics.
- Szczygielski, Jan Jakub & Charteris, Ailie & Obojska, Lidia & Brzeszczyński, Janusz, 2024. "Capturing the timing of crisis evolution: A machine learning and directional wavelet coherence approach to isolating event-specific uncertainty using Google searches with an application to COVID-19," Technological Forecasting and Social Change, Elsevier, vol. 205(C).
- Chatum Sankalpa & Somsak Kittipiyakul & Seksan Laitrakun, 2022. "Forecasting Short-Term Electricity Load Using Validated Ensemble Learning," Energies, MDPI, vol. 15(22), pages 1-30, November.
- A. Vamsikrishna & E. V. Gijo, 2024. "New Techniques to Perform Cross-Validation for Time Series Models," SN Operations Research Forum, Springer, vol. 5(2), pages 1-12, June.
- Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
- Mutele, Litshedzani & Carranza, Emmanuel John M., 2024. "Statistical analysis of gold production in South Africa using ARIMA, VAR and ARNN modelling techniques: Extrapolating future gold production, Resources–Reserves depletion, and Implication on South Afr," Resources Policy, Elsevier, vol. 93(C).
- Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
- Awe, Olushina Olawale & Dias, Ronaldo, 2022. "Comparative Analysis of ARIMA and Artificial Neural Network Techniques for Forecasting Non-Stationary Agricultural Output Time Series," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
- Filip Staněk, 2023. "Optimal out‐of‐sample forecast evaluation under stationarity," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 2249-2279, December.
- Schnaubelt, Matthias, 2019. "A comparison of machine learning model validation schemes for non-stationary time series data," FAU Discussion Papers in Economics 11/2019, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2020. "Longer-Term Forecasting of Excess Stock Returns—The Five-Year Case," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
- Pierre Chatelain & Stéphane Loisel, 2021. "Subsidence and household insurances in France : geolocated data and insurability," Working Papers hal-03791154, HAL.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Gerrard, Russell & Hiabu, Munir & Nielsen, Jens Perch & Vodička, Peter, 2020. "Long-term real dynamic investment planning," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 90-103.
- Deng, Ai, 2023. "Time series cross validation: A theoretical result and finite sample performance," Economics Letters, Elsevier, vol. 233(C).
- Wang,Dieter & Andree,Bo Pieter Johannes & Chamorro Elizondo,Andres Fernando & Spencer,Phoebe Girouard, 2020. "Stochastic Modeling of Food Insecurity," Policy Research Working Paper Series 9413, The World Bank.
- Habibeh Sharifi & Abbas Roozbahani & Seied Mehdy Hashemy Shahdany, 2021. "Evaluating the Performance of Agricultural Water Distribution Systems Using FIS, ANN and ANFIS Intelligent Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(6), pages 1797-1816, April.
- M. Avellaneda & T. N. Li & A. Papanicolaou & G. Wang, 2021. "Trading Signals In VIX Futures," Papers 2103.02016, arXiv.org, revised Nov 2021.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Krzysztof Drachal, 2018. "Some Novel Bayesian Model Combination Schemes: An Application to Commodities Prices," Sustainability, MDPI, vol. 10(8), pages 1-27, August.
- Ioannis Kyriakou & Parastoo Mousavi & Jens Perch Nielsen & Michael Scholz, 2019. "Machine Learning for Forecasting Excess Stock Returns The Five-Year-View," Graz Economics Papers 2019-06, University of Graz, Department of Economics.
- Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Papers 2008.00124, arXiv.org.
- Javad Shafiee Neyestanak & Abbas Roozbahani, 2021. "Comprehensive Risk Assessment of Urban Wastewater Reuse in Water Supply Alternatives Using Hybrid Bayesian Network Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(14), pages 5049-5072, November.
- Hirk, Rainer & Vana, Laura & Hornik, Kurt, 2022. "A corporate credit rating model with autoregressive errors," Journal of Empirical Finance, Elsevier, vol. 69(C), pages 224-240.
- Renata Graf & Viktor Vyshnevskyi, 2022. "Forecasting Monthly River Flows in Ukraine under Different Climatic Conditions," Resources, MDPI, vol. 11(12), pages 1-24, November.
- Pablo Montero-Manso & Rob J Hyndman, 2020.
"Principles and Algorithms for Forecasting Groups of Time Series: Locality and Globality,"
Monash Econometrics and Business Statistics Working Papers
45/20, Monash University, Department of Econometrics and Business Statistics.
- Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018.
"Crude oil price forecasting based on internet concern using an extreme learning machine,"
International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
Cited by:
- Xu, Yan & Liu, Tianli & Du, Pei, 2024. "Volatility forecasting of crude oil futures based on Bi-LSTM-Attention model: The dynamic role of the COVID-19 pandemic and the Russian-Ukrainian conflict," Resources Policy, Elsevier, vol. 88(C).
- Li, Jingjing & Tang, Ling & Wang, Shouyang, 2020. "Forecasting crude oil price with multilingual search engine data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 551(C).
- Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
- Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
- Yun Bai & Xixi Li & Hao Yu & Suling Jia, 2020. "Crude oil price forecasting incorporating news text," Papers 2002.02010, arXiv.org, revised Jul 2021.
- Onur Enginar & Kazim Baris Atici, 2022. "Optimal forecast error as an unbiased estimator of abnormal return: A proposition," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 158-166, January.
- Kumar, Sourabh & Kumar Barua, Mukesh, 2022. "Modeling and investigating the interaction among risk factors of the sustainable petroleum supply chain," Resources Policy, Elsevier, vol. 79(C).
- Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
- Artemisa Zaragoza-Ibarra & Gerardo G. Alfaro-Calderón & Víctor G. Alfaro-García & Fernando Ornelas-Tellez & Rodrigo Gómez-Monge, 2021. "A machine learning model of national competitiveness with regional statistics of public expenditure," Computational and Mathematical Organization Theory, Springer, vol. 27(4), pages 451-468, December.
- Taiyong Li & Yingrui Zhou & Xinsheng Li & Jiang Wu & Ting He, 2019. "Forecasting Daily Crude Oil Prices Using Improved CEEMDAN and Ridge Regression-Based Predictors," Energies, MDPI, vol. 12(19), pages 1-25, September.
- Abdollahi, Hooman, 2020. "A novel hybrid model for forecasting crude oil price based on time series decomposition," Applied Energy, Elsevier, vol. 267(C).
- Yuntong Liu & Yu Wei & Yi Liu & Wenjuan Li, 2020. "Forecasting Oil Price by Hierarchical Shrinkage in Dynamic Parameter Models," Discrete Dynamics in Nature and Society, Hindawi, vol. 2020, pages 1-12, December.
- Xu, Kunliang & Wang, Weiqing, 2023. "Limited information limits accuracy: Whether ensemble empirical mode decomposition improves crude oil spot price prediction?," International Review of Financial Analysis, Elsevier, vol. 87(C).
- Lu, Xinjie & Ma, Feng & Xu, Jin & Zhang, Zehui, 2022. "Oil futures volatility predictability: New evidence based on machine learning models11All the authors contribute to the paper equally," International Review of Financial Analysis, Elsevier, vol. 83(C).
- Wang, Xuerui & Li, Xiangyu & Li, Shaoting, 2022. "Point and interval forecasting system for crude oil price based on complete ensemble extreme-point symmetric mode decomposition with adaptive noise and intelligent optimization algorithm," Applied Energy, Elsevier, vol. 328(C).
- Karasu, Seçkin & Altan, Aytaç & Bekiros, Stelios & Ahmad, Wasim, 2020. "A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series," Energy, Elsevier, vol. 212(C).
- Guan, Keqin & Gong, Xu, 2023. "A new hybrid deep learning model for monthly oil prices forecasting," Energy Economics, Elsevier, vol. 128(C).
- Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
- Ma, Rui & Mao, Di & Cao, Dongmei & Luo, Shuai & Gupta, Suraksha & Wang, Yichuan, 2024. "From vineyard to table: Uncovering wine quality for sales management through machine learning," Journal of Business Research, Elsevier, vol. 176(C).
- Haukvik, Nicole & Cheraghali, Hamid & Molnár, Peter, 2024. "The role of investors’ fear in crude oil volatility forecasting," Research in International Business and Finance, Elsevier, vol. 70(PB).
- Li, Mingchen & Cheng, Zishu & Lin, Wencan & Wei, Yunjie & Wang, Shouyang, 2023. "What can be learned from the historical trend of crude oil prices? An ensemble approach for crude oil price forecasting," Energy Economics, Elsevier, vol. 123(C).
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Jin Shao & Lean Yu & Jingke Hong & Xianzhu Wang, 2025. "Forecasting house price index with social media sentiment: A decomposition–ensemble approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 44(1), pages 216-241, January.
- Li Jingjing & Tang Ling & Li Ling, 2020. "The Co-Movements Between Crude Oil Price and Internet Concerns: Causality Analysis in the Frequency Domain," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 224-239, June.
- He, Kaijian & Tso, Geoffrey K.F. & Zou, Yingchao & Liu, Jia, 2018. "Crude oil risk forecasting: New evidence from multiscale analysis approach," Energy Economics, Elsevier, vol. 76(C), pages 574-583.
- Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
- Parisa Foroutan & Salim Lahmiri, 2024. "Deep learning systems for forecasting the prices of crude oil and precious metals," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-40, December.
- Maghyereh, Aktham & Awartani, Basel & Abdoh, Hussein, 2020. "The effects of investor emotions sentiments on crude oil returns: A time and frequency dynamics analysis," International Economics, Elsevier, vol. 162(C), pages 110-124.
- Zhao, Lu-Tao & Xing, Yue-Yue & Zhao, Qiu-Rong & Chen, Xue-Hui, 2023. "Dynamic impacts of online investor sentiment on international crude oil prices," Resources Policy, Elsevier, vol. 82(C).
- Hassanniakalager, Arman & Baker, Paul L. & Platanakis, Emmanouil, 2024. "A False Discovery Rate approach to optimal volatility forecasting model selection," International Journal of Forecasting, Elsevier, vol. 40(3), pages 881-902.
- Zhang, Yaojie & He, Mengxi & Wen, Danyan & Wang, Yudong, 2023. "Forecasting crude oil price returns: Can nonlinearity help?," Energy, Elsevier, vol. 262(PB).
- Guo, Jingjun & Zhao, Zhengling & Sun, Jingyun & Sun, Shaolong, 2022. "Multi-perspective crude oil price forecasting with a new decomposition-ensemble framework," Resources Policy, Elsevier, vol. 77(C).
- Öztunç Kaymak, Öznur & Kaymak, Yiğit, 2022. "Prediction of crude oil prices in COVID-19 outbreak using real data," Chaos, Solitons & Fractals, Elsevier, vol. 158(C).
- Xu, Kunliang & Niu, Hongli, 2023. "Denoising or distortion: Does decomposition-reconstruction modeling paradigm provide a reliable prediction for crude oil price time series?," Energy Economics, Elsevier, vol. 128(C).
- Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
- Bai, Yun & Li, Xixi & Yu, Hao & Jia, Suling, 2022. "Crude oil price forecasting incorporating news text," International Journal of Forecasting, Elsevier, vol. 38(1), pages 367-383.
- Athanasia Dimitriadou & Periklis Gogas & Theophilos Papadimitriou & Vasilios Plakandaras, 2018. "Oil Market Efficiency under a Machine Learning Perspective," Forecasting, MDPI, vol. 1(1), pages 1-12, October.
- Bo Zeng & Shuliang Li & Wei Meng & Dehai Zhang, 2019. "An improved gray prediction model for China’s beef consumption forecasting," PLOS ONE, Public Library of Science, vol. 14(9), pages 1-18, September.
- Lu-Tao Zhao & Guan-Rong Zeng & Wen-Jing Wang & Zhi-Gang Zhang, 2019. "Forecasting Oil Price Using Web-based Sentiment Analysis," Energies, MDPI, vol. 12(22), pages 1-18, November.
- Asit Kumar Das & Debahuti Mishra & Kaberi Das & Pradeep Kumar Mallick & Sachin Kumar & Mikhail Zymbler & Hesham El-Sayed, 2022. "Prophesying the Short-Term Dynamics of the Crude Oil Future Price by Adopting the Survival of the Fittest Principle of Improved Grey Optimization and Extreme Learning Machine," Mathematics, MDPI, vol. 10(7), pages 1-33, March.
- Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
- Liang, Xuedong & Luo, Peng & Li, Xiaoyan & Wang, Xia & Shu, Lingli, 2023. "Crude oil price prediction using deep reinforcement learning," Resources Policy, Elsevier, vol. 81(C).
- Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
- Gil, Cohen, 2022. "Intraday Trading of Precious Metals Futures Using Algorithmic Systems," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
- Jiang Wu & Feng Miu & Taiyong Li, 2020. "Daily Crude Oil Price Forecasting Based on Improved CEEMDAN, SCA, and RVFL: A Case Study in WTI Oil Market," Energies, MDPI, vol. 13(7), pages 1-20, April.
- Elsayed, Ahmed H. & Billah, Mabruk & Goodell, John W. & Hadhri, Sinda, 2024. "Examining connections between the fourth industrial revolution and energy markets," Energy Economics, Elsevier, vol. 133(C).
- Sun, Chuanwang & Min, Jialin & Sun, Jiacheng & Gong, Xu, 2023. "The role of China's crude oil futures in world oil futures market and China's financial market," Energy Economics, Elsevier, vol. 120(C).
- Jiajie Tang & Jie Zhao & Hongliang Zou & Gaoyuan Ma & Jun Wu & Xu Jiang & Huaixun Zhang, 2021. "Bus Load Forecasting Method of Power System Based on VMD and Bi-LSTM," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
- Qing Peng & Fenghua Wen & Xu Gong, 2021. "Time‐dependent intrinsic correlation analysis of crude oil and the US dollar based on CEEMDAN," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 834-848, January.
- Hao, Jun & Feng, Qianqian & Yuan, Jiaxin & Sun, Xiaolei & Li, Jianping, 2022. "A dynamic ensemble learning with multi-objective optimization for oil prices prediction," Resources Policy, Elsevier, vol. 79(C).
- Petropoulos, Fotios & Hyndman, Rob J. & Bergmeir, Christoph, 2018.
"Exploring the sources of uncertainty: Why does bagging for time series forecasting work?,"
European Journal of Operational Research, Elsevier, vol. 268(2), pages 545-554.
Cited by:
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
- Rajapaksha, Dilini & Bergmeir, Christoph & Hyndman, Rob J., 2023. "LoMEF: A framework to produce local explanations for global model time series forecasts," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1424-1447.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Wang, Jue & Wang, Zhen & Li, Xiang & Zhou, Hao, 2022. "Artificial bee colony-based combination approach to forecasting agricultural commodity prices," International Journal of Forecasting, Elsevier, vol. 38(1), pages 21-34.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
- Li, Li & Kang, Yanfei & Li, Feng, 2023.
"Bayesian forecast combination using time-varying features,"
International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
- Li Li & Yanfei Kang & Feng Li, 2021. "Bayesian forecast combination using time-varying features," Papers 2108.02082, arXiv.org, revised Jun 2022.
- Spiliotis, Evangelos & Petropoulos, Fotios, 2024. "On the update frequency of univariate forecasting models," European Journal of Operational Research, Elsevier, vol. 314(1), pages 111-121.
- Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
- Ji Wu & Xian Cheng & Stephen Shaoyi Liao, 2020. "Tourism forecast combination using the stochastic frontier analysis technique," Tourism Economics, , vol. 26(7), pages 1086-1107, November.
- Silvia Golia & Luigi Grossi & Matteo Pelagatti, 2022. "Machine Learning Models and Intra-Daily Market Information for the Prediction of Italian Electricity Prices," Forecasting, MDPI, vol. 5(1), pages 1-21, December.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2021. "Point and interval forecasting of electricity supply via pruned ensembles," Energy, Elsevier, vol. 232(C).
- Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
- Pedro Henrique Melo Albuquerque & Yaohao Peng & João Pedro Fontoura da Silva, 2022. "Making the whole greater than the sum of its parts: A literature review of ensemble methods for financial time series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(8), pages 1701-1724, December.
- Wang, Lu & Wu, Rui & Ma, WeiChun & Xu, Weiju, 2023. "Examining the volatility of soybean market in the MIDAS framework: The importance of bagging-based weather information," International Review of Financial Analysis, Elsevier, vol. 89(C).
- Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
- Swaminathan, Kritika & Venkitasubramony, Rakesh, 2024. "Demand forecasting for fashion products: A systematic review," International Journal of Forecasting, Elsevier, vol. 40(1), pages 247-267.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Lyu, Zhichong & Ma, Feng & Zhang, Jixiang, 2023. "Oil futures volatility prediction: Bagging or combination?," International Review of Economics & Finance, Elsevier, vol. 87(C), pages 457-467.
- Spiliotis, Evangelos & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Generalizing the Theta method for automatic forecasting," European Journal of Operational Research, Elsevier, vol. 284(2), pages 550-558.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Winita Sulandari & Yudho Yudhanto & Paulo Canas Rodrigues, 2022. "The Use of Singular Spectrum Analysis and K-Means Clustering-Based Bootstrap to Improve Multistep Ahead Load Forecasting," Energies, MDPI, vol. 15(16), pages 1-22, August.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
- Bhatia, Kushagra & Mittal, Rajat & Varanasi, Jyothi & Tripathi, M.M., 2021. "An ensemble approach for electricity price forecasting in markets with renewable energy resources," Utilities Policy, Elsevier, vol. 70(C).
- Chen, Guojin & Liu, Yanzhen & Zhang, Yu, 2021. "Systemic risk measures and distribution forecasting of macroeconomic shocks," International Review of Economics & Finance, Elsevier, vol. 75(C), pages 178-196.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Talagala, Thiyanga S. & Li, Feng & Kang, Yanfei, 2022. "FFORMPP: Feature-based forecast model performance prediction," International Journal of Forecasting, Elsevier, vol. 38(3), pages 920-943.
- Sen, Doruk & Tunç, K.M. Murat & Günay, M. Erdem, 2021. "Forecasting electricity consumption of OECD countries: A global machine learning modeling approach," Utilities Policy, Elsevier, vol. 70(C).
- Dantas, Tiago Mendes & Cyrino Oliveira, Fernando Luiz, 2018. "Improving time series forecasting: An approach combining bootstrap aggregation, clusters and exponential smoothing," International Journal of Forecasting, Elsevier, vol. 34(4), pages 748-761.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Leonardo Brain García Fernández & Anna Diva Plasencia Lotufo & Carlos Roberto Minussi, 2023. "Development of a Short-Term Electrical Load Forecasting in Disaggregated Levels Using a Hybrid Modified Fuzzy-ARTMAP Strategy," Energies, MDPI, vol. 16(10), pages 1-30, May.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "The M5 competition: Background, organization, and implementation," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1325-1336.
- Paul Goodwin & Fotios Petropoulos & Rob J. Hyndman, 2017.
"A note on upper bounds for forecast-value-added relative to naïve forecasts,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(9), pages 1082-1084, September.
Cited by:
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017.
"Visualising forecasting algorithm performance using time series instance spaces,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
See citations under working paper version above.
- Yanfei Kang & Rob J. Hyndman & Kate Smith-Miles, 2016. "Visualising forecasting Algorithm Performance using Time Series Instance Spaces," Monash Econometrics and Business Statistics Working Papers 10/16, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017.
"Forecasting with temporal hierarchies,"
European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
See citations under working paper version above.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016.
"Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
Cited by:
- Özen, Kadir & Yıldırım, Dilem, 2021. "Application of bagging in day-ahead electricity price forecasting and factor augmentation," Energy Economics, Elsevier, vol. 103(C).
- Taillardat, Maxime & Fougères, Anne-Laure & Naveau, Philippe & de Fondeville, Raphaël, 2023. "Evaluating probabilistic forecasts of extremes using continuous ranked probability score distributions," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1448-1459.
- Yusen Wang & Wenlong Liao & Yuqing Chang, 2018. "Gated Recurrent Unit Network-Based Short-Term Photovoltaic Forecasting," Energies, MDPI, vol. 11(8), pages 1-14, August.
- Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Li, Rui & Reich, Brian J. & Bondell, Howard D., 2021. "Deep distribution regression," Computational Statistics & Data Analysis, Elsevier, vol. 159(C).
- Dimoulkas, I. & Mazidi, P. & Herre, L., 2019. "Neural networks for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1409-1423.
- Hyndman, Rob J., 2020.
"A brief history of forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
- Rob J Hyndman, 2019. "A Brief History of Forecasting Competitions," Monash Econometrics and Business Statistics Working Papers 3/19, Monash University, Department of Econometrics and Business Statistics.
- Ricardo J. Bessa & Corinna Möhrlen & Vanessa Fundel & Malte Siefert & Jethro Browell & Sebastian Haglund El Gaidi & Bri-Mathias Hodge & Umit Cali & George Kariniotakis, 2017. "Towards Improved Understanding of the Applicability of Uncertainty Forecasts in the Electric Power Industry," Energies, MDPI, vol. 10(9), pages 1-48, September.
- Nikolaos Kolokas & Dimosthenis Ioannidis & Dimitrios Tzovaras, 2021. "Multi-Step Energy Demand and Generation Forecasting with Confidence Used for Specification-Free Aggregate Demand Optimization," Energies, MDPI, vol. 14(11), pages 1-36, May.
- Nagy, Gábor I. & Barta, Gergő & Kazi, Sándor & Borbély, Gyula & Simon, Gábor, 2016. "GEFCom2014: Probabilistic solar and wind power forecasting using a generalized additive tree ensemble approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1087-1093.
- Simon Hirsch & Jonathan Berrisch & Florian Ziel, 2024. "Online Distributional Regression," Papers 2407.08750, arXiv.org, revised Aug 2024.
- Mónica Borunda & Katya Rodríguez-Vázquez & Raul Garduno-Ramirez & Javier de la Cruz-Soto & Javier Antunez-Estrada & Oscar A. Jaramillo, 2020. "Long-Term Estimation of Wind Power by Probabilistic Forecast Using Genetic Programming," Energies, MDPI, vol. 13(8), pages 1-24, April.
- Jens Hönen & Johann L. Hurink & Bert Zwart, 2023. "A classification scheme for local energy trading," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 45(1), pages 85-118, March.
- Bartosz Uniejewski & Jakub Nowotarski & Rafał Weron, 2016.
"Automated Variable Selection and Shrinkage for Day-Ahead Electricity Price Forecasting,"
Energies, MDPI, vol. 9(8), pages 1-22, August.
- Bartosz Uniejewski & Jakub Nowotarski & Rafal Weron, 2016. "Automated variable selection and shrinkage for day-ahead electricity price forecasting," HSC Research Reports HSC/16/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Cameron Roach & Rob J Hyndman & Souhaib Ben Taieb, 2020.
"Nonlinear Mixed Effects Models for Time Series Forecasting of Smart Meter Demand,"
Monash Econometrics and Business Statistics Working Papers
41/20, Monash University, Department of Econometrics and Business Statistics.
- Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
- Grzegorz Marcjasz & Tomasz Serafin & Rafal Weron, 2018.
"Selection of calibration windows for day-ahead electricity price forecasting,"
HSC Research Reports
HSC/18/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting with NARX neural networks," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1520-1532.
- Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Saxena, Harshit & Aponte, Omar & McConky, Katie T., 2019. "A hybrid machine learning model for forecasting a billing period’s peak electric load days," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1288-1303.
- Luis Gonzaga Baca Ruiz & Manuel Pegalajar Cuéllar & Miguel Delgado Calvo-Flores & María Del Carmen Pegalajar Jiménez, 2016. "An Application of Non-Linear Autoregressive Neural Networks to Predict Energy Consumption in Public Buildings," Energies, MDPI, vol. 9(9), pages 1-21, August.
- Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
- Uniejewski, Bartosz & Weron, Rafał, 2021.
"Regularized quantile regression averaging for probabilistic electricity price forecasting,"
Energy Economics, Elsevier, vol. 95(C).
- Bartosz Uniejewski & Rafal Weron, 2019. "Regularized Quantile Regression Averaging for probabilistic electricity price forecasting," HSC Research Reports HSC/19/04, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- López Cabrera, Brenda & Schulz, Franziska, 2016. "Time-adaptive probabilistic forecasts of electricity spot prices with application to risk management," SFB 649 Discussion Papers 2016-035, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Léonard Tschora & Erwan Pierre & Marc Plantevit & Céline Robardet, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Post-Print hal-03621974, HAL.
- Xie, Jingrui & Hong, Tao, 2016. "GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1012-1016.
- Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
- Grzegorz Marcjasz & Micha{l} Narajewski & Rafa{l} Weron & Florian Ziel, 2022.
"Distributional neural networks for electricity price forecasting,"
Papers
2207.02832, arXiv.org, revised Dec 2022.
- Marcjasz, Grzegorz & Narajewski, Michał & Weron, Rafał & Ziel, Florian, 2023. "Distributional neural networks for electricity price forecasting," Energy Economics, Elsevier, vol. 125(C).
- Xu, Lei & Wang, Shengwei & Tang, Rui, 2019. "Probabilistic load forecasting for buildings considering weather forecasting uncertainty and uncertain peak load," Applied Energy, Elsevier, vol. 237(C), pages 180-195.
- Romain Dupin & Laura Cavalcante & Ricardo J. Bessa & Georges Kariniotakis & Andrea Michiorri, 2020. "Extreme Quantiles Dynamic Line Rating Forecasts and Application on Network Operation," Energies, MDPI, vol. 13(12), pages 1-21, June.
- Ping-Huan Kuo & Chiou-Jye Huang, 2018. "A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model," Energies, MDPI, vol. 11(4), pages 1-15, April.
- Huangjie Gong & Rosemary E. Alden & Aron Patrick & Dan M. Ionel, 2022. "Forecast of Community Total Electric Load and HVAC Component Disaggregation through a New LSTM-Based Method," Energies, MDPI, vol. 15(9), pages 1-17, April.
- Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
- Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
- Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
- Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
- Grossi, Luigi & Nan, Fany, 2019. "Robust forecasting of electricity prices: Simulations, models and the impact of renewable sources," Technological Forecasting and Social Change, Elsevier, vol. 141(C), pages 305-318.
- Olivares, Kin G. & Challu, Cristian & Marcjasz, Grzegorz & Weron, Rafał & Dubrawski, Artur, 2023.
"Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 884-900.
- Kin G. Olivares & Cristian Challu & Grzegorz Marcjasz & Rafal Weron & Artur Dubrawski, 2021. "Neural basis expansion analysis with exogenous variables: Forecasting electricity prices with NBEATSx," WORking papers in Management Science (WORMS) WORMS/21/07, Department of Operations Research and Business Intelligence, Wroclaw University of Science and Technology.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
- Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
- Chen, Fuhao & Yan, Jie & Liu, Yongqian & Yan, Yamin & Tjernberg, Lina Bertling, 2024. "A novel meta-learning approach for few-shot short-term wind power forecasting," Applied Energy, Elsevier, vol. 362(C).
- Dordonnat, V. & Pichavant, A. & Pierrot, A., 2016. "GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1005-1011.
- Ruhnau, Oliver & Hennig, Patrick & Madlener, Reinhard, 2020. "Economic implications of forecasting electricity generation from variable renewable energy sources," Renewable Energy, Elsevier, vol. 161(C), pages 1318-1327.
- Derek W. Bunn & Angelica Gianfreda & Stefan Kermer, 2018. "A Trading-Based Evaluation of Density Forecasts in a Real-Time Electricity Market," Energies, MDPI, vol. 11(10), pages 1-13, October.
- Kannika Duangnate & James W. Mjelde, 2020. "Prequential forecasting in the presence of structure breaks in natural gas spot markets," Empirical Economics, Springer, vol. 59(5), pages 2363-2384, November.
- He, Yaoyao & Cao, Chaojin & Wang, Shuo & Fu, Hong, 2022. "Nonparametric probabilistic load forecasting based on quantile combination in electrical power systems," Applied Energy, Elsevier, vol. 322(C).
- Wang, Wenting & Yang, Dazhi & Huang, Nantian & Lyu, Chao & Zhang, Gang & Han, Xueying, 2022. "Irradiance-to-power conversion based on physical model chain: An application on the optimal configuration of multi-energy microgrid in cold climate," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Santiago Moreno-Carbonell & Eugenio F. Sánchez-Úbeda & Antonio Muñoz, 2020. "Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change," Energies, MDPI, vol. 13(7), pages 1-28, March.
- Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Bartosz Uniejewski & Rafal Weron & Florian Ziel, 2017. "Variance stabilizing transformations for electricity spot price forecasting," HSC Research Reports HSC/17/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Luigi Grossi & Fany Nan, 2017. "Forecasting electricity prices through robust nonlinear models," Working Papers 06/2017, University of Verona, Department of Economics.
- Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2020. "Predictive Trading Strategy for Physical Electricity Futures," Energies, MDPI, vol. 13(14), pages 1-24, July.
- Ricardo Aler & Javier Huertas-Tato & José M. Valls & Inés M. Galván, 2019. "Improving Prediction Intervals Using Measured Solar Power with a Multi-Objective Approach," Energies, MDPI, vol. 12(24), pages 1-19, December.
- Marc Garnica-Caparrós & Daniel Memmert & Fabian Wunderlich, 2022. "Artificial data in sports forecasting: a simulation framework for analysing predictive models in sports," Information Systems and e-Business Management, Springer, vol. 20(3), pages 551-580, September.
- Kath, Christopher & Ziel, Florian, 2021. "Conformal prediction interval estimation and applications to day-ahead and intraday power markets," International Journal of Forecasting, Elsevier, vol. 37(2), pages 777-799.
- Wen, Honglin & Pinson, Pierre & Gu, Jie & Jin, Zhijian, 2024. "Wind energy forecasting with missing values within a fully conditional specification framework," International Journal of Forecasting, Elsevier, vol. 40(1), pages 77-95.
- Dong, Yingchao & Zhang, Hongli & Wang, Cong & Zhou, Xiaojun, 2021. "A novel hybrid model based on Bernstein polynomial with mixture of Gaussians for wind power forecasting," Applied Energy, Elsevier, vol. 286(C).
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," Applied Energy, Elsevier, vol. 301(C).
- Deakin, Matthew & Bloomfield, Hannah & Greenwood, David & Sheehy, Sarah & Walker, Sara & Taylor, Phil C., 2021. "Impacts of heat decarbonization on system adequacy considering increased meteorological sensitivity," Applied Energy, Elsevier, vol. 298(C).
- Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
- Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
- Grzegorz Marcjasz, 2020. "Forecasting Electricity Prices Using Deep Neural Networks: A Robust Hyper-Parameter Selection Scheme," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
- Fatemi, Seyyed A. & Kuh, Anthony & Fripp, Matthias, 2018. "Parametric methods for probabilistic forecasting of solar irradiance," Renewable Energy, Elsevier, vol. 129(PA), pages 666-676.
- Wang, Wei & Feng, Bin & Huang, Gang & Guo, Chuangxin & Liao, Wenlong & Chen, Zhe, 2023. "Conformal asymmetric multi-quantile generative transformer for day-ahead wind power interval prediction," Applied Energy, Elsevier, vol. 333(C).
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Işık, Cem & Kuziboev, Bekhzod & Ongan, Serdar & Saidmamatov, Olimjon & Mirkhoshimova, Mokhirakhon & Rajabov, Alibek, 2024. "The volatility of global energy uncertainty: Renewable alternatives," Energy, Elsevier, vol. 297(C).
- Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
- Haben, Stephen & Giasemidis, Georgios, 2016. "A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1017-1022.
- Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2018.
"Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?,"
HSC Research Reports
HSC/18/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Marcjasz, Grzegorz & Uniejewski, Bartosz & Weron, Rafał, 2020. "Probabilistic electricity price forecasting with NARX networks: Combine point or probabilistic forecasts?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 466-479.
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Ulrich Gunter & Irem Önder & Egon Smeral, 2020. "Are Combined Tourism Forecasts Better at Minimizing Forecasting Errors?," Forecasting, MDPI, vol. 2(3), pages 1-19, June.
- Nowotarski, Jakub & Weron, Rafał, 2016.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting,"
Energy Economics, Elsevier, vol. 57(C), pages 228-235.
- Jakub Nowotarski & Rafal Weron, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," HSC Research Reports HSC/16/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & de Oliveira, Glauber C. & Barbosa, Alexandre C. & Pereira, Leo & de Freitas, Alan & Santos, Haroldo G. & Ochi, Luis S. & Guimarães, Frederico G., 2017. "A communitarian microgrid storage planning system inside the scope of a smart city," Applied Energy, Elsevier, vol. 201(C), pages 371-381.
- Florian Ziel & Kevin Berk, 2019. "Multivariate Forecasting Evaluation: On Sensitive and Strictly Proper Scoring Rules," Papers 1910.07325, arXiv.org.
- Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
- González-Ordiano, Jorge Ángel & Mühlpfordt, Tillmann & Braun, Eric & Liu, Jianlei & Çakmak, Hüseyin & Kühnapfel, Uwe & Düpmeier, Clemens & Waczowicz, Simon & Faulwasser, Timm & Mikut, Ralf & Hagenmeye, 2021. "Probabilistic forecasts of the distribution grid state using data-driven forecasts and probabilistic power flow," Applied Energy, Elsevier, vol. 302(C).
- Tahir Miriyev & Alessandro Contu & Kevin Schafers & Ion Gabriel Ion, 2020. "Hybrid Modelling Approaches for Forecasting Energy Spot Prices in EPEC market," Papers 2010.08400, arXiv.org.
- Mangalova, Ekaterina & Shesterneva, Olesya, 2016. "K-nearest neighbors for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1067-1073.
- Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
- Florian Ziel & Rick Steinert, 2017. "Probabilistic Mid- and Long-Term Electricity Price Forecasting," Papers 1703.10806, arXiv.org, revised May 2018.
- Rodrigo A. de Marcos & Derek W. Bunn & Antonio Bello & Javier Reneses, 2020. "Short-Term Electricity Price Forecasting with Recurrent Regimes and Structural Breaks," Energies, MDPI, vol. 13(20), pages 1-14, October.
- Florian Ziel & Rafal Weron, 2018.
"Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks,"
Papers
1805.06649, arXiv.org.
- Ziel, Florian & Weron, Rafał, 2018. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate modeling frameworks," Energy Economics, Elsevier, vol. 70(C), pages 396-420.
- Salimian Rizi, Behzad & Pavlak, Gregory & Cushing, Vincent & Heidarinejad, Mohammad, 2023. "Predicting uncertainty of a chiller plant power consumption using quantile random forest: A commercial building case study," Energy, Elsevier, vol. 283(C).
- Wang, Wenting & Guo, Yufeng & Yang, Dazhi & Zhang, Zili & Kleissl, Jan & van der Meer, Dennis & Yang, Guoming & Hong, Tao & Liu, Bai & Huang, Nantian & Mayer, Martin János, 2024. "Economics of physics-based solar forecasting in power system day-ahead scheduling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
- Yuri S. Popkov & Alexey Yu. Popkov & Yuri A. Dubnov & Dimitri Solomatine, 2020. "Entropy-Randomized Forecasting of Stochastic Dynamic Regression Models," Mathematics, MDPI, vol. 8(7), pages 1-20, July.
- de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "Predicting/hypothesizing the findings of the M5 competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1337-1345.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Jesus Lago & Grzegorz Marcjasz & Bart De Schutter & Rafa{l} Weron, 2020.
"Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark,"
Papers
2008.08004, arXiv.org, revised Dec 2020.
- Lago, Jesus & Marcjasz, Grzegorz & De Schutter, Bart & Weron, Rafał, 2021. "Forecasting day-ahead electricity prices: A review of state-of-the-art algorithms, best practices and an open-access benchmark," Applied Energy, Elsevier, vol. 293(C).
- Dudek, Grzegorz, 2016. "Multilayer perceptron for GEFCom2014 probabilistic electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1057-1060.
- Berk, K. & Hoffmann, A. & Müller, A., 2018. "Probabilistic forecasting of industrial electricity load with regime switching behavior," International Journal of Forecasting, Elsevier, vol. 34(2), pages 147-162.
- Yang Hu & Yilin Qiao & Jingchun Chu & Ling Yuan & Lei Pan, 2019. "Joint Point-Interval Prediction and Optimization of Wind Power Considering the Sequential Uncertainties of Stepwise Procedure," Energies, MDPI, vol. 12(11), pages 1-21, June.
- Happy Aprillia & Hong-Tzer Yang & Chao-Ming Huang, 2020. "Short-Term Photovoltaic Power Forecasting Using a Convolutional Neural Network–Salp Swarm Algorithm," Energies, MDPI, vol. 13(8), pages 1-20, April.
- Ming-Wei Li & Jing Geng & Wei-Chiang Hong & Yang Zhang, 2018. "Hybridizing Chaotic and Quantum Mechanisms and Fruit Fly Optimization Algorithm with Least Squares Support Vector Regression Model in Electric Load Forecasting," Energies, MDPI, vol. 11(9), pages 1, August.
- Raja, Aitazaz Ali & Pinson, Pierre & Kazempour, Jalal & Grammatico, Sergio, 2024. "A market for trading forecasts: A wagering mechanism," International Journal of Forecasting, Elsevier, vol. 40(1), pages 142-159.
- Jurasz, Jakub & Mikulik, Jerzy & Krzywda, Magdalena & Ciapała, Bartłomiej & Janowski, Mirosław, 2018. "Integrating a wind- and solar-powered hybrid to the power system by coupling it with a hydroelectric power station with pumping installation," Energy, Elsevier, vol. 144(C), pages 549-563.
- Caston Sigauke & Murendeni Maurel Nemukula & Daniel Maposa, 2018. "Probabilistic Hourly Load Forecasting Using Additive Quantile Regression Models," Energies, MDPI, vol. 11(9), pages 1-21, August.
- Zhang, Yao & Wang, Jianxue, 2016. "K-nearest neighbors and a kernel density estimator for GEFCom2014 probabilistic wind power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1074-1080.
- Ziel, Florian & Liu, Bidong, 2016. "Lasso estimation for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1029-1037.
- Huang, Jing & Perry, Matthew, 2016. "A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1081-1086.
- Maciejowska, Katarzyna & Nowotarski, Jakub, 2016.
"A hybrid model for GEFCom2014 probabilistic electricity price forecasting,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 1051-1056.
- Katarzyna Maciejowska & Jakub Nowotarski, 2015. "A hybrid model for GEFCom2014 probabilistic electricity price forecasting," HSC Research Reports HSC/15/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
- Joanna Bruzda, 2020. "Multistep quantile forecasts for supply chain and logistics operations: bootstrapping, the GARCH model and quantile regression based approaches," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(1), pages 309-336, March.
- Huber, Julian & Dann, David & Weinhardt, Christof, 2020. "Probabilistic forecasts of time and energy flexibility in battery electric vehicle charging," Applied Energy, Elsevier, vol. 262(C).
- Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
- Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
- Zheng, Zhuang & Sun, Zhankun & Pan, Jia & Luo, Xiaowei, 2021. "An integrated smart home energy management model based on a pyramid taxonomy for residential houses with photovoltaic-battery systems," Applied Energy, Elsevier, vol. 298(C).
- Karimi, Sajad & Kwon, Soongeol, 2022. "Optimization-driven uncertainty forecasting: Application to day-ahead commitment with renewable energy resources," Applied Energy, Elsevier, vol. 326(C).
- Bartosz Uniejewski & Grzegorz Marcjasz & Rafal Weron, 2017.
"On the importance of the long-term seasonal component in day-ahead electricity price forecasting. Part II – Probabilistic forecasting,"
HSC Research Reports
HSC/17/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Uniejewski, Bartosz & Marcjasz, Grzegorz & Weron, Rafał, 2019. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting: Part II — Probabilistic forecasting," Energy Economics, Elsevier, vol. 79(C), pages 171-182.
- Zhu, Jizhong & Dong, Hanjiang & Zheng, Weiye & Li, Shenglin & Huang, Yanting & Xi, Lei, 2022. "Review and prospect of data-driven techniques for load forecasting in integrated energy systems," Applied Energy, Elsevier, vol. 321(C).
- Sigauke, Caston & Bere, Alphonce, 2017. "Modelling non-stationary time series using a peaks over threshold distribution with time varying covariates and threshold: An application to peak electricity demand," Energy, Elsevier, vol. 119(C), pages 152-166.
- Jakub Nowotarski & Bidong Liu & Rafal Weron & Tao Hong, 2015.
"Improving short term load forecast accuracy via combining sister forecasts,"
HSC Research Reports
HSC/15/05, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- Bracale, Antonio & Carpinelli, Guido & De Falco, Pasquale, 2017. "A new finite mixture distribution and its expectation-maximization procedure for extreme wind speed characterization," Renewable Energy, Elsevier, vol. 113(C), pages 1366-1377.
- Ioannis K. Bazionis & Markos A. Kousounadis-Knudsen & Theodoros Konstantinou & Pavlos S. Georgilakis, 2021. "A WT-LUBE-PSO-CWC Wind Power Probabilistic Forecasting Model for Prediction Interval Construction and Seasonality Analysis," Energies, MDPI, vol. 14(18), pages 1-23, September.
- Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
- Jaržemskis Andrius & Jaržemskienė Ilona, 2022. "European Green Deal Implications on Country Level Energy Consumption," Folia Oeconomica Stetinensia, Sciendo, vol. 22(2), pages 97-122, December.
- Rafal Weron & Florian Ziel, 2018.
"Electricity price forecasting,"
HSC Research Reports
HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Katarzyna Maciejowska & Rafal Weron, 2019. "Electricity price forecasting," HSC Research Reports HSC/19/01, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ma, Long & Huang, Ling & Shi, Huifeng, 2023. "Multi-node wind speed forecasting based on a novel dynamic spatial–temporal graph network," Energy, Elsevier, vol. 285(C).
- Seungbeom Nam & Jin Hur, 2018. "Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models," Energies, MDPI, vol. 11(11), pages 1-15, November.
- Claudio Monteiro & Ignacio J. Ramirez-Rosado & L. Alfredo Fernandez-Jimenez, 2018. "Probabilistic Electricity Price Forecasting Models by Aggregation of Competitive Predictors," Energies, MDPI, vol. 11(5), pages 1-25, April.
- Rafael Sánchez-Durán & Joaquín Luque & Julio Barbancho, 2019. "Long-Term Demand Forecasting in a Scenario of Energy Transition," Energies, MDPI, vol. 12(16), pages 1-23, August.
- Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2022. "Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants," Renewable Energy, Elsevier, vol. 185(C), pages 1062-1077.
- Gilbert, Ciaran & Browell, Jethro & McMillan, David, 2021. "Probabilistic access forecasting for improved offshore operations," International Journal of Forecasting, Elsevier, vol. 37(1), pages 134-150.
- Dong, Xiaochong & Sun, Yingyun & Dong, Lei & Li, Jian & Li, Yan & Di, Lei, 2023. "Transferable wind power probabilistic forecasting based on multi-domain adversarial networks," Energy, Elsevier, vol. 285(C).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
- Cheng, Fenfen & Yang, Shanlin & Zhou, Kaile, 2020. "Quantile partial adjustment model with application to predicting energy demand in China," Energy, Elsevier, vol. 191(C).
- He, Yongda & Lin, Boqiang, 2018. "Forecasting China's total energy demand and its structure using ADL-MIDAS model," Energy, Elsevier, vol. 151(C), pages 420-429.
- Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Mostafa Majidpour & Hamidreza Nazaripouya & Peter Chu & Hemanshu R. Pota & Rajit Gadh, 2018. "Fast Univariate Time Series Prediction of Solar Power for Real-Time Control of Energy Storage System," Forecasting, MDPI, vol. 1(1), pages 1-14, September.
- Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
- Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.
- Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.
- Geovanny Marulanda & Antonio Bello & Jenny Cifuentes & Javier Reneses, 2020. "Wind Power Long-Term Scenario Generation Considering Spatial-Temporal Dependencies in Coupled Electricity Markets," Energies, MDPI, vol. 13(13), pages 1-19, July.
- Stover, Oliver & Nath, Paromita & Karve, Pranav & Mahadevan, Sankaran & Baroud, Hiba, 2024. "Dependence structure learning and joint probabilistic forecasting of stochastic power grid variables," Applied Energy, Elsevier, vol. 357(C).
- Katarzyna Maciejowska & Bartosz Uniejewski & Rafa{l} Weron, 2022. "Forecasting Electricity Prices," Papers 2204.11735, arXiv.org.
- Liu, Tongxiang & Zhao, Qiujun & Wang, Jianzhou & Gao, Yuyang, 2021. "A novel interval forecasting system for uncertainty modeling based on multi-input multi-output theory: A case study on modern wind stations," Renewable Energy, Elsevier, vol. 163(C), pages 88-104.
- Cheng, Lilin & Zang, Haixiang & Wei, Zhinong & Zhang, Fengchun & Sun, Guoqiang, 2022. "Evaluation of opaque deep-learning solar power forecast models towards power-grid applications," Renewable Energy, Elsevier, vol. 198(C), pages 960-972.
- David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Xenophon, Aleksis Kazubiernis & Hill, David John, 2020. "Adaptive mechanisms to refund emissions payments," Applied Energy, Elsevier, vol. 278(C).
- Heinonen, Sirkka & Minkkinen, Matti & Karjalainen, Joni & Inayatullah, Sohail, 2017. "Testing transformative energy scenarios through causal layered analysis gaming," Technological Forecasting and Social Change, Elsevier, vol. 124(C), pages 101-113.
- Stephen Haben & Julien Caudron & Jake Verma, 2021. "Probabilistic Day-Ahead Wholesale Price Forecast: A Case Study in Great Britain," Forecasting, MDPI, vol. 3(3), pages 1-37, August.
- Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
- Xu, Xiuqin & Chen, Ying & Goude, Yannig & Yao, Qiwei, 2021. "Day-ahead probabilistic forecasting for French half-hourly electricity loads and quantiles for curve-to-curve regression," LSE Research Online Documents on Economics 120774, London School of Economics and Political Science, LSE Library.
- González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
- Grzegorz Marcjasz & Bartosz Uniejewski & Rafal Weron, 2017. "Importance of the long-term seasonal component in day-ahead electricity price forecasting revisited: Neural network models," HSC Research Reports HSC/17/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Appino, Riccardo Remo & González Ordiano, Jorge Ángel & Mikut, Ralf & Faulwasser, Timm & Hagenmeyer, Veit, 2018. "On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages," Applied Energy, Elsevier, vol. 210(C), pages 1207-1218.
- Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
- Long Cai & Jie Gu & Jinghuan Ma & Zhijian Jin, 2019. "Probabilistic Wind Power Forecasting Approach via Instance-Based Transfer Learning Embedded Gradient Boosting Decision Trees," Energies, MDPI, vol. 12(1), pages 1-19, January.
- Ruoso, Ana Cristina & Ribeiro, José Luis Duarte & Olaru, Doina, 2024. "Electric vehicles' impact on energy balance: Three-country comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 203(C).
- Dewangan, Chaman Lal & Singh, S.N. & Chakrabarti, S., 2020. "Combining forecasts of day-ahead solar power," Energy, Elsevier, vol. 202(C).
- Chen, Yuejiang & He, Yingjing & Xiao, Jiang-Wen & Wang, Yan-Wu & Li, Yuanzheng, 2024. "Hybrid model based on similar power extraction and improved temporal convolutional network for probabilistic wind power forecasting," Energy, Elsevier, vol. 304(C).
- Tawn, R. & Browell, J., 2022. "A review of very short-term wind and solar power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
- Azhar Ahmed Mohammed & Zeyar Aung, 2016. "Ensemble Learning Approach for Probabilistic Forecasting of Solar Power Generation," Energies, MDPI, vol. 9(12), pages 1-17, December.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Behm, Christian & Nolting, Lars & Praktiknjo, Aaron, 2020. "How to model European electricity load profiles using artificial neural networks," Applied Energy, Elsevier, vol. 277(C).
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2022.
"Testing big data in a big crisis: Nowcasting under COVID-19,"
JRC Working Papers in Economics and Finance
2022-06, Joint Research Centre, European Commission.
- Barbaglia, Luca & Frattarolo, Lorenzo & Onorante, Luca & Pericoli, Filippo Maria & Ratto, Marco & Tiozzo Pezzoli, Luca, 2023. "Testing big data in a big crisis: Nowcasting under Covid-19," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1548-1563.
- Mangalova, Ekaterina & Shesterneva, Olesya, 2016. "Sequence of nonparametric models for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1023-1028.
- Florian Ziel & Rafal Weron, 2016. "Day-ahead electricity price forecasting with high-dimensional structures: Univariate vs. multivariate models," HSC Research Reports HSC/16/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ziel, Florian & Steinert, Rick, 2018. "Probabilistic mid- and long-term electricity price forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 251-266.
- Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Luigi Grossi & Fany Nan, 2018. "The influence of renewables on electricity price forecasting: a robust approach," Working Papers 2018/10, Institut d'Economia de Barcelona (IEB).
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Juban, Romain & Ohlsson, Henrik & Maasoumy, Mehdi & Poirier, Louis & Kolter, J. Zico, 2016. "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1094-1102.
- Aitazaz Ali Raja & Pierre Pinson & Jalal Kazempour & Sergio Grammatico, 2022. "A Market for Trading Forecasts: A Wagering Mechanism," Papers 2205.02668, arXiv.org, revised Oct 2022.
- Katarzyna Hubicka & Grzegorz Marcjasz & Rafal Weron, 2018. "A note on averaging day-ahead electricity price forecasts across calibration windows," HSC Research Reports HSC/18/03, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2022. "An integrated model for electricity market coupling simulations: Evidence from the European power market crossroad," Utilities Policy, Elsevier, vol. 79(C).
- Yu, Lean & Zhao, Yaqing & Tang, Ling & Yang, Zebin, 2019. "Online big data-driven oil consumption forecasting with Google trends," International Journal of Forecasting, Elsevier, vol. 35(1), pages 213-223.
- Berrisch, Jonathan & Ziel, Florian, 2023. "CRPS learning," Journal of Econometrics, Elsevier, vol. 237(2).
- Deng, Lirong & Fu, Yang & Guo, Qinglai & Li, Zhenkun & Xue, Yixun & Zhang, Zhiquan, 2024. "Energy and reserve procurement in integrated electricity and heating system: A high-dimensional covariance matrix approach based on stochastic differential equations," Energy, Elsevier, vol. 304(C).
- Ly, Sel & Xie, Jiahang & Wolter, Franz-Erich & Nguyen, Hung D. & Weng, Yu, 2023. "T-shape data and probabilistic remaining useful life prediction for Li-ion batteries using multiple non-crossing quantile long short-term memory," Applied Energy, Elsevier, vol. 349(C).
- Ankitha Nandipura Prasanna & Priscila Grecov & Angela Dieyu Weng & Christoph Bergmeir, 2022. "Causal Effect Estimation with Global Probabilistic Forecasting: A Case Study of the Impact of Covid-19 Lockdowns on Energy Demand," Papers 2209.08885, arXiv.org, revised Oct 2022.
- Ziel, Florian, 2019. "Quantile regression for the qualifying match of GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1400-1408.
- Gandhi, Oktoviano & Zhang, Wenjie & Kumar, Dhivya Sampath & Rodríguez-Gallegos, Carlos D. & Yagli, Gokhan Mert & Yang, Dazhi & Reindl, Thomas & Srinivasan, Dipti, 2024. "The value of solar forecasts and the cost of their errors: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Yang, Yi & Xing, Qianyi & Wang, Kang & Li, Caihong & Wang, Jianzhou & Huang, Xiaojia, 2024. "A novel combined probabilistic load forecasting system integrating hybrid quantile regression and knee improved multi-objective optimization strategy," Applied Energy, Elsevier, vol. 356(C).
- Anton A. Gerunov, 2022. "Performance of 109 Machine Learning Algorithms across Five Forecasting Tasks: Employee Behavior Modeling, Online Communication, House Pricing, IT Support and Demand Planning," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 15-43.
- Luo, Xing & Zhang, Dongxiao & Zhu, Xu, 2021. "Deep learning based forecasting of photovoltaic power generation by incorporating domain knowledge," Energy, Elsevier, vol. 225(C).
- Ambach, Daniel & Schmid, Wolfgang, 2017. "A new high-dimensional time series approach for wind speed, wind direction and air pressure forecasting," Energy, Elsevier, vol. 135(C), pages 833-850.
- Jethro Browell, 2017. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Papers 1708.02625, arXiv.org.
- Esteban-Pérez, Adrián & Morales, Juan M., 2023. "Distributionally robust optimal power flow with contextual information," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1047-1058.
- Jethro Browell, 2018. "Risk Constrained Trading Strategies for Stochastic Generation with a Single-Price Balancing Market," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
- Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
- Hyndman, Rob J. & Lee, Alan J. & Wang, Earo, 2016.
"Fast computation of reconciled forecasts for hierarchical and grouped time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 97(C), pages 16-32.
See citations under working paper version above.
- Rob J Hyndman & Alan Lee & Earo Wang, 2014. "Fast computation of reconciled forecasts for hierarchical and grouped time series," Monash Econometrics and Business Statistics Working Papers 17/14, Monash University, Department of Econometrics and Business Statistics.
- Bergmeir, Christoph & Hyndman, Rob J. & Benítez, José M., 2016.
"Bagging exponential smoothing methods using STL decomposition and Box–Cox transformation,"
International Journal of Forecasting, Elsevier, vol. 32(2), pages 303-312.
See citations under working paper version above.
- Christoph Bergmeir & Rob J Hyndman & Jose M Benitez, 2014. "Bagging Exponential Smoothing Methods using STL Decomposition and Box-Cox Transformation," Monash Econometrics and Business Statistics Working Papers 11/14, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & George Athanasopoulos, 2014.
"Optimally Reconciling Forecasts in a Hierarchy,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 35, pages 42-48, Fall.
Cited by:
- Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
- Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024.
"Forecast reconciliation: A review,"
International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Anastasios Panagiotelis, 2023. "Forecast Reconciliation: A Review," Monash Econometrics and Business Statistics Working Papers 8/23, Monash University, Department of Econometrics and Business Statistics.
- Li Bai & Pierre Pinson, 2019. "Distributed Reconciliation in Day-Ahead Wind Power Forecasting," Energies, MDPI, vol. 12(6), pages 1-19, March.
- Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
- Suominen, Arho & Toivanen, Hannes & Seppänen, Marko, 2017. "Firms' knowledge profiles: Mapping patent data with unsupervised learning," Technological Forecasting and Social Change, Elsevier, vol. 115(C), pages 131-142.
- Ben Taieb, Souhaib & Hyndman, Rob J., 2014.
"A gradient boosting approach to the Kaggle load forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 30(2), pages 382-394.
Cited by:
- Fan, Cheng & Sun, Yongjun & Zhao, Yang & Song, Mengjie & Wang, Jiayuan, 2019. "Deep learning-based feature engineering methods for improved building energy prediction," Applied Energy, Elsevier, vol. 240(C), pages 35-45.
- Prpić, John & Shukla, Prashant P. & Kietzmann, Jan H. & McCarthy, Ian P., 2015. "How to work a crowd: Developing crowd capital through crowdsourcing," Business Horizons, Elsevier, vol. 58(1), pages 77-85.
- Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
- Kajal Lahiri & Cheng Yang, 2021.
"Boosting Tax Revenues with Mixed-Frequency Data in the Aftermath of Covid-19: The Case of New York,"
CESifo Working Paper Series
9365, CESifo.
- Lahiri, Kajal & Yang, Cheng, 2022. "Boosting tax revenues with mixed-frequency data in the aftermath of COVID-19: The case of New York," International Journal of Forecasting, Elsevier, vol. 38(2), pages 545-566.
- Maher Selim & Ryan Zhou & Wenying Feng & Peter Quinsey, 2021. "Estimating Energy Forecasting Uncertainty for Reliable AI Autonomous Smart Grid Design," Energies, MDPI, vol. 14(1), pages 1-15, January.
- Naudé, Wim & Bray, Amy & Lee, Celina, 2021. "Crowdsourcing Artificial Intelligence in Africa: Findings from a Machine Learning Contest," IZA Discussion Papers 14545, Institute of Labor Economics (IZA).
- Prpić, John, 2017. "How To Work A Crowd: Developing Crowd Capital Through Crowdsourcing," SocArXiv jer9k, Center for Open Science.
- Andi A. H. Lateko & Hong-Tzer Yang & Chao-Ming Huang & Happy Aprillia & Che-Yuan Hsu & Jie-Lun Zhong & Nguyễn H. Phương, 2021. "Stacking Ensemble Method with the RNN Meta-Learner for Short-Term PV Power Forecasting," Energies, MDPI, vol. 14(16), pages 1-23, August.
- Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
- Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
- Zhaorui Meng & Xianze Xu, 2019. "A Hybrid Short-Term Load Forecasting Framework with an Attention-Based Encoder–Decoder Network Based on Seasonal and Trend Adjustment," Energies, MDPI, vol. 12(24), pages 1-14, December.
- Gür Ali, Özden & Gürlek, Ragıp, 2020. "Automatic Interpretable Retail forecasting with promotional scenarios," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1389-1406.
- Li, Z. & Hurn, A.S. & Clements, A.E., 2017. "Forecasting quantiles of day-ahead electricity load," Energy Economics, Elsevier, vol. 67(C), pages 60-71.
- Brusaferri, Alessandro & Matteucci, Matteo & Spinelli, Stefano & Vitali, Andrea, 2022. "Probabilistic electric load forecasting through Bayesian Mixture Density Networks," Applied Energy, Elsevier, vol. 309(C).
- Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
- Antulov-Fantulin, Nino & Lagravinese, Raffaele & Resce, Giuliano, 2021. "Predicting bankruptcy of local government: A machine learning approach," Journal of Economic Behavior & Organization, Elsevier, vol. 183(C), pages 681-699.
- Li, Qing & Yu, Shuai & Échevin, Damien & Fan, Min, 2022. "Is poverty predictable with machine learning? A study of DHS data from Kyrgyzstan," Socio-Economic Planning Sciences, Elsevier, vol. 81(C).
- Wang, Pu & Liu, Bidong & Hong, Tao, 2016.
"Electric load forecasting with recency effect: A big data approach,"
International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
- Pu Wang & Bidong Liu & Tao Hong, 2015. "Electric load forecasting with recency effect: A big data approach," HSC Research Reports HSC/15/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Ahmad, Tanveer & Chen, Huanxin, 2018. "Potential of three variant machine-learning models for forecasting district level medium-term and long-term energy demand in smart grid environment," Energy, Elsevier, vol. 160(C), pages 1008-1020.
- Verstraete, Gylian & Aghezzaf, El-Houssaine & Desmet, Bram, 2019. "A data-driven framework for predicting weather impact on high-volume low-margin retail products," Journal of Retailing and Consumer Services, Elsevier, vol. 48(C), pages 169-177.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Samuel Atuahene & Yukun Bao & Patricia Semwaah Gyan & Yao Yevenyo Ziggah, 2019. "Accurate Forecast Improvement Approach for Short Term Load Forecasting Using Hybrid Filter-Wrap Feature Selection," International Journal of Management Science and Business Administration, Inovatus Services Ltd., vol. 5(2), pages 37-49, January.
- Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
- Hu, Zhongyi & Bao, Yukun & Chiong, Raymond & Xiong, Tao, 2015. "Mid-term interval load forecasting using multi-output support vector regression with a memetic algorithm for feature selection," Energy, Elsevier, vol. 84(C), pages 419-431.
- Hui Hu & Jianfeng Zhang & Tao Li, 2021. "A Novel Hybrid Decompose-Ensemble Strategy with a VMD-BPNN Approach for Daily Streamflow Estimating," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(15), pages 5119-5138, December.
- Jörg Döpke & Ulrich Fritsche & Christian Pierdzioch, 2015.
"Predicting Recessions With Boosted Regression Trees,"
Working Papers
2015-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Döpke, Jörg & Fritsche, Ulrich & Pierdzioch, Christian, 2017. "Predicting recessions with boosted regression trees," International Journal of Forecasting, Elsevier, vol. 33(4), pages 745-759.
- Seyedeh Narjes Fallah & Mehdi Ganjkhani & Shahaboddin Shamshirband & Kwok-wing Chau, 2019. "Computational Intelligence on Short-Term Load Forecasting: A Methodological Overview," Energies, MDPI, vol. 12(3), pages 1-21, January.
- María Carmen Ruiz-Abellón & Luis Alfredo Fernández-Jiménez & Antonio Guillamón & Alberto Falces & Ana García-Garre & Antonio Gabaldón, 2019. "Integration of Demand Response and Short-Term Forecasting for the Management of Prosumers’ Demand and Generation," Energies, MDPI, vol. 13(1), pages 1-31, December.
- Prpić, John, 2017. "A Framework for Policy Crowdsourcing," SocArXiv pmfdx, Center for Open Science.
- Tartakovsky, Alexandre M. & Ma, Tong & Barajas-Solano, David A. & Tipireddy, Ramakrishna, 2023. "Physics-informed Gaussian process regression for states estimation and forecasting in power grids," International Journal of Forecasting, Elsevier, vol. 39(2), pages 967-980.
- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Araz Taeihagh, 2017. "Crowdsourcing, Sharing Economies and Development," Journal of Developing Societies, , vol. 33(2), pages 191-222, June.
- Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
- Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
- Hong, Tao & Wang, Pu & White, Laura, 2015. "Weather station selection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 31(2), pages 286-295.
- Wang, Shaomin & Wang, Shouxiang & Chen, Haiwen & Gu, Qiang, 2020. "Multi-energy load forecasting for regional integrated energy systems considering temporal dynamic and coupling characteristics," Energy, Elsevier, vol. 195(C).
- Prpić, John, 2017. "Experiments on Crowdsourcing Policy Assessment," SocArXiv qznpk, Center for Open Science.
- Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
- Prpić, John, 2017. "MOOCs and Crowdsourcing: Massive Courses and Massive Resources," SocArXiv uwess, Center for Open Science.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2021. "Temporal mixture ensemble models for probabilistic forecasting of intraday cryptocurrency volume," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 905-940, December.
- Araz Taeihagh, 2017. "Crowdsourcing: a new tool for policy-making?," Policy Sciences, Springer;Society of Policy Sciences, vol. 50(4), pages 629-647, December.
- Smirnov, Dmitry & Huchzermeier, Arnd, 2020. "Analytics for labor planning in systems with load-dependent service times," European Journal of Operational Research, Elsevier, vol. 287(2), pages 668-681.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Paulino José Garcia Nieto & Esperanza García Gonzalo & Fernando Sanchez Lasheras & Antonio Bernardo Sánchez, 2020. "A Hybrid Predictive Approach for Chromium Layer Thickness in the Hard Chromium Plating Process Based on the Differential Evolution/Gradient Boosted Regression Tree Methodology," Mathematics, MDPI, vol. 8(6), pages 1-20, June.
- Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
- Nino Antulov-Fantulin & Tian Guo & Fabrizio Lillo, 2020. "Temporal mixture ensemble models for intraday volume forecasting in cryptocurrency exchange markets," Papers 2005.09356, arXiv.org, revised Dec 2020.
- Wang, Lin & Lv, Sheng-Xiang & Zeng, Yu-Rong, 2018. "Effective sparse adaboost method with ESN and FOA for industrial electricity consumption forecasting in China," Energy, Elsevier, vol. 155(C), pages 1013-1031.
- Prpić, John, 2017. "The Fundamentals of Policy Crowdsourcing," SocArXiv wdtvh, Center for Open Science.
- Jiaming Liu & Chong Wu & Yongli Li, 2019. "Improving Financial Distress Prediction Using Financial Network-Based Information and GA-Based Gradient Boosting Method," Computational Economics, Springer;Society for Computational Economics, vol. 53(2), pages 851-872, February.
- Alexis Gerossier & Robin Girard & Alexis Bocquet & George Kariniotakis, 2018. "Robust Day-Ahead Forecasting of Household Electricity Demand and Operational Challenges," Energies, MDPI, vol. 11(12), pages 1-18, December.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Souhaib Ben Taieb & Raphael Huser & Rob J. Hyndman & Marc G. Genton, 2015. "Probabilistic time series forecasting with boosted additive models: an application to smart meter data," Monash Econometrics and Business Statistics Working Papers 12/15, Monash University, Department of Econometrics and Business Statistics.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
See citations under working paper version above.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Song, Haiyan & Hyndman, Rob J., 2011.
"Tourism forecasting: An introduction,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 817-821, July.
Cited by:
- Bi, Jian-Wu & Liu, Yang & Li, Hui, 2020. "Daily tourism volume forecasting for tourist attractions," Annals of Tourism Research, Elsevier, vol. 83(C).
- Andrea Saayman & Ilsé Botha, 2017. "Non-linear models for tourism demand forecasting," Tourism Economics, , vol. 23(3), pages 594-613, May.
- Yuhong Yang & Tarik Dogru & Chao Liang & Jianqiong Wang & Pengfei Xu, 2024. "Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China," Tourism Economics, , vol. 30(8), pages 2043-2069, December.
- Cláudia Duarte & Sónia Cabral, 2016. "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Elisa Jorge-González & Enrique González-Dávila & Raquel MartÃn-Rivero & Domingo Lorenzo-DÃaz, 2020. "Univariate and multivariate forecasting of tourism demand using state-space models," Tourism Economics, , vol. 26(4), pages 598-621, June.
- Yuan, Fong-Ching, 2020. "Intelligent forecasting of inbound tourist arrivals by social networking analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 558(C).
- Yılmaz, Engin, 2015. "Forecasting tourist arrivals to Turkey," MPRA Paper 68616, University Library of Munich, Germany.
- Han Liu & Ying Liu & Yonglian Wang & Changchun Pan, 2019. "Hot topics and emerging trends in tourism forecasting research: A scientometric review," Tourism Economics, , vol. 25(3), pages 448-468, May.
- Cláudia Duarte & Sónia Cabral, . "Nowcasting Portuguese tourism exports," Economic Bulletin and Financial Stability Report Articles and Banco de Portugal Economic Studies, Banco de Portugal, Economics and Research Department.
- Han Lin Shang & Heather Booth & Rob Hyndman, 2011.
"Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods,"
Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
Cited by:
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent mortality forecasting: the product-ratio method with functional time series models," Monash Econometrics and Business Statistics Working Papers 1/11, Monash University, Department of Econometrics and Business Statistics.
- Rob J Hyndman & Heather Booth & Farah Yasmeen, 2011. "Coherent Mortality Forecasting The Product-ratio Method with Functional Time Series Models," Working Papers 201116, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific life expectancies," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 27(21), pages 593-644.
- Fang, Lei & Härdle, Wolfgang Karl, 2015. "Stochastic population analysis: A functional data approach," SFB 649 Discussion Papers 2015-007, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Yaya, OlaOluwa S & Adekoya, Oluwasegun B. & Babatunde, Oluwagbenga T., 2021.
"Testing Fractional Persistence and Nonlinearity in Infant Mortality Rates of Asia Countries,"
MPRA Paper
109368, University Library of Munich, Germany.
- Yaya, OlaOluwa S & Adekoya, Oluwasegun B. & Babatunde, Oluwagbenga T., 2021. "Testing Fractional Persistence and Nonlinearity in Infant Mortality Rates of Asia Countries," MPRA Paper 109370, University Library of Munich, Germany.
- Jorge Miguel Bravo & Mercedes Ayuso & Robert Holzmann & Edward Palmer, 2021.
"Intergenerational Actuarial Fairness when Longevity Increases: Amending the Retirement Age,"
CESifo Working Paper Series
9408, CESifo.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023. "Intergenerational actuarial fairness when longevity increases: Amending the retirement age," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
- F. Peters & J. P. Mackenbach & W. J. Nusselder, 2016. "Does the Impact of the Tobacco Epidemic Explain Structural Changes in the Decline of Mortality?," European Journal of Population, Springer;European Association for Population Studies, vol. 32(5), pages 687-702, December.
- Fanny Janssen & Leo Wissen & Anton Kunst, 2013. "Including the Smoking Epidemic in Internationally Coherent Mortality Projections," Demography, Springer;Population Association of America (PAA), vol. 50(4), pages 1341-1362, August.
- Ahbab Mohammad Fazle Rabbi & Stefano Mazzuco, 2021. "Mortality Forecasting with the Lee–Carter Method: Adjusting for Smoothing and Lifespan Disparity," European Journal of Population, Springer;European Association for Population Studies, vol. 37(1), pages 97-120, March.
- Alexander Dokumentov & Rob J Hyndman, 2014. "Low-dimensional decomposition, smoothing and forecasting of sparse functional data," Monash Econometrics and Business Statistics Working Papers 16/14, Monash University, Department of Econometrics and Business Statistics.
- Adrian E. Raftery & Nevena Lalic & Patrick Gerland, 2014. "Joint probabilistic projection of female and male life expectancy," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 30(27), pages 795-822.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
- Rob J Hyndman & Yijun Zeng & Han Lin Shang, 2020. "Forecasting the Old-Age Dependency Ratio to Determine a Sustainable Pension Age," Monash Econometrics and Business Statistics Working Papers 31/20, Monash University, Department of Econometrics and Business Statistics.
- Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
- Christina Bohk-Ewald & Marcus Ebeling & Roland Rau, 2017. "Lifespan Disparity as an Additional Indicator for Evaluating Mortality Forecasts," Demography, Springer;Population Association of America (PAA), vol. 54(4), pages 1559-1577, August.
- OlaOluwa Simon Yaya & Luis Alberiko Gil-Alana, 2020.
"Modelling Long-Range Dependence and Non-linearity in the Infant Mortality Rates of African Countries,"
International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 26(3), pages 303-315, August.
- Yaya, OlaOluwa A & Gil-Alana, Luis A., 2018. "Modelling Long Range Dependence and Non-linearity in the Infant Mortality Rates of Africa Countries," MPRA Paper 88752, University Library of Munich, Germany.
- Sergei Scherbov & Dalkhat Ediev, 2016. "Does selection of mortality model make a difference in projecting population ageing?," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(2), pages 39-62.
- Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
- Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
- Lenny Stoeldraijer & Coen van Duin & Leo van Wissen & Fanny Janssen, 2013. "Impact of different mortality forecasting methods and explicit assumptions on projected future life expectancy: The case of the Netherlands," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(13), pages 323-354.
- Ufuk Beyaztas & Hanlin Shang, 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Forecasting, MDPI, vol. 4(1), pages 1-15, March.
- Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
- Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
- Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
- Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
- Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
- Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
- Ricarda Duerst & Jonas Schöley & Christina Bohk-Ewald, 2023. "A validation workflow for mortality forecasting," MPIDR Working Papers WP-2023-020, Max Planck Institute for Demographic Research, Rostock, Germany.
- Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
- Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
- Dorina Lazar & Anuta Buiga & Adela Deaconu, 2016. "Common Stochastic Trends in European Mortality Levels: Testing and Consequences for Modeling Longevity Risk in Insurance," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(2), pages 152-168, June.
- Shang, Han Lin & Haberman, Steven & Xu, Ruofan, 2022. "Multi-population modelling and forecasting life-table death counts," Insurance: Mathematics and Economics, Elsevier, vol. 106(C), pages 239-253.
- Apostolos Bozikas & Georgios Pitselis, 2019. "Credible Regression Approaches to Forecast Mortality for Populations with Limited Data," Risks, MDPI, vol. 7(1), pages 1-22, February.
- Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
- Shang, Han Lin & Haberman, Steven, 2017. "Grouped multivariate and functional time series forecasting:An application to annuity pricing," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 166-179.
- Phillip A. Jang & David S. Matteson, 2023. "Spatial correlation in weather forecast accuracy: a functional time series approach," Computational Statistics, Springer, vol. 38(3), pages 1215-1229, September.
- Yue Li & Chengmeng Zhang & Yan Tong & Yalu Zhang & Gong Chen, 2022. "Prediction of the Old-Age Dependency Ratio in Chinese Cities Using DMSP/OLS Nighttime Light Data," IJERPH, MDPI, vol. 19(12), pages 1-23, June.
- Syazreen Shair & Sachi Purcal & Nick Parr, 2017. "Evaluating Extensions to Coherent Mortality Forecasting Models," Risks, MDPI, vol. 5(1), pages 1-20, March.
- Jorge M. Uribe & Helena Chuliá & Montserrat Guillen, 2018. "Trends in the Quantiles of the Life Table Survivorship Function," European Journal of Population, Springer;European Association for Population Studies, vol. 34(5), pages 793-817, December.
- OlaOluwa S. Yaya & Luis A. Gil-Alana & Acheampong Y. Amoateng, 2019. "Under-5 Mortality Rates in G7 Countries: Analysis of Fractional Persistence, Structural Breaks and Nonlinear Time Trends," European Journal of Population, Springer;European Association for Population Studies, vol. 35(4), pages 675-694, October.
- Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
- Han Lin Shang, 2012. "Point and interval forecasts of age-specific fertility rates: a comparison of functional principal component methods," Monash Econometrics and Business Statistics Working Papers 10/12, Monash University, Department of Econometrics and Business Statistics.
- Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
- Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
- Rob Hyndman & Heather Booth & Farah Yasmeen, 2013.
"Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models,"
Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011.
"The tourism forecasting competition,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
See citations under working paper version above.- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008. "The tourism forecasting competition," Monash Econometrics and Business Statistics Working Papers 10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J., 2011.
"The value of feedback in forecasting competitions,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849, July.
- Athanasopoulos, George & Hyndman, Rob J., 2011. "The value of feedback in forecasting competitions," International Journal of Forecasting, Elsevier, vol. 27(3), pages 845-849.
See citations under working paper version above.- George Athanasopoulos & Rob J Hyndman, 2011. "The value of feedback in forecasting competitions," Monash Econometrics and Business Statistics Working Papers 3/11, Monash University, Department of Econometrics and Business Statistics.
- Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011.
"Improved interval estimation of long run response from a dynamic linear model: A highest density region approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
See citations under working paper version above.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010. "Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach," Working Papers 2010.06, School of Economics, La Trobe University.
- Jae H Kim & Iain Fraser & Rob J. Hyndman, 2010. "Improved Interval Estimation of Long Run Response from a Dynamic Linear Model: A Highest Density Region Approach," Working Papers 2010.06, School of Economics, La Trobe University.
- Fan, Shu & Hyndman, Rob J., 2011.
"The price elasticity of electricity demand in South Australia,"
Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
See citations under working paper version above.
- Shu Fan & Rob Hyndman, 2010. "The price elasticity of electricity demand in South Australia," Monash Econometrics and Business Statistics Working Papers 16/10, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011.
"Optimal combination forecasts for hierarchical time series,"
Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
See citations under working paper version above.
- Rob J. Hyndman & Roman A. Ahmed & George Athanasopoulos, 2007. "Optimal combination forecasts for hierarchical time series," Monash Econometrics and Business Statistics Working Papers 9/07, Monash University, Department of Econometrics and Business Statistics.
- Shang, Han Lin & Hyndman, Rob.J., 2011.
"Nonparametric time series forecasting with dynamic updating,"
Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
See citations under working paper version above.
- Han Lin Shang & Rob J Hyndman, 2009. "Nonparametric time series forecasting with dynamic updating," Monash Econometrics and Business Statistics Working Papers 8/09, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J., 2010.
"Encouraging replication and reproducible research,"
International Journal of Forecasting, Elsevier, vol. 26(1), pages 2-3, January.
Cited by:
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Rostami-Tabar, Bahman & Ali, Mohammad M. & Hong, Tao & Hyndman, Rob J. & Porter, Michael D. & Syntetos, Aris, 2022. "Forecasting for social good," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1245-1257.
- Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
- Lawrence Clegg & John Cartlidge, 2023. "Not feeling the buzz: Correction study of mispricing and inefficiency in online sportsbooks," Papers 2306.01740, arXiv.org, revised Jul 2024.
- Bahman Rostami-Tabar & Mohammad M Ali & Tao Hong & Rob J Hyndman & Michael D Porter & Aris Syntetos, 2020.
"Forecasting for Social Good,"
Monash Econometrics and Business Statistics Working Papers
37/20, Monash University, Department of Econometrics and Business Statistics.
- Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009.
"Monitoring processes with changing variances,"
International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
See citations under working paper version above.
- J. Keith Ord, 2008. "Monitoring Processes with Changing Variances," Working Papers 2008-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008. "Monitoring Processes with Changing Variances," Monash Econometrics and Business Statistics Working Papers 4/08, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009.
"Hierarchical forecasts for Australian domestic tourism,"
International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
See citations under working paper version above.
- George Athanasopoulos & Roman A. Ahmed & Rob J. Hyndman, 2007. "Hierarchical forecasts for Australian domestic tourism," Monash Econometrics and Business Statistics Working Papers 12/07, Monash University, Department of Econometrics and Business Statistics, revised Nov 2007.
- de Silva, Ashton & Hyndman, Rob J. & Snyder, Ralph, 2009.
"A multivariate innovations state space Beveridge-Nelson decomposition,"
Economic Modelling, Elsevier, vol. 26(5), pages 1067-1074, September.
- de Silva, Ashton, 2007. "A multivariate innovations state space Beveridge Nelson decomposition," MPRA Paper 5431, University Library of Munich, Germany.
Cited by:
- Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017.
"Forecasting compositional time series: A state space approach,"
International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
- Ralph D. Snyder & J. Keith Ord & Anne B. Koehler & Keith R. McLaren & Adrian Beaumont, 2015. "Forecasting Compositional Time Series: A State Space Approach," Monash Econometrics and Business Statistics Working Papers 11/15, Monash University, Department of Econometrics and Business Statistics.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Sinclair Davidson & Ashton de Silva, 2013. "Stimulating Savings: An Analysis of Cash Handouts in Australia and the United States," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 20(2), pages 39-60.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
See citations under working paper version above.
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Booth, Heather, 2008.
"Stochastic population forecasts using functional data models for mortality, fertility and migration,"
International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
See citations under working paper version above.
- Rob J Hyndman & Heather Booth, 2006. "Stochastic population forecasts using functional data models for mortality, fertility and migration," Monash Econometrics and Business Statistics Working Papers 14/06, Monash University, Department of Econometrics and Business Statistics.
- Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008.
"Forecasting time series with multiple seasonal patterns,"
European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
Cited by:
- Huanyin Su & Shanglin Mo & Shuting Peng, 2023. "Short-Term Prediction of Time-Varying Passenger Flow for Intercity High-Speed Railways: A Neural Network Model Based on Multi-Source Data," Mathematics, MDPI, vol. 11(16), pages 1-16, August.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Reisen, Valdério A. & Zamprogno, Bartolomeu & Palma, Wilfredo & Arteche, Josu, 2014. "A semiparametric approach to estimate two seasonal fractional parameters in the SARFIMA model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 98(C), pages 1-17.
- Luis Fernando Melo Velandia & Daniel Parra Amado, 2014.
"Efectos calendario sobre la producción industrial en Colombia,"
Borradores de Economia
820, Banco de la Republica de Colombia.
- Luis Fernando Melo Velandia & Daniel Parra Amado, 2014. "Efectos calendario sobre la producción industrial en Colombia," Borradores de Economia 11241, Banco de la Republica.
- Moreno, Manuel & Novales, Alfonso & Platania, Federico, 2019.
"Long-term swings and seasonality in energy markets,"
European Journal of Operational Research, Elsevier, vol. 279(3), pages 1011-1023.
- Manuel Moreno & Alfonso Novales & Federico Platania, 2019. "Long-term swings and seasonality in energy markets," Documentos de Trabajo del ICAE 2019-29, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
- Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
- Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023.
"Optimal reconciliation with immutable forecasts,"
European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
- Bohan Zhang & Yanfei Kang & Anastasios Panagiotelis & Feng Li, 2022. "Optimal reconciliation with immutable forecasts," Papers 2204.09231, arXiv.org.
- Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
- Kong, Xiangyu & Li, Chuang & Wang, Chengshan & Zhang, Yusen & Zhang, Jian, 2020. "Short-term electrical load forecasting based on error correction using dynamic mode decomposition," Applied Energy, Elsevier, vol. 261(C).
- Barrow, Devon K., 2016. "Forecasting intraday call arrivals using the seasonal moving average method," Journal of Business Research, Elsevier, vol. 69(12), pages 6088-6096.
- Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
- Taylor, James W., 2010. "Exponentially weighted methods for forecasting intraday time series with multiple seasonal cycles," International Journal of Forecasting, Elsevier, vol. 26(4), pages 627-646, October.
- Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
- Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
- Clements, A.E. & Hurn, A.S. & Li, Z., 2016.
"Forecasting day-ahead electricity load using a multiple equation time series approach,"
European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
- Adam Clements & Stan Hurn & Zili Li, 2014. "Forecasting day-ahead electricity load using a multiple equation time series approach," NCER Working Paper Series 103, National Centre for Econometric Research, revised 06 May 2015.
- Taylor, James W. & Snyder, Ralph D., 2012.
"Forecasting intraday time series with multiple seasonal cycles using parsimonious seasonal exponential smoothing,"
Omega, Elsevier, vol. 40(6), pages 748-757.
- James W. Taylor & Ralph D. Snyder, 2009. "Forecasting Intraday Time Series with Multiple Seasonal Cycles Using Parsimonious Seasonal Exponential Smoothing," Monash Econometrics and Business Statistics Working Papers 9/09, Monash University, Department of Econometrics and Business Statistics.
- Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
- Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
- Andrew Harvey & Alessandra Luati, 2014.
"Filtering With Heavy Tails,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(507), pages 1112-1122, September.
- Harvey, A. & Luati, A., 2012. "Filtering with heavy tails," Cambridge Working Papers in Economics 1255, Faculty of Economics, University of Cambridge.
- Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
- Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
- Ramli, Azizul Azhar & Watada, Junzo & Pedrycz, Witold, 2011. "Real-time fuzzy regression analysis: A convex hull approach," European Journal of Operational Research, Elsevier, vol. 210(3), pages 606-617, May.
- Jang-yeop Kim & Kyung Sup Kim, 2018. "Integrated Model of Economic Generation System Expansion Plan for the Stable Operation of a Power Plant and the Response of Future Electricity Power Demand," Sustainability, MDPI, vol. 10(7), pages 1-27, July.
- Grzegorz Dudek, 2021. "Short-Term Load Forecasting Using Neural Networks with Pattern Similarity-Based Error Weights," Energies, MDPI, vol. 14(11), pages 1-18, May.
- Carrizosa, Emilio & Olivares-Nadal, Alba V. & Ramírez-Cobo, Pepa, 2013. "Time series interpolation via global optimization of moments fitting," European Journal of Operational Research, Elsevier, vol. 230(1), pages 97-112.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
- Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
- Sharifzadeh, Mahdi & Sikinioti-Lock, Alexandra & Shah, Nilay, 2019. "Machine-learning methods for integrated renewable power generation: A comparative study of artificial neural networks, support vector regression, and Gaussian Process Regression," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 513-538.
- Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.
- Hong Wang & Guangyu Long & Jianxing Liao & Yan Xu & Yan Lv, 2022. "A new hybrid method for establishing point forecasting, interval forecasting, and probabilistic forecasting of landslide displacement," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1479-1505, March.
- Shaun P Vahey & Elizabeth C Wakerly, 2013. "Moving towards probability forecasting," BIS Papers chapters, in: Bank for International Settlements (ed.), Globalisation and inflation dynamics in Asia and the Pacific, volume 70, pages 3-8, Bank for International Settlements.
- Xu, Paiheng & Zhang, Rong & Deng, Yong, 2017. "A novel weight determination method for time series data aggregation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 42-55.
- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Shukur, Osamah Basheer & Lee, Muhammad Hisyam, 2015. "Daily wind speed forecasting through hybrid KF-ANN model based on ARIMA," Renewable Energy, Elsevier, vol. 76(C), pages 637-647.
- Huanyin Su & Shanglin Mo & Huizi Dai & Jincong Shen, 2024. "Short-Term Prediction of Origin–Destination Passenger Flow in Urban Rail Transit Systems with Multi-Source Data: A Deep Learning Method Fusing High-Dimensional Features," Mathematics, MDPI, vol. 12(20), pages 1-21, October.
- Pramesti Getut, 2023. "Parameter least-squares estimation for time-inhomogeneous Ornstein–Uhlenbeck process," Monte Carlo Methods and Applications, De Gruyter, vol. 29(1), pages 1-32, March.
- Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
- Lin, Yao-San & Li, Der-Chiang, 2010. "The Generalized-Trend-Diffusion modeling algorithm for small data sets in the early stages of manufacturing systems," European Journal of Operational Research, Elsevier, vol. 207(1), pages 121-130, November.
- Oscar Trull & J. Carlos Garc'ia-D'iaz & Angel Peir'o-Signes, 2024. "mshw, a forecasting library to predict short-term electricity demand based on multiple seasonal Holt-Winters," Papers 2402.10982, arXiv.org.
- Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
- Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
- Rob Hyndman & Muhammad Akram & Blyth Archibald, 2008.
"The admissible parameter space for exponential smoothing models,"
Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 60(2), pages 407-426, June.
Cited by:
- Li, Qinyun & Gaalman, Gerard & Disney, Stephen M., 2023. "On the equivalence of the proportional and damped trend order-up-to policies: An eigenvalue analysis," International Journal of Production Economics, Elsevier, vol. 265(C).
- Frank Davenport & Chris Funk, 2015. "Using time series structural characteristics to analyze grain prices in food insecure countries," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 7(5), pages 1055-1070, October.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Francois, Joseph & Fernández-Amador, Octavio & Oberdabernig, Doris & Tomberger, Patrick, 2019.
"The methane footprint of nations: Stylized facts from a global panel dataset,"
CEPR Discussion Papers
14125, C.E.P.R. Discussion Papers.
- Fernández-Amador, Octavio & Francois, Joseph & Oberdabernig, Doris & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Papers 1272, World Trade Institute.
- Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
- dos Anjos, Lucas & Weber, Igor Daniel & Godoy, Wesley Augusto Conde, 2023. "Modelling the biocontrol of Spodoptera frugiperda: A mechanistic approach considering Bt crops and oviposition behaviour," Ecological Modelling, Elsevier, vol. 484(C).
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- So, Mike K.P. & Chung, Ray S.W., 2014. "Dynamic seasonality in time series," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 212-226.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265.
- J Keith Ord & Ralph D Snyder & Anne B Koehler & Rob J Hyndman & Mark Leeds, 2005. "Time Series Forecasting: The Case for the Single Source of Error State Space," Monash Econometrics and Business Statistics Working Papers 7/05, Monash University, Department of Econometrics and Business Statistics.
- Corberán-Vallet, Ana & Bermúdez, José D. & Vercher, Enriqueta, 2011. "Forecasting correlated time series with exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 252-265, April.
- George Athanasopoulos & Ashton de Silva, 2010. "Multivariate exponential smoothing for forecasting tourist arrivals to Australia and New Zealand," Monash Econometrics and Business Statistics Working Papers 11/09, Monash University, Department of Econometrics and Business Statistics.
- Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
- Sinclair Davidson & Ashton de Silva, 2014. "The Plain Truth about Plain Packaging: An Econometric Analysis of the Australian 2011 Tobacco Plain Packaging Act," Agenda - A Journal of Policy Analysis and Reform, Australian National University, College of Business and Economics, School of Economics, vol. 21(1), pages 27-44.
- Chinloy, Peter & Jiang, Cheng & John, Kose, 2020. "Investment, depreciation and obsolescence of R&D," Journal of Financial Stability, Elsevier, vol. 49(C).
- Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
- Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
- Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2023. "Shrinkage estimator for exponential smoothing models," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1351-1365.
- Sipos-Gug Sebastian & Badulescu Alina, 2014. "Entrepreneurship In Constructions Sector - Explanatory Economic Factors And Forecasts For Romania," Annals of Faculty of Economics, University of Oradea, Faculty of Economics, vol. 1(1), pages 379-389, July.
- Graff, Mario & Peña, Rafael & Medina, Aurelio & Escalante, Hugo Jair, 2014. "Wind speed forecasting using a portfolio of forecasters," Renewable Energy, Elsevier, vol. 68(C), pages 550-559.
- Kim, Jae H. & Silvapulle, Param & Hyndman, Rob J., 2007.
"Half-life estimation based on the bias-corrected bootstrap: A highest density region approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(7), pages 3418-3432, April.
See citations under working paper version above.
- Jae Kim & Param Silvapulle & Rob J. Hyndman, 2006. "Half-Life Estimation based on the Bias-Corrected Bootstrap: A Highest Density Region Approach," Monash Econometrics and Business Statistics Working Papers 11/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Shahid Ullah, Md., 2007.
"Robust forecasting of mortality and fertility rates: A functional data approach,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
See citations under working paper version above.
- Rob J. Hyndman & Md. Shahid Ullah, 2005. "Robust forecasting of mortality and fertility rates: a functional data approach," Monash Econometrics and Business Statistics Working Papers 2/05, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Andrey V. Kostenko, 2007.
"Minimum Sample Size requirements for Seasonal Forecasting Models,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 12-15, Spring.
Cited by:
- Wu, Wen-Ze & Zeng, Liang & Liu, Chong & Xie, Wanli & Goh, Mark, 2022. "A time power-based grey model with conformable fractional derivative and its applications," Chaos, Solitons & Fractals, Elsevier, vol. 155(C).
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Wen-Ze Wu & Chong Liu & Wanli Xie & Mark Goh & Tao Zhang, 2023. "Predictive analysis of the industrial water-waste-energy system using an optimised grey approach: A case study in China," Energy & Environment, , vol. 34(5), pages 1639-1656, August.
- Waseem Khan & Sana Fatima, 2016. "An Assessment of Sectoral Dynamics and Employment Shift in Indian and Chinese Economy," South Asian Survey, , vol. 23(2), pages 119-134, September.
- Dittmer, Celina & Krümpel, Johannes & Lemmer, Andreas, 2021. "Power demand forecasting for demand-driven energy production with biogas plants," Renewable Energy, Elsevier, vol. 163(C), pages 1871-1877.
- Gati Gayatri & I Gede Nyoman Mindra Jaya & Vience Mutiara Rumata, 2022. "The Indonesian Digital Workforce Gaps in 2021–2025," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Anna Manowska & Anna Bluszcz, 2022. "Forecasting Crude Oil Consumption in Poland Based on LSTM Recurrent Neural Network," Energies, MDPI, vol. 15(13), pages 1-23, July.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Pedro M. R. Bento & Jose A. N. Pombo & Maria R. A. Calado & Silvio J. P. S. Mariano, 2021. "Stacking Ensemble Methodology Using Deep Learning and ARIMA Models for Short-Term Load Forecasting," Energies, MDPI, vol. 14(21), pages 1-21, November.
- Nieto, MarÃa Rosa & Carmona-BenÃtez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
- Nils Droste & Claudia Becker & Irene Ring & Rui Santos, 2018. "Decentralization Effects in Ecological Fiscal Transfers: A Bayesian Structural Time Series Analysis for Portugal," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(4), pages 1027-1051, December.
- Carmona-BenÃtez, Rafael Bernardo & Nieto, MarÃa Rosa, 2020. "SARIMA damp trend grey forecasting model for airline industry," Journal of Air Transport Management, Elsevier, vol. 82(C).
- Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Multi-objective optimization of energy arbitrage in community energy storage systems using different battery technologies," Applied Energy, Elsevier, vol. 239(C), pages 356-372.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251, April.
- Muhammad Shoaib & Asaad Y. Shamseldin & Sher Khan & Mudasser Muneer Khan & Zahid Mahmood Khan & Tahir Sultan & Bruce W. Melville, 2018. "A Comparative Study of Various Hybrid Wavelet Feedforward Neural Network Models for Runoff Forecasting," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 83-103, January.
- Chan, Man-pui Sally & Winneg, Kenneth & Hawkins, Lauren & Farhadloo, Mohsen & Jamieson, Kathleen Hall & Albarracín, Dolores, 2018. "Legacy and social media respectively influence risk perceptions and protective behaviors during emerging health threats: A multi-wave analysis of communications on Zika virus cases," Social Science & Medicine, Elsevier, vol. 212(C), pages 50-59.
- Tomasz Śmiałkowski & Andrzej Czyżewski, 2022. "Detection of Anomalies in the Operation of a Road Lighting System Based on Data from Smart Electricity Meters," Energies, MDPI, vol. 15(24), pages 1-23, December.
- Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
- Mohammed Aminu Sualihu & M. Arifur Rahman, 2014. "Payment Behaviour of Electricity Consumers: Evidence from the Greater Accra Region of Ghana," Global Business Review, International Management Institute, vol. 15(3), pages 477-492, September.
- Yusuf Priyo Anggodo & Abba Suganda Girsang, 2024. "A Novel Modified Binning and Logistics Regression to Handle Shifting in Credit Scoring," Computational Economics, Springer;Society for Computational Economics, vol. 63(6), pages 2371-2403, June.
- Vanella, Patrizio, 2016. "The Total Fertility Rate in Germany until 2040 - A Stochastic Principal Components Projection based on Age-specific Fertility Rates," Hannover Economic Papers (HEP) dp-579, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Kolassa, Stephan, 2011. "Combining exponential smoothing forecasts using Akaike weights," International Journal of Forecasting, Elsevier, vol. 27(2), pages 238-251.
- Hloušková, Z. & Ženíšková, P. & Prášilová, M., 2018. "Comparison of Agricultural Costs Prediction Approaches," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(1).
- Jiří Šindelář, 2019. "Sales forecasting in financial distribution: a comparison of quantitative forecasting methods," Journal of Financial Services Marketing, Palgrave Macmillan, vol. 24(3), pages 69-80, December.
- A V Kostenko & R J Hyndman, 2006.
"A note on the categorization of demand patterns,"
Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(10), pages 1256-1257, October.
Cited by:
- Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
- Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Heinecke, G. & Syntetos, A.A. & Wang, W., 2013. "Forecasting-based SKU classification," International Journal of Production Economics, Elsevier, vol. 143(2), pages 455-462.
- Li Li & Yanfei Kang & Fotios Petropoulos & Feng Li, 2022. "Feature-based intermittent demand forecast combinations: bias, accuracy and inventory implications," Papers 2204.08283, arXiv.org, revised Aug 2022.
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- Aysun Kapucugil Ikiz & Gizem Halil Utma, 2023. "Combined Forecasts of Intermittent Demand for Stock-keeping Units (SKUs)," World Journal of Applied Economics, WERI-World Economic Research Institute, vol. 9(1), pages 1-31, June.
- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Turrini, Laura & Meissner, Joern, 2019. "Spare parts inventory management: New evidence from distribution fitting," European Journal of Operational Research, Elsevier, vol. 273(1), pages 118-130.
- Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
- Petropoulos, Fotios & Kourentzes, Nikolaos & Nikolopoulos, Konstantinos, 2016. "Another look at estimators for intermittent demand," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 154-161.
- Rob J. Hyndman, 2006.
"Another Look at Forecast Accuracy Metrics for Intermittent Demand,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 4, pages 43-46, June.
Cited by:
- Schipfer, Fabian & Kranzl, Lukas & Olsson, Olle & Lamers, Patrick, 2020. "The European wood pellets for heating market - Price developments, trade and market efficiency," Energy, Elsevier, vol. 212(C).
- Namhyun Ahn & So Yeon Jo & Suk-Ju Kang, 2019. "Constraint-Aware Electricity Consumption Estimation for Prevention of Overload by Electric Vehicle Charging Station," Energies, MDPI, vol. 12(6), pages 1-18, March.
- Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
- Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
- Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
- Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
- Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
- Emilian Dobrescu, 2014. "Attempting to Quantify the Accuracy of Complex Macroeconomic Forecasts," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 5-21, December.
- Forbes, Kevin F. & Zampelli, Ernest M., 2020. "Accuracy of wind energy forecasts in Great Britain and prospects for improvement," Utilities Policy, Elsevier, vol. 67(C).
- Mohamad Sakizadeh & Mohamed M. A. Mohamed & Harald Klammler, 2019. "Trend Analysis and Spatial Prediction of Groundwater Levels Using Time Series Forecasting and a Novel Spatio-Temporal Method," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(4), pages 1425-1437, March.
- Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
- Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
- Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
- Heinecke, G. & Syntetos, A.A. & Wang, W., 2013. "Forecasting-based SKU classification," International Journal of Production Economics, Elsevier, vol. 143(2), pages 455-462.
- Mariusz Doszyn, 2020. "Biasedness of Forecasts Errors for Intermittent Demand Data," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1113-1127.
- Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
- Altay, Nezih & Narayanan, Arunachalam, 2022. "Forecasting in humanitarian operations: Literature review and research needs," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1234-1244.
- Sprangers, Olivier & Schelter, Sebastian & de Rijke, Maarten, 2023. "Parameter-efficient deep probabilistic forecasting," International Journal of Forecasting, Elsevier, vol. 39(1), pages 332-345.
- Dooti Roy & Gregory Vaughan & Jianan Hui & Junxian Geng, 2023. "An exploration of National Weather Service daily forecasts using R Shiny," Computational Statistics, Springer, vol. 38(3), pages 1173-1191, September.
- Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
- Li, Lechen & Meinrenken, Christoph J. & Modi, Vijay & Culligan, Patricia J., 2021. "Short-term apartment-level load forecasting using a modified neural network with selected auto-regressive features," Applied Energy, Elsevier, vol. 287(C).
- Fang Yuan & Jiang Guo & Zhihuai Xiao & Bing Zeng & Wenqiang Zhu & Sixu Huang, 2020. "An Interval Forecasting Model Based on Phase Space Reconstruction and Weighted Least Squares Support Vector Machine for Time Series of Dissolved Gas Content in Transformer Oil," Energies, MDPI, vol. 13(7), pages 1-28, April.
- Abolghasemi, Mahdi & Tarr, Garth & Bergmeir, Christoph, 2024. "Machine learning applications in hierarchical time series forecasting: Investigating the impact of promotions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 597-615.
- Seongpil Cheon & Suk-Ju Kang, 2017. "An Electric Power Consumption Analysis System for the Installation of Electric Vehicle Charging Stations," Energies, MDPI, vol. 10(10), pages 1-13, October.
- Élise Fortin & Robert W Platt & Patricia S Fontela & David L Buckeridge & Caroline Quach, 2015. "Predicting Antimicrobial Resistance Prevalence and Incidence from Indicators of Antimicrobial Use: What Is the Most Accurate Indicator for Surveillance in Intensive Care Units?," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-12, December.
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- Jiao, Xiaoying & Chen, Jason Li & Li, Gang, 2021. "Forecasting tourism demand: Developing a general nesting spatiotemporal model," Annals of Tourism Research, Elsevier, vol. 90(C).
- Tian Shi & Fei Mei & Jixiang Lu & Jinjun Lu & Yi Pan & Cheng Zhou & Jianzhang Wu & Jianyong Zheng, 2019. "Phase Space Reconstruction Algorithm and Deep Learning-Based Very Short-Term Bus Load Forecasting," Energies, MDPI, vol. 12(22), pages 1-17, November.
- Meoli, Michele & Vismara, Silvio, 2022. "Machine-learning forecasting of successful ICOs," Journal of Economics and Business, Elsevier, vol. 121(C).
- Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Aras, Serkan & Hanifi Van, M., 2022. "An interpretable forecasting framework for energy consumption and CO2 emissions," Applied Energy, Elsevier, vol. 328(C).
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Victor Richmond R. Jose, 2017. "Percentage and Relative Error Measures in Forecast Evaluation," Operations Research, INFORMS, vol. 65(1), pages 200-211, February.
- Jussim, Maxim, 2014. "Entwicklung eines Simulationstools zur Analyse von Prognose- und Dispositionsentscheidungen im Krankenhausbereich," Bayreuth Reports on Information Systems Management 57, University of Bayreuth, Chair of Information Systems Management.
- Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
- Altay, Nezih & Litteral, Lewis A. & Rudisill, Frank, 2012. "Effects of correlation on intermittent demand forecasting and stock control," International Journal of Production Economics, Elsevier, vol. 135(1), pages 275-283.
- Zheng, Peijun & Zhou, Heng & Liu, Jiang & Nakanishi, Yosuke, 2023. "Interpretable building energy consumption forecasting using spectral clustering algorithm and temporal fusion transformers architecture," Applied Energy, Elsevier, vol. 349(C).
- Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
- Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
- Anton A. Gerunov, 2022. "Performance of 109 Machine Learning Algorithms across Five Forecasting Tasks: Employee Behavior Modeling, Online Communication, House Pricing, IT Support and Demand Planning," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 2, pages 15-43.
- Patrick Urrutia & David Wren & Chrysafis Vogiatzis & Ruriko Yoshida, 2022. "SARS-CoV-2 Dissemination Using a Network of the US Counties," SN Operations Research Forum, Springer, vol. 3(2), pages 1-23, June.
- Altay, Nezih & Rudisill, Frank & Litteral, Lewis A., 2008. "Adapting Wright's modification of Holt's method to forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 111(2), pages 389-408, February.
- Heather Booth & Rob Hyndman & Leonie Tickle & Piet de Jong, 2006.
"Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions,"
Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 15(9), pages 289-310.
See citations under working paper version above.
- Heather Booth & Rob J Hyndman & Leonie Tickle & Piet de Jong, 2006. "Lee-Carter mortality forecasting: a multi-country comparison of variants and extensions," Monash Econometrics and Business Statistics Working Papers 13/06, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Ord, J. Keith, 2006.
"Twenty-five years of forecasting,"
International Journal of Forecasting, Elsevier, vol. 22(3), pages 413-414.
Cited by:
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Helmut Wasserbacher & Martin Spindler, 2022. "Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls," Digital Finance, Springer, vol. 4(1), pages 63-88, March.
- Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
- Sohrabpour, Vahid & Oghazi, Pejvak & Toorajipour, Reza & Nazarpour, Ali, 2021. "Export sales forecasting using artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- De Gooijer, Jan G. & Hyndman, Rob J., 2006.
"25 years of time series forecasting,"
International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
Cited by:
- Zhineng Hu & Jing Ma & Liangwei Yang & Xiaoping Li & Meng Pang, 2019. "Decomposition-Based Dynamic Adaptive Combination Forecasting for Monthly Electricity Demand," Sustainability, MDPI, vol. 11(5), pages 1-25, February.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2022.
"Stock return predictability: Evaluation based on interval forecasts,"
Bulletin of Economic Research, Wiley Blackwell, vol. 74(2), pages 363-385, April.
- Amélie Charles & Olivier Darné & Jae Kim, 2022. "Stock Return Predictability: Evaluation based on interval forecasts," Post-Print hal-03656310, HAL.
- Francisco Salas-Molina & Francisco J. Martin & Juan A. Rodr'iguez-Aguilar & Joan Serr`a & Josep Ll. Arcos, 2016.
"Empowering cash managers to achieve cost savings by improving predictive accuracy,"
Papers
1605.04219, arXiv.org.
- Salas-Molina, Francisco & Martin, Francisco J. & Rodríguez-Aguilar, Juan A. & Serrà, Joan & Arcos, Josep Ll., 2017. "Empowering cash managers to achieve cost savings by improving predictive accuracy," International Journal of Forecasting, Elsevier, vol. 33(2), pages 403-415.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Dumas, Jonathan & Wehenkel, Antoine & Lanaspeze, Damien & Cornélusse, Bertrand & Sutera, Antonio, 2022. "A deep generative model for probabilistic energy forecasting in power systems: normalizing flows," Applied Energy, Elsevier, vol. 305(C).
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Masayoshi Hayashi, 2012.
"Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program,"
CIRJE F-Series
CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Hayashi, Masayoshi, 2014. "Forecasting welfare caseloads: The case of the Japanese public assistance program," Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
- Zi‐Yi Guo, 2021. "Out‐of‐sample performance of bias‐corrected estimators for diffusion processes," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 243-268, March.
- Vortelinos, Dimitrios I., 2017. "Forecasting realized volatility: HAR against Principal Components Combining, neural networks and GARCH," Research in International Business and Finance, Elsevier, vol. 39(PB), pages 824-839.
- Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
- Jackson, Ilya & Ivanov, Dmitry, 2023. "A beautiful shock? Exploring the impact of pandemic shocks on the accuracy of AI forecasting in the beauty care industry," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
- Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2019. "Prescribing Response Strategies to Manage Customer Opinions: A Stochastic Differential Equation Approach," Information Systems Research, INFORMS, vol. 30(2), pages 351-374, June.
- Felix Wick & Ulrich Kerzel & Martin Hahn & Moritz Wolf & Trapti Singhal & Daniel Stemmer & Jakob Ernst & Michael Feindt, 2021. "Demand Forecasting of Individual Probability Density Functions with Machine Learning," SN Operations Research Forum, Springer, vol. 2(3), pages 1-39, September.
- OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
- Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Fischer, Thomas & Krauss, Christopher & Treichel, Alex, 2018. "Machine learning for time series forecasting - a simulation study," FAU Discussion Papers in Economics 02/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
- Villegas, Marco A. & Pedregal, Diego J., 2019. "Automatic selection of unobserved components models for supply chain forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 157-169.
- Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
- Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
- Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
- Helmut Wasserbacher & Martin Spindler, 2021. "Machine Learning for Financial Forecasting, Planning and Analysis: Recent Developments and Pitfalls," Papers 2107.04851, arXiv.org.
- Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2012. "Numerical weather prediction (NWP) and hybrid ARMA/ANN model to predict global radiation," Energy, Elsevier, vol. 39(1), pages 341-355.
- Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
- Croux, C. & Gelper, S. & Mahieu, K., 2010. "Robust Control Charts for Time Series Data," Discussion Paper 2010-107, Tilburg University, Center for Economic Research.
- Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
- Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Melchior, Cristiane & Zanini, Roselaine Ruviaro & Guerra, Renata Rojas & Rockenbach, Dinei A., 2021. "Forecasting Brazilian mortality rates due to occupational accidents using autoregressive moving average approaches," International Journal of Forecasting, Elsevier, vol. 37(2), pages 825-837.
- Wu, Ji & Chan, Chee Keong & Zhang, Yu & Xiong, Bin Yu & Zhang, Qing Hai, 2014. "Prediction of solar radiation with genetic approach combing multi-model framework," Renewable Energy, Elsevier, vol. 66(C), pages 132-139.
- Guangxun Jin & Ohbyung Kwon, 2021. "Impact of chart image characteristics on stock price prediction with a convolutional neural network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-18, June.
- Lili Li & Jun Yang & Xin Zou, 2016. "A study of credit risk of Chinese listed companies: ZPP versus KMV," Applied Economics, Taylor & Francis Journals, vol. 48(29), pages 2697-2710, June.
- Guo, Zhifeng & Zhou, Kaile & Zhang, Xiaoling & Yang, Shanlin, 2018. "A deep learning model for short-term power load and probability density forecasting," Energy, Elsevier, vol. 160(C), pages 1186-1200.
- Dale Roberts & Laura Ryan, 2015. "Evidence of speculation in world oil prices," Australian Journal of Management, Australian School of Business, vol. 40(4), pages 630-651, November.
- Nazim Choudhury, 2024. "Community-Aware Evolution Similarity for Link Prediction in Dynamic Social Networks," Mathematics, MDPI, vol. 12(2), pages 1-24, January.
- Wang, Chao & Zhang, Xinyi & Wang, Minggang & Lim, Ming K. & Ghadimi, Pezhman, 2019. "Predictive analytics of the copper spot price by utilizing complex network and artificial neural network techniques," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
- Yifei Zhao & Jianhong Chen & Hideki Shimada & Takashi Sasaoka, 2023. "Non-Ferrous Metal Price Point and Interval Prediction Based on Variational Mode Decomposition and Optimized LSTM Network," Mathematics, MDPI, vol. 11(12), pages 1-16, June.
- Tang, Hui-Wen Vivian & Yin, Mu-Shang, 2012. "Forecasting performance of grey prediction for education expenditure and school enrollment," Economics of Education Review, Elsevier, vol. 31(4), pages 452-462.
- Weron, Rafał, 2014.
"Electricity price forecasting: A review of the state-of-the-art with a look into the future,"
International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
- Rafal Weron, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," HSC Research Reports HSC/14/07, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Martin Madera & Dusan Marcek, 2023. "Intelligence in Finance and Economics for Predicting High-Frequency Data," Mathematics, MDPI, vol. 11(2), pages 1-15, January.
- Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
- Zaher Mundher Yaseen & Mazen Ismaeel Ghareb & Isa Ebtehaj & Hossein Bonakdari & Ridwan Siddique & Salim Heddam & Ali A. Yusif & Ravinesh Deo, 2018. "Rainfall Pattern Forecasting Using Novel Hybrid Intelligent Model Based ANFIS-FFA," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(1), pages 105-122, January.
- Ling He & Chenyi Hu, 2009. "Impacts of Interval Computing on Stock Market Variability Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 33(3), pages 263-276, April.
- Jeffrey S. Racine & Christopher F. Parmeter, 2012. "Data-Driven Model Evaluation: A Test for Revealed Performance," Department of Economics Working Papers 2012-13, McMaster University.
- Sermpinis, Georgios & Stasinakis, Charalampos & Dunis, Christian, 2014. "Stochastic and genetic neural network combinations in trading and hybrid time-varying leverage effects," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 30(C), pages 21-54.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2015.
"An adaptive approach to forecasting three key macroeconomic variables for transitional China,"
BOFIT Discussion Papers
12/2015, Bank of Finland Institute for Emerging Economies (BOFIT).
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2015. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," SFB 649 Discussion Papers 2015-023, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Niu, Linlin & Xu, Xiu & Chen, Ying, 2017. "An adaptive approach to forecasting three key macroeconomic variables for transitional China," Economic Modelling, Elsevier, vol. 66(C), pages 201-213.
- Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Michael Wolf & Dan Wunderli, 2015.
"Recent developments in bootstrap methods for dependent data,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 352-376, May.
- Giuseppe Cavaliere & Dimitris N. Politis & Anders Rahbek & Paul Doukhan & Gabriel Lang & Anne Leucht & Michael H. Neumann, 2015. "Recent developments in bootstrap methods for dependent data," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(3), pages 290-314, May.
- Croonenbroeck, Carsten & Stadtmann, Georg, 2019. "Renewable generation forecast studies – Review and good practice guidance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 312-322.
- Siran Fang & Yunjie Wei & Shouyang Wang, 2024. "30 years of exchange rate analysis and forecasting: A bibliometric review," Journal of Economic Surveys, Wiley Blackwell, vol. 38(3), pages 973-1007, July.
- Jia Xu & Longbing Cao, 2023. "Copula Variational LSTM for High-dimensional Cross-market Multivariate Dependence Modeling," Papers 2305.08778, arXiv.org.
- Amélie Charles & Olivier Darné & Jae H. Kim, 2016.
"Stock Return Predictability: Evaluation based on prediction intervals,"
Working Papers
hal-01295037, HAL.
- Charles, Amelie & Darne, Olivier & Kim, Jae, 2016. "Stock Return Predictability: Evaluation based on Prediction Intervals," MPRA Paper 70143, University Library of Munich, Germany.
- Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
- Ralf Barkemeyer & Philippe Givry & Frank Figge, 2018. "Trends and patterns in sustainability-related media coverage: A classification of issue-level attention," Environment and Planning C, , vol. 36(5), pages 937-962, August.
- Saira Al-Zadjali & Ahmed Al Maashri & Amer Al-Hinai & Sultan Al-Yahyai & Mostafa Bakhtvar, 2019. "An Accurate, Light-Weight Wind Speed Predictor for Renewable Energy Management Systems," Energies, MDPI, vol. 12(22), pages 1-20, November.
- Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
- Vidhi Vig & Anmol Kaur, 2022. "Time series forecasting and mathematical modeling of COVID-19 pandemic in India: a developing country struggling to cope up," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(6), pages 2920-2933, December.
- Kolokolov, Yury V. & Monovskaya, Anna V., 2009. "From geometric invariants and symbolic matrixes towards new perspectives on forecasting of PWM converter dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1868-1877.
- Otilia Elena Dragomir & Florin Dragomir & Veronica Stefan & Eugenia Minca, 2015. "Adaptive Neuro-Fuzzy Inference Systems as a Strategy for Predicting and Controling the Energy Produced from Renewable Sources," Energies, MDPI, vol. 8(11), pages 1-15, November.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
- Stefanescu, Răzvan & Dumitriu, Ramona, 2017. "Ajustarea seriilor de timp financiare,Partea întâi [Smoothing of financial time series, Part 1]," MPRA Paper 78329, University Library of Munich, Germany, revised 15 Apr 2017.
- Nieto, MarÃa Rosa & Carmona-BenÃtez, Rafael Bernardo, 2018. "ARIMA + GARCH + Bootstrap forecasting method applied to the airline industry," Journal of Air Transport Management, Elsevier, vol. 71(C), pages 1-8.
- Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
- Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.
- Bodendorf, Frank & Xie, Qiao & Merkl, Philipp & Franke, Jörg, 2022. "A multi-perspective approach to support collaborative cost management in supplier-buyer dyads," International Journal of Production Economics, Elsevier, vol. 245(C).
- Thiago C. Silva & Paulo V. B. Wilhelm & Diego R. Amancio, 2024.
"Machine learning and economic forecasting: the role of international trade networks,"
Papers
2404.08712, arXiv.org.
- Thiago Christiano Silva & Paulo Victor Berri Wilhelm & Diego Raphael Amancio, 2024. "Machine Learning and Economic Forecasting: the role of international trade networks," Working Papers Series 597, Central Bank of Brazil, Research Department.
- Silva, Thiago Christiano & Wilhelm, Paulo Victor Berri & Amancio, Diego R., 2024. "Machine learning and economic forecasting: The role of international trade networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 649(C).
- Mergani A. Khairalla & Xu Ning & Nashat T. AL-Jallad & Musaab O. El-Faroug, 2018. "Short-Term Forecasting for Energy Consumption through Stacking Heterogeneous Ensemble Learning Model," Energies, MDPI, vol. 11(6), pages 1-21, June.
- Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
- Kim, Nayeon & Montreuil, Benoit & Klibi, Walid, 2022. "Inventory availability commitment under uncertainty in a dropshipping supply chain," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1155-1174.
- Wang, Zhe & Hong, Tianzhen & Piette, Mary Ann, 2019. "Predicting plug loads with occupant count data through a deep learning approach," Energy, Elsevier, vol. 181(C), pages 29-42.
- Reza Mousavi & Monica Johar & Vijay S. Mookerjee, 2020. "The Voice of the Customer: Managing Customer Care in Twitter," Information Systems Research, INFORMS, vol. 31(2), pages 340-360, June.
- Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
- Voyant, Cyril & Motte, Fabrice & Fouilloy, Alexis & Notton, Gilles & Paoli, Christophe & Nivet, Marie-Laure, 2017. "Forecasting method for global radiation time series without training phase: Comparison with other well-known prediction methodologies," Energy, Elsevier, vol. 120(C), pages 199-208.
- Park, Jungyeon & Alvarenga, Estêvão & Jeon, Jooyoung & Li, Ran & Petropoulos, Fotios & Kim, Hokyun & Ahn, Kwangwon, 2024. "Probabilistic forecast-based portfolio optimization of electricity demand at low aggregation levels," Applied Energy, Elsevier, vol. 353(PB).
- Tao Lyu & Yu Gan & Ru Zhang & Shun Wang & Donghai Li & Yuqun Zhuo, 2024. "Development of a Real-Time NOx Prediction Soft Sensor Algorithm for Power Plants Based on a Hybrid Boost Integration Model," Energies, MDPI, vol. 17(19), pages 1-25, October.
- Michael Wolf & Dan Wunderli, 2012. "Bootstrap joint prediction regions," ECON - Working Papers 064, Department of Economics - University of Zurich, revised May 2013.
- Yaya, OlaOluwa S & Ogbonna, Ephraim A & Furuoka, Fumitaka & Gil-Alana, Luis A., 2019. "A new unit root analysis for testing hysteresis in unemployment," MPRA Paper 96621, University Library of Munich, Germany.
- Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
- Massidda, Luca & Marrocu, Marino, 2023. "Total and thermal load forecasting in residential communities through probabilistic methods and causal machine learning," Applied Energy, Elsevier, vol. 351(C).
- Gulseven Osman, 2014.
"Multidimensional Analysis of Monthly Stock Market Returns,"
Scientific Annals of Economics and Business, Sciendo, vol. 61(2), pages 181-196, December.
- Osman Gulseven, 2020. "Multidimensional Analysis of Monthly Stock Market Returns," Papers 2003.05750, arXiv.org.
- Uwe Hassler & Marc-Oliver Pohle, 2019. "Forecasting under Long Memory and Nonstationarity," Papers 1910.08202, arXiv.org.
- Claudio Felisoni de Angelo & Ronaldo Zwicker & Nuno Manoel Martins Dias Fouto & Marcos Roberto Luppe, 2011. "Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast," Brazilian Business Review, Fucape Business School, vol. 8(2), pages 01-21, April.
- Fabrizio De Caro & Jacopo De Stefani & Gianluca Bontempi & Alfredo A. Vaccaro & Domenico D. Villacci, 2020. "Robust Assessment of Short-Term Wind Power Forecasting Models on Multiple Time Horizons," ULB Institutional Repository 2013/314435, ULB -- Universite Libre de Bruxelles.
- Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
- Nguyen, Hoang-Phuong & Baraldi, Piero & Zio, Enrico, 2021. "Ensemble empirical mode decomposition and long short-term memory neural network for multi-step predictions of time series signals in nuclear power plants," Applied Energy, Elsevier, vol. 283(C).
- Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
- Poloni, Federico & Sbrana, Giacomo, 2015. "A note on forecasting demand using the multivariate exponential smoothing framework," International Journal of Production Economics, Elsevier, vol. 162(C), pages 143-150.
- Dongwu Wu & Linlin Wu & Yongbo Ye, 2022. "RETRACTED ARTICLE: Industrial structure optimization, economic development factors and regional economic risk prevention in post COVID-19 period: empirical analysis based on panel data of Guangdong re," Journal of Combinatorial Optimization, Springer, vol. 44(5), pages 3735-3777, December.
- Kevin Xin & Lizhi Xin, 2024. "QxEAI: Quantum-like evolutionary algorithm for automated probabilistic forecasting," Papers 2405.03701, arXiv.org, revised Jun 2024.
- Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2012. "Examination of property forecasting models - accuracy and its improvement through combination forecasting," ERES eres2012_082, European Real Estate Society (ERES).
- Mishra, G. C. & Singh, A., 2013. "A Study on Forecasting Prices of Groundnut Oil in Delhi by Arima Methodology and Artificial Neural Networks," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 5(3), pages 1-10, September.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011.
"Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals,"
International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901, July.
- Jae H. Kim & Haiyang Song & Kevin Wong & George Athanasopoulos & Shen Liu, 2008. "Beyond point forecasting: evaluation of alternative prediction intervals for tourist arrivals," Monash Econometrics and Business Statistics Working Papers 11/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
- Stekler, H.O., 2007. "The future of macroeconomic forecasting: Understanding the forecasting process," International Journal of Forecasting, Elsevier, vol. 23(2), pages 237-248.
- Odin Foldvik Eikeland & Filippo Maria Bianchi & Harry Apostoleris & Morten Hansen & Yu-Cheng Chiou & Matteo Chiesa, 2021. "Predicting Energy Demand in Semi-Remote Arctic Locations," Energies, MDPI, vol. 14(4), pages 1-17, February.
- Francisco Salas-Molina & Juan A. Rodr'iguez-Aguilar & Joan Serr`a & Montserrat Guillen & Francisco J. Martin, 2016. "Empirical analysis of daily cash flow time series and its implications for forecasting," Papers 1611.04941, arXiv.org, revised Jun 2017.
- Singh Abhishek & Mishra G. C., 2015. "Application of Box-Jenkins Method and Artificial Neural Network Procedure for Time Series Forecasting of Prices," Statistics in Transition New Series, Statistics Poland, vol. 16(1), pages 83-96, March.
- Stetco, Adrian & Dinmohammadi, Fateme & Zhao, Xingyu & Robu, Valentin & Flynn, David & Barnes, Mike & Keane, John & Nenadic, Goran, 2019. "Machine learning methods for wind turbine condition monitoring: A review," Renewable Energy, Elsevier, vol. 133(C), pages 620-635.
- Chandadevi Giri & Yan Chen, 2022. "Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry," Forecasting, MDPI, vol. 4(2), pages 1-17, June.
- Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
- Toni Toharudin & Resa Septiani Pontoh & Rezzy Eko Caraka & Solichatus Zahroh & Panji Kendogo & Novika Sijabat & Mentari Dara Puspita Sari & Prana Ugiana Gio & Mohammad Basyuni & Bens Pardamean, 2021. "National Vaccination and Local Intervention Impacts on COVID-19 Cases," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
- André Souza Oliveira & Raphael Oliveira dos Santos & Bruno Caetano dos Santos Silva & Lilian Lefol Nani Guarieiro & Matthias Angerhausen & Uwe Reisgen & Renelson Ribeiro Sampaio & Bruna Aparecida Souz, 2021. "A Detailed Forecast of the Technologies Based on Lifecycle Analysis of GMAW and CMT Welding Processes," Sustainability, MDPI, vol. 13(7), pages 1-23, March.
- Peroni, Chiara, 2007.
"A non-parametric investigation of risk premia,"
MPRA Paper
5126, University Library of Munich, Germany, revised 01 Dec 2007.
- Peroni Chiara, 2009. "A Non-Parametric Investigation of Risk Premia," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 13(4), pages 1-52, September.
- Peroni, Chiara, 2008. "A non-parametric investigation of risk premia," MPRA Paper 15010, University Library of Munich, Germany, revised 15 Apr 2009.
- Boylan, John E. & Goodwin, Paul & Mohammadipour, Maryam & Syntetos, Aris A., 2015. "Reproducibility in forecasting research," International Journal of Forecasting, Elsevier, vol. 31(1), pages 79-90.
- Nikafkar, Nasrin & Alroaia, Younos Vakil & Heydariyeh, Seyyed Abdollah & Schleiss, Anton J., 2023. "Economic and commercial analysis of reusing dam reservoir sediments," Ecological Economics, Elsevier, vol. 204(PB).
- Tafakori, Laleh & Pourkhanali, Armin & Fard, Farzad Alavi, 2018. "Forecasting spikes in electricity return innovations," Energy, Elsevier, vol. 150(C), pages 508-526.
- Sadaei, Hossein Javedani & de Lima e Silva, Petrônio Cândido & Guimarães, Frederico Gadelha & Lee, Muhammad Hisyam, 2019. "Short-term load forecasting by using a combined method of convolutional neural networks and fuzzy time series," Energy, Elsevier, vol. 175(C), pages 365-377.
- Colino, Evelyn V. & Irwin, Scott H. & Garcia, Philip, 2008. "How Much Can Outlook Forecasts be Improved? An Application to the U.S. Hog Market," 2008 Conference, April 21-22, 2008, St. Louis, Missouri 37620, NCCC-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
- Dursun Aydin & Ersin Yilmaz, 2021. "Censored Nonparametric Time-Series Analysis with Autoregressive Error Models," Computational Economics, Springer;Society for Computational Economics, vol. 58(2), pages 169-202, August.
- Peter Nielsen & Liping Jiang & Niels Gorm Malý Rytter & Gang Chen, 2014. "An investigation of forecast horizon and observation fit's influence on an econometric rate forecast model in the liner shipping industry," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 667-682, December.
- Osman Gulseven, 2020. "Turn-of-the Year Affect in Gold Prices: Decomposition Analysis," Papers 2003.11027, arXiv.org.
- Montgomery, Jacob M. & Hollenbach, Florian M. & Ward, Michael D., 2015. "Calibrating ensemble forecasting models with sparse data in the social sciences," International Journal of Forecasting, Elsevier, vol. 31(3), pages 930-942.
- Nikolopoulos, Konstantinos & Litsa, Akrivi & Petropoulos, Fotios & Bougioukos, Vasileios & Khammash, Marwan, 2015. "Relative performance of methods for forecasting special events," Journal of Business Research, Elsevier, vol. 68(8), pages 1785-1791.
- Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
- Riezebos, Jan & Zhu, Stuart X., 2020. "Inventory control with seasonality of lead times," Omega, Elsevier, vol. 92(C).
- Arvydas Jadevicius & Brian Sloan & Andrew Brown, 2013. "Property Market Modelling and Forecasting: A Case for Simplicity," ERES eres2013_10, European Real Estate Society (ERES).
- Syed Ali Asad Rizvi & Stephen J. Roberts & Michael A. Osborne & Favour Nyikosa, 2017. "A Novel Approach to Forecasting Financial Volatility with Gaussian Process Envelopes," Papers 1705.00891, arXiv.org.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Helmut Wasserbacher & Martin Spindler, 2022. "Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls," Digital Finance, Springer, vol. 4(1), pages 63-88, March.
- Souhaib Ben Taieb & Rob J Hyndman, 2014. "Boosting multi-step autoregressive forecasts," Monash Econometrics and Business Statistics Working Papers 13/14, Monash University, Department of Econometrics and Business Statistics.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Mirzaei, Danesh & Behbahaninia, Ali & Abdalisousan, Ashkan & Miri Lavasani, Seyed Mohammadreza, 2023. "A novel approach to repair time prediction and availability assessment of the equipment in power generation systems using fuzzy logic and Monte Carlo simulation," Energy, Elsevier, vol. 282(C).
- Yam Wing Siu, 2018. "Volatility Forecast by Volatility Index and Its Use as a Risk Management Tool Under a Value-at-Risk Approach," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 21(02), pages 1-48, June.
- Voyant, Cyril & Muselli, Marc & Paoli, Christophe & Nivet, Marie-Laure, 2013. "Hybrid methodology for hourly global radiation forecasting in Mediterranean area," Renewable Energy, Elsevier, vol. 53(C), pages 1-11.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
- David Harris & Gael M. Martin & Indeewara Perera & Don S. Poskitt, 2017. "Construction and visualization of optimal confidence sets for frequentist distributional forecasts," Monash Econometrics and Business Statistics Working Papers 9/17, Monash University, Department of Econometrics and Business Statistics.
- Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
- Jörg Döpke & Ulrich Fritsche & Karsten Müller, 2018. "Has Macroeconomic Forecasting changed after the Great Recession? - Panel-based Evidence on Accuracy and Forecaster Behaviour from Germany," Macroeconomics and Finance Series 201803, University of Hamburg, Department of Socioeconomics.
- Hui Wang & Jianbo Sun & Weijun Wang, 2018. "Photovoltaic Power Forecasting Based on EEMD and a Variable-Weight Combination Forecasting Model," Sustainability, MDPI, vol. 10(8), pages 1-11, July.
- Croux, C. & Gelper, S. & Mahieu, K., 2010. "Robust Control Charts for Time Series Data," Other publications TiSEM 229a21da-3d8a-4764-9d78-5, Tilburg University, School of Economics and Management.
- Jean-Laurent Duchaud & Cyril Voyant & Alexis Fouilloy & Gilles Notton & Marie-Laure Nivet, 2020. "Trade-Off between Precision and Resolution of a Solar Power Forecasting Algorithm for Micro-Grid Optimal Control," Energies, MDPI, vol. 13(14), pages 1-16, July.
- Pokorný, Jiří & Froněk, Pavel, 2021. "Price Forecasting Accuracy of the OECD-FAO's Agricultural Outlook and the European Commission DG AGRI's Medium-Term Agricultural Outlook Report," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 13(3), September.
- Daniel Ramos & Pedro Faria & Zita Vale & João Mourinho & Regina Correia, 2020. "Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning," Energies, MDPI, vol. 13(18), pages 1-18, September.
- Guidi, Francesco, 2010. "Modelling and forecasting volatility of East Asian Newly Industrialized Countries and Japan stock markets with non-linear models," MPRA Paper 19851, University Library of Munich, Germany.
- Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
- Mashlakov, Aleksei & Kuronen, Toni & Lensu, Lasse & Kaarna, Arto & Honkapuro, Samuli, 2021. "Assessing the performance of deep learning models for multivariate probabilistic energy forecasting," Applied Energy, Elsevier, vol. 285(C).
- Diogo M. F. Izidio & Paulo S. G. de Mattos Neto & Luciano Barbosa & João F. L. de Oliveira & Manoel Henrique da Nóbrega Marinho & Guilherme Ferretti Rissi, 2021. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters," Energies, MDPI, vol. 14(7), pages 1-19, March.
- Shagun Srivastava & Madhvendra Misra, 2014. "Developing Evaluation Matrix for Critical Success Factors in Technology Forecasting," Global Business Review, International Management Institute, vol. 15(2), pages 363-380, June.
- Lixin Tian & Huan Chen & Zaili Zhen, 2018. "Research on the forward-looking behavior judgment of heating oil price evolution based on complex networks," PLOS ONE, Public Library of Science, vol. 13(9), pages 1-18, September.
- Panja, Madhurima & Chakraborty, Tanujit & Nadim, Sk Shahid & Ghosh, Indrajit & Kumar, Uttam & Liu, Nan, 2023. "An ensemble neural network approach to forecast Dengue outbreak based on climatic condition," Chaos, Solitons & Fractals, Elsevier, vol. 167(C).
- Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
- Emrouznejad, Ali & Rostami-Tabar, Bahman & Petridis, Konstantinos, 2016. "A novel ranking procedure for forecasting approaches using Data Envelopment Analysis," Technological Forecasting and Social Change, Elsevier, vol. 111(C), pages 235-243.
- Teddy, S.D. & Ng, S.K., 2011. "Forecasting ATM cash demands using a local learning model of cerebellar associative memory network," International Journal of Forecasting, Elsevier, vol. 27(3), pages 760-776, July.
- Демешев Борис Борисович & Малаховская Оксана Анатольевна, 2016. "Макроэкономическое Прогнозирование С Помощью Bvar Литтермана," Higher School of Economics Economic Journal Экономический журнал Высшей школы экономики, CyberLeninka;Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет «Высшая школа экономики», vol. 20(4), pages 691-710.
- Fan-Osuala, Onochie & Zantedeschi, Daniel & Jank, Wolfgang, 2018. "Using past contribution patterns to forecast fundraising outcomes in crowdfunding," International Journal of Forecasting, Elsevier, vol. 34(1), pages 30-44.
- Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
- Delavari, Majid & Gandali Alikhani, Nadiya & Naderi, Esmaeil, 2012.
"Do Dynamic Neural Networks Stand a Better Chance in Fractionally Integrated Process Forecasting?,"
MPRA Paper
45977, University Library of Munich, Germany.
- Majid Delavari & Nadiya Gandali Alikhani & Esmaeil Naderi, 2013. "Do Dynamic Neural Networks Stand a Better Chance in Fractionally Integrated Process Forecasting?," International Journal of Economics and Financial Issues, Econjournals, vol. 3(2), pages 466-475.
- Hill, Arthur V. & Zhang, Weiyong & Burch, Gerald F., 2015. "Forecasting the forecastability quotient for inventory management," International Journal of Forecasting, Elsevier, vol. 31(3), pages 651-663.
- Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
- Sohrabpour, Vahid & Oghazi, Pejvak & Toorajipour, Reza & Nazarpour, Ali, 2021. "Export sales forecasting using artificial intelligence," Technological Forecasting and Social Change, Elsevier, vol. 163(C).
- Chew Lian Chua & G. C. Lim & Sarantis Tsiaplias, 2012.
"A latent variable approach to forecasting the unemployment rate,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(3), pages 229-244, April.
- C. L. Chua & G. C. Lim & Sarantis Tsiaplias, 2009. "A Latent Variable Approach to Forecasting the Unemployment Rate," Melbourne Institute Working Paper Series wp2009n19, Melbourne Institute of Applied Economic and Social Research, The University of Melbourne.
- Appino, Riccardo Remo & González Ordiano, Jorge Ángel & Mikut, Ralf & Faulwasser, Timm & Hagenmeyer, Veit, 2018. "On the use of probabilistic forecasts in scheduling of renewable energy sources coupled to storages," Applied Energy, Elsevier, vol. 210(C), pages 1207-1218.
- K. Triantafyllopoulos, 2008. "Multivariate stochastic volatility with Bayesian dynamic linear models," Papers 0802.0214, arXiv.org.
- Abhishek Singh & G. C. Mishra, 2015. "Application of Box-Jenkins method and Artificial Neural Network procedure for time series forecasting of prices," Statistics in Transition new series, Główny Urząd Statystyczny (Polska), vol. 16(1), pages 83-96, May.
- Sarah Ouédraogo & Ghjuvan Antone Faggianelli & Guillaume Pigelet & Jean Laurent Duchaud & Gilles Notton, 2020. "Application of Optimal Energy Management Strategies for a Building Powered by PV/Battery System in Corsica Island," Energies, MDPI, vol. 13(17), pages 1-20, September.
- Yingqi Zhu & Ying Wang & Tianxue Liu & Qi Sui, 2018. "Assessing macroeconomic recovery after a natural hazard based on ARIMA—a case study of the 2008 Wenchuan earthquake in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 91(3), pages 1025-1038, April.
- Saeid Mehdizadeh, 2020. "Using AR, MA, and ARMA Time Series Models to Improve the Performance of MARS and KNN Approaches in Monthly Precipitation Modeling under Limited Climatic Data," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 263-282, January.
- Cheong, Chongcheul & Lee, Hyunchul, 2014. "Forecasting with a parsimonious subset VAR model," Economics Letters, Elsevier, vol. 125(2), pages 167-170.
- Roberto Casado-Vara & Angel Martin del Rey & Daniel Pérez-Palau & Luis de-la-Fuente-Valentín & Juan M. Corchado, 2021. "Web Traffic Time Series Forecasting Using LSTM Neural Networks with Distributed Asynchronous Training," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Annika Homburg & Christian H. Weiß & Layth C. Alwan & Gabriel Frahm & Rainer Göb, 2021. "A performance analysis of prediction intervals for count time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 603-625, July.
- Savio, Nicolas D. & Nikolopoulos, Konstantinos, 2013. "A strategic forecasting framework for governmental decision-making and planning," International Journal of Forecasting, Elsevier, vol. 29(2), pages 311-321.
- Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
- Strunz, Franziska & Gödl, Maximilian, 2023. "An Evaluation of Professional Forecasts for the German Economy," VfS Annual Conference 2023 (Regensburg): Growth and the "sociale Frage" 277707, Verein für Socialpolitik / German Economic Association.
- Voyant, Cyril & Notton, Gilles & Darras, Christophe & Fouilloy, Alexis & Motte, Fabrice, 2017. "Uncertainties in global radiation time series forecasting using machine learning: The multilayer perceptron case," Energy, Elsevier, vol. 125(C), pages 248-257.
- Ahmadian Behrooz, Hesam & Boozarjomehry, R. Bozorgmehry, 2017. "Dynamic optimization of natural gas networks under customer demand uncertainties," Energy, Elsevier, vol. 134(C), pages 968-983.
- Mirza, Nawazish & Rizvi, Syed Kumail Abbas & Naqvi, Bushra & Umar, Muhammad, 2024. "Inflation prediction in emerging economies: Machine learning and FX reserves integration for enhanced forecasting," International Review of Financial Analysis, Elsevier, vol. 94(C).
- Srećko KRILE & Nikolai MAIOROV & Vladimir FETISOV, 2018. "Forecasting The Operational Activities Of The Sea Passenger Terminal Using Intelligent Technologies," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 13(1), pages 27-36, March.
- Meade, Nigel & Islam, Towhidul, 2015. "Forecasting in telecommunications and ICT—A review," International Journal of Forecasting, Elsevier, vol. 31(4), pages 1105-1126.
- Fouilloy, Alexis & Voyant, Cyril & Notton, Gilles & Motte, Fabrice & Paoli, Christophe & Nivet, Marie-Laure & Guillot, Emmanuel & Duchaud, Jean-Laurent, 2018. "Solar irradiation prediction with machine learning: Forecasting models selection method depending on weather variability," Energy, Elsevier, vol. 165(PA), pages 620-629.
- Christian Hertrich, 2013. "Asset Allocation Considerations for Pension Insurance Funds," Springer Books, Springer, edition 127, number 978-3-658-02167-2, June.
- Duwon Choi & Youngkuk An & Nankyu Lee & Jinil Park & Jonghwa Lee, 2020. "Comparative Study of Physics-Based Modeling and Neural Network Approach to Predict Cooling in Vehicle Integrated Thermal Management System," Energies, MDPI, vol. 13(20), pages 1-24, October.
- Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006.
"A Bayesian approach to bandwidth selection for multivariate kernel density estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
Cited by:
- Seok Young Hong & Oliver Linton, 2016.
"Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order,"
CeMMAP working papers
CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Seok Young Hong & Oliver Linton, 2016. "Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in finite order," CeMMAP working papers 53/16, Institute for Fiscal Studies.
- Catalina Bolance & Montserrat Guillen & David Pitt, 2014. "Non-parametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers 2014-01, Universitat de Barcelona, UB Riskcenter.
- Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
- Shuowen Hu & D.S. Poskitt & Xibin Zhang, 2010.
"Bayesian Adaptive Bandwidth Kernel Density Estimation of Irregular Multivariate Distributions,"
Monash Econometrics and Business Statistics Working Papers
21/10, Monash University, Department of Econometrics and Business Statistics.
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2012. "Bayesian adaptive bandwidth kernel density estimation of irregular multivariate distributions," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 732-740.
- Hong, S-Y. & Linton, O., 2018.
"Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff,"
Cambridge Working Papers in Economics
1877, Faculty of Economics, University of Cambridge.
- Hong, Seok Young & Linton, Oliver, 2020. "Nonparametric estimation of infinite order regression and its application to the risk-return tradeoff," Journal of Econometrics, Elsevier, vol. 219(2), pages 389-424.
- Xijian Hu & Yaori Lu & Huiguo Zhang & Haijun Jiang & Qingdong Shi, 2021. "Selection of the Bandwidth Matrix in Spatial Varying Coefficient Models to Detect Anisotropic Regression Relationships," Mathematics, MDPI, vol. 9(18), pages 1-14, September.
- Kenneth L. Sørensen & Rune Vejlin, 2014.
"Return To Experience And Initial Wage Level: Do Low Wage Workers Catch Up?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(6), pages 984-1006, September.
- Kenneth L. Sørensen & Rune Vejlin, 2012. "Return to Experience and Initial Wage Level: Do Low Wage Workers Catch Up?," Economics Working Papers 2012-02, Department of Economics and Business Economics, Aarhus University.
- Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
- Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
- David Pitt & Montserrat Guillén, 2010. "An introduction to parametric and non-parametric models for bivariate positive insurance claim severity distributions," Working Papers XREAP2010-03, Xarxa de Referència en Economia Aplicada (XREAP), revised Mar 2010.
- Madeleine Cule & Richard Samworth & Michael Stewart, 2010. "Maximum likelihood estimation of a multi‐dimensional log‐concave density," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(5), pages 545-607, November.
- Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
- Elena Di Bernardino & Didier Rullière, 2015. "Estimation of multivariate critical layers: Applications to rainfall data," Post-Print hal-00940089, HAL.
- Groß, Marcus & Rendtel, Ulrich & Schmid, Timo & Schmon, Sebastian & Tzavidis, Nikos, 2015. "Estimating the density of ethnic minorities and aged people in Berlin: Multivariate kernel density estimation applied to sensitive geo-referenced administrative data protected via measurement error," Discussion Papers 2015/7, Free University Berlin, School of Business & Economics.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012.
"Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval,"
Monash Econometrics and Business Statistics Working Papers
3/12, Monash University, Department of Econometrics and Business Statistics.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015. "Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval," Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Mukhopadhyay, Subhadeep & Ghosh, Anil K., 2011. "Bayesian multiscale smoothing in supervised and semi-supervised kernel discriminant analysis," Computational Statistics & Data Analysis, Elsevier, vol. 55(7), pages 2344-2353, July.
- Tingting Cheng & Jiti Gao & Xibin Zhang, 2016.
"Nonparametric Localized Bandwidth Selection for Kernel Density Estimation,"
Monash Econometrics and Business Statistics Working Papers
7/16, Monash University, Department of Econometrics and Business Statistics.
- Tingting Cheng & Jiti Gao & Xibin Zhang, 2019. "Nonparametric localized bandwidth selection for Kernel density estimation," Econometric Reviews, Taylor & Francis Journals, vol. 38(7), pages 733-762, August.
- Anastasios Panagiotelis & Michael S. Smith & Peter J. Danaher, 2014.
"From Amazon to Apple: Modeling Online Retail Sales, Purchase Incidence, and Visit Behavior,"
Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 32(1), pages 14-29, January.
- Anastasios Panagiotelis & Michael S. Smith & Peter J Danaher, 2013. "From Amazon to Apple: Modeling Online Retail Sales, Purchase Incidence and Visit Behavior," Monash Econometrics and Business Statistics Working Papers 5/13, Monash University, Department of Econometrics and Business Statistics.
- Maxwell King & Xibin Zhang & Muhammad Akram, 2019.
"Hypothesis Testing Based on a Vector of Statistics,"
Monash Econometrics and Business Statistics Working Papers
30/19, Monash University, Department of Econometrics and Business Statistics.
- King, Maxwell L. & Zhang, Xibin & Akram, Muhammad, 2020. "Hypothesis testing based on a vector of statistics," Journal of Econometrics, Elsevier, vol. 219(2), pages 425-455.
- Jha, Amit Prakash & Mahajan, Aarushi & Singh, Sanjay Kumar & Kumar, Piyush, 2022. "Renewable energy proliferation for sustainable development: Role of cross-border electricity trade," Renewable Energy, Elsevier, vol. 201(P1), pages 1189-1199.
- Guohua Feng & Chuan Wang & Xibin Zhang, 2019. "Estimation of inefficiency in stochastic frontier models: a Bayesian kernel approach," Journal of Productivity Analysis, Springer, vol. 51(1), pages 1-19, February.
- Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.
- C J Scarrott & A MacDonald, 2010. "Extreme-value-model-based risk assessment for nuclear reactors," Journal of Risk and Reliability, , vol. 224(4), pages 239-252, December.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013.
"Bayesian bandwidth selection for a nonparametric regession model with mixed types of regressors,"
Monash Econometrics and Business Statistics Working Papers
13/13, Monash University, Department of Econometrics and Business Statistics.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016. "Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors," Econometrics, MDPI, vol. 4(2), pages 1-27, April.
- Y. Ziane & S. Adjabi & N. Zougab, 2015. "Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(8), pages 1645-1658, August.
- Zhang, Xibin & King, Maxwell L., 2008.
"Box-Cox stochastic volatility models with heavy-tails and correlated errors,"
Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
- Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
- Hu, Shuowen & Poskitt, D.S. & Zhang, Xibin, 2021. "Bayesian estimation for a semiparametric nonlinear volatility model," Economic Modelling, Elsevier, vol. 98(C), pages 361-370.
- Hu, Guoqing & You, Fengqi, 2023. "An AI framework integrating physics-informed neural network with predictive control for energy-efficient food production in the built environment," Applied Energy, Elsevier, vol. 348(C).
- Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
- H. Poulos, 2010. "Spatially explicit mapping of hurricane risk in New England, USA using ArcGIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 54(3), pages 1015-1023, September.
- Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007.
"A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,"
Monash Econometrics and Business Statistics Working Papers
11/07, Monash University, Department of Econometrics and Business Statistics.
- Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
- David Pitt & Montserrat Guillen & Catalina Bolancé, 2011. "Estimation of Parametric and Nonparametric Models for Univariate Claim Severity Distributions - an approach using R," Working Papers XREAP2011-06, Xarxa de Referència en Economia Aplicada (XREAP), revised Jun 2011.
- Rong Zhang & Brett A. Inder & Xibin Zhang, 2012. "Parameter estimation for a discrete-response model with double rules of sample selection: A Bayesian approach," Monash Econometrics and Business Statistics Working Papers 5/12, Monash University, Department of Econometrics and Business Statistics.
- Yasmina Ziane & Nabil Zougab & Smail Adjabi, 2018. "Birnbaum–Saunders power-exponential kernel density estimation and Bayes local bandwidth selection for nonnegative heavy tailed data," Computational Statistics, Springer, vol. 33(1), pages 299-318, March.
- Perrin, G. & Soize, C. & Ouhbi, N., 2018. "Data-driven kernel representations for sampling with an unknown block dependence structure under correlation constraints," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 139-154.
- MacDonald, A. & Scarrott, C.J. & Lee, D. & Darlow, B. & Reale, M. & Russell, G., 2011. "A flexible extreme value mixture model," Computational Statistics & Data Analysis, Elsevier, vol. 55(6), pages 2137-2157, June.
- Langrené, Nicolas & Warin, Xavier, 2021. "Fast multivariate empirical cumulative distribution function with connection to kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
- Filippone, Maurizio & Sanguinetti, Guido, 2011. "Approximate inference of the bandwidth in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3104-3122, December.
- Mathieu Langlard & Fabrice Lamadie & Sophie Charton & Johan Debayle, 2021. "Bayesian Inference of a Parametric Random Spheroid from its Orthogonal Projections," Methodology and Computing in Applied Probability, Springer, vol. 23(2), pages 549-567, June.
- Sreevani, & Murthy, C.A., 2016. "On bandwidth selection using minimal spanning tree for kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 102(C), pages 67-84.
- Matthew D. Baird, 2014. "Cross Validation Bandwidth Selection for Derivatives of Multidimensional Densities," Working Papers WR-1060, RAND Corporation.
- Groß, Marcus & Rendtel, Ulrich, 2015. "Kernel density estimation for heaped data," Discussion Papers 2015/27, Free University Berlin, School of Business & Economics.
- Marcus Groß & Ulrich Rendtel & Timo Schmid & Sebastian Schmon & Nikos Tzavidis, 2017. "Estimating the density of ethnic minorities and aged people in Berlin: multivariate kernel density estimation applied to sensitive georeferenced administrative data protected via measurement error," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(1), pages 161-183, January.
- Tingting Cheng & Jiti Gao & Xibin Zhang, 2014. "Semiparametric Localized Bandwidth Selection for Kernel Density Estimation," Monash Econometrics and Business Statistics Working Papers 27/14, Monash University, Department of Econometrics and Business Statistics.
- Hart, Jeffrey D. & Choi, Taeryon & Yi, Seongbaek, 2016. "Frequentist nonparametric goodness-of-fit tests via marginal likelihood ratios," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 120-132.
- Seok Young Hong & Oliver Linton, 2016.
"Asymptotic properties of a Nadaraya-Watson type estimator for regression functions of in?finite order,"
CeMMAP working papers
CWP53/16, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
See citations under working paper version above.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Anne B. Koehler & Rob J. Hyndman & Ralph D. Snyder & J. Keith Ord, 2005.
"Prediction intervals for exponential smoothing using two new classes of state space models,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(1), pages 17-37.
Cited by:
- Hayat, Aziz & Bhatti, M. Ishaq, 2013. "Masking of volatility by seasonal adjustment methods," Economic Modelling, Elsevier, vol. 33(C), pages 676-688.
- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- S. Li & Z. Yu & M. Dong, 2015. "Construct the stable vendor managed inventory partnership through a profit-sharing approach," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(2), pages 271-283, January.
- Rob J. Hyndman & Yeasmin Khandakar, 2007.
"Automatic time series forecasting: the forecast package for R,"
Monash Econometrics and Business Statistics Working Papers
6/07, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Taylor, James W., 2008. "An evaluation of methods for very short-term load forecasting using minute-by-minute British data," International Journal of Forecasting, Elsevier, vol. 24(4), pages 645-658.
- Goodwin, Paul & Önkal, Dilek & Thomson, Mary, 2010. "Do forecasts expressed as prediction intervals improve production planning decisions?," European Journal of Operational Research, Elsevier, vol. 205(1), pages 195-201, August.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
- Bogdan Oancea & Richard Pospíšil & Marius Nicolae Jula & Cosmin-Ionuț Imbrișcă, 2021. "Experiments with Fuzzy Methods for Forecasting Time Series as Alternatives to Classical Methods," Mathematics, MDPI, vol. 9(19), pages 1-17, October.
- Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
- Hayat, Aziz & Narayan, Paresh Kumar, 2010. "The oil stock fluctuations in the United States," Applied Energy, Elsevier, vol. 87(1), pages 178-184, January.
- Mick Silver, 2006. "Core Inflation Measures and Statistical Issues in Choosing Among Them," IMF Working Papers 2006/097, International Monetary Fund.
- Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
- Sarah Gelper & Roland Fried & Christophe Croux, 2010. "Robust forecasting with exponential and Holt-Winters smoothing," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 29(3), pages 285-300.
- George Athanasopoulos & Rob J Hyndman & Haiyan Song & Doris C Wu, 2008.
"The tourism forecasting competition,"
Monash Econometrics and Business Statistics Working Papers
10/08, Monash University, Department of Econometrics and Business Statistics, revised Oct 2009.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844, July.
- Athanasopoulos, George & Hyndman, Rob J. & Song, Haiyan & Wu, Doris C., 2011. "The tourism forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 822-844.
- Song, Haiyan & Gao, Bastian Z. & Lin, Vera S., 2013. "Combining statistical and judgmental forecasts via a web-based tourism demand forecasting system," International Journal of Forecasting, Elsevier, vol. 29(2), pages 295-310.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Sang M. Lee & David L. Olson & Sang-Heui Lee & Taewon Hwang & Matt S. Shin, 2007. "Entrepreneurial applications of the lean approach to service industries," The Service Industries Journal, Taylor & Francis Journals, vol. 28(7), pages 973-987, November.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Changrui Deng & Xiaoyuan Zhang & Yanmei Huang & Yukun Bao, 2021. "Equipping Seasonal Exponential Smoothing Models with Particle Swarm Optimization Algorithm for Electricity Consumption Forecasting," Energies, MDPI, vol. 14(13), pages 1-14, July.
- Muhammad Akram & Rob J. Hyndman & J. Keith Ord, 2007. "Non-linear exponential smoothing and positive data," Monash Econometrics and Business Statistics Working Papers 14/07, Monash University, Department of Econometrics and Business Statistics.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Taylor, James W., 2007. "Forecasting daily supermarket sales using exponentially weighted quantile regression," European Journal of Operational Research, Elsevier, vol. 178(1), pages 154-167, April.
- Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.
- Pim Ouwehand & Rob J. Hyndman & Ton G. de Kok & Karel H. van Donselaar, 2007. "A state space model for exponential smoothing with group seasonality," Monash Econometrics and Business Statistics Working Papers 7/07, Monash University, Department of Econometrics and Business Statistics.
- George P. Papaioannou & Christos Dikaiakos & Anargyros Dramountanis & Panagiotis G. Papaioannou, 2016. "Analysis and Modeling for Short- to Medium-Term Load Forecasting Using a Hybrid Manifold Learning Principal Component Model and Comparison with Classical Statistical Models (SARIMAX, Exponential Smoot," Energies, MDPI, vol. 9(8), pages 1-40, August.
- J D Bermúdez & J V Segura & E Vercher, 2010. "Bayesian forecasting with the Holt–Winters model," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 164-171, January.
- Mauro Bernardi & Lea Petrella, 2015. "Multiple seasonal cycles forecasting model: the Italian electricity demand," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(4), pages 671-695, November.
- Rob J. Hyndman & Lydia Shenstone, 2005.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
See citations under working paper version above.
- Lydia Shenstone & Rob J. Hyndman, 2003. "Stochastic models underlying Croston's method for intermittent demand forecasting," Monash Econometrics and Business Statistics Working Papers 1/03, Monash University, Department of Econometrics and Business Statistics.
- Snyder, Ralph D. & Koehler, Anne B. & Hyndman, Rob J. & Ord, J. Keith, 2004.
"Exponential smoothing models: Means and variances for lead-time demand,"
European Journal of Operational Research, Elsevier, vol. 158(2), pages 444-455, October.
Cited by:
- Cadenas, E. & Jaramillo, O.A. & Rivera, W., 2010. "Analysis and forecasting of wind velocity in chetumal, quintana roo, using the single exponential smoothing method," Renewable Energy, Elsevier, vol. 35(5), pages 925-930.
- Schmitt, Thomas G. & Kumar, Sanjay & Stecke, Kathryn E. & Glover, Fred W. & Ehlen, Mark A., 2017. "Mitigating disruptions in a multi-echelon supply chain using adaptive ordering," Omega, Elsevier, vol. 68(C), pages 185-198.
- Karzan Mahdi Ghafour & Nerda ZuraZaibidi, 2014. "A Simulation Approach to Determine the Probability of Demand during Lead-Time When Demand Distributed Normal and Lead-Time Distributed Gamma," Journal of Economics and Behavioral Studies, AMH International, vol. 6(11), pages 840-847.
- Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
- Ren, Ke & Bidkhori, Hoda & Shen, Zuo-Jun Max, 2024. "Data-driven inventory policy: Learning from sequentially observed non-stationary data," Omega, Elsevier, vol. 123(C).
- Syntetos, A.A. & Teunter, R.H., 2014. "On the calculation of safety stocks," Research Report 14003-OPERA, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
- Saoud, Patrick & Kourentzes, Nikolaos & Boylan, John E., 2022. "Approximations for the Lead Time Variance: a Forecasting and Inventory Evaluation," Omega, Elsevier, vol. 110(C).
- Biswajit Sarkar & Bikash Koli Dey & Mitali Sarkar & Ali AlArjani, 2021. "A Sustainable Online-to-Offline (O2O) Retailing Strategy for a Supply Chain Management under Controllable Lead Time and Variable Demand," Sustainability, MDPI, vol. 13(4), pages 1-26, February.
- Ord, J. Keith, 2022. "The uncertainty track: Machine learning, statistical modeling, synthesis," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1526-1530.
- Waseem Sajjad & Misbah Ullah & Razaullah Khan & Mubashir Hayat, 2022. "Developing a Comprehensive Shipment Policy through Modified EPQ Model Considering Process Imperfections, Transportation Cost, and Backorders," Logistics, MDPI, vol. 6(3), pages 1-20, June.
- Hyndman, Rob J., 2004.
"The interaction between trend and seasonality,"
International Journal of Forecasting, Elsevier, vol. 20(4), pages 561-563.
Cited by:
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- Hyndman, Rob J. & Billah, Baki, 2003.
"Unmasking the Theta method,"
International Journal of Forecasting, Elsevier, vol. 19(2), pages 287-290.
See citations under working paper version above.
- Hyndman, R.J. & Billah, B., 2001. "Unmasking the Theta Method," Monash Econometrics and Business Statistics Working Papers 5/01, Monash University, Department of Econometrics and Business Statistics.
- Hall, Peter G. & Hyndman, Rob J., 2003.
"Improved methods for bandwidth selection when estimating ROC curves,"
Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
See citations under working paper version above.
- Peter Hall & Rob J. Hyndman, 2002. "An Improved Method for Bandwidth Selection when Estimating ROC Curves," Monash Econometrics and Business Statistics Working Papers 11/02, Monash University, Department of Econometrics and Business Statistics.
- Jeff Racine & Rob Hyndman, 2002.
"Using R to teach econometrics,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 17(2), pages 175-189.
See citations under working paper version above.
- Racine, J & Hyndman, R.J., 2001. "Using R to Teach Econometrics," Monash Econometrics and Business Statistics Working Papers 10/01, Monash University, Department of Econometrics and Business Statistics.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
See citations under working paper version above.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Bashtannyk, David M. & Hyndman, Rob J., 2001.
"Bandwidth selection for kernel conditional density estimation,"
Computational Statistics & Data Analysis, Elsevier, vol. 36(3), pages 279-298, May.
See citations under working paper version above.
- Bashtannyk, D.M. & Hyndman, R.J., 1998. "Bandwidth Selection for Kernel Conditional Density Estimation," Monash Econometrics and Business Statistics Working Papers 16/98, Monash University, Department of Econometrics and Business Statistics.
- Grunwald, Gary K. & Hyndman, Rob J., 1998.
"Smoothing non-Gaussian time series with autoregressive structure,"
Computational Statistics & Data Analysis, Elsevier, vol. 28(2), pages 171-191, August.
Cited by:
- Hyndman, R.J. & Grunwald, G.K., 1999. "Generalized Additive Modelling of Mixed Distribution Markov Models with Application to Melbourne's Rainfall," Monash Econometrics and Business Statistics Working Papers 2/99, Monash University, Department of Econometrics and Business Statistics.
- Gary K. Grunwald & Kais Hamza & Rob J. Hyndman, 1997.
"Some Properties and Generalizations of Non‐negative Bayesian Time Series Models,"
Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 615-626.
Cited by:
- Rob J. Hyndman & Lydia Shenstone, 2005.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
- Lydia Shenstone & Rob J. Hyndman, 2003. "Stochastic models underlying Croston's method for intermittent demand forecasting," Monash Econometrics and Business Statistics Working Papers 1/03, Monash University, Department of Econometrics and Business Statistics.
- Zhen, X. & Basawa, I.V., 2009. "Observation-driven generalized state space models for categorical time series," Statistics & Probability Letters, Elsevier, vol. 79(24), pages 2462-2468, December.
- Feigin, Paul D. & Gould, Phillip & Martin, Gael M. & Snyder, Ralph D., 2008. "Feasible parameter regions for alternative discrete state space models," Statistics & Probability Letters, Elsevier, vol. 78(17), pages 2963-2970, December.
- J. Keith Ord, 2008.
"Monitoring Processes with Changing Variances,"
Working Papers
2008-004, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
- Ord, J. Keith & Koehler, Anne B. & Snyder, Ralph D. & Hyndman, Rob J., 2009. "Monitoring processes with changing variances," International Journal of Forecasting, Elsevier, vol. 25(3), pages 518-525, July.
- J. Keith Ord & Rob J. Hyndman & Anne B. Koehler & Ralph D. Snyder, 2008. "Monitoring Processes with Changing Variances," Monash Econometrics and Business Statistics Working Papers 4/08, Monash University, Department of Econometrics and Business Statistics.
- Fukasawa, T. & Basawa, I. V., 2002. "Estimation for a class of generalized state-space time series models," Statistics & Probability Letters, Elsevier, vol. 60(4), pages 459-473, December.
- Higuchi, Tomoyuki, 1999. "Applications of quasi-periodic oscillation models to seasonal small count time series," Computational Statistics & Data Analysis, Elsevier, vol. 30(3), pages 281-301, May.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Ralph D. Snyder & Gael M. Martin & Phillip Gould & Paul D. Feigin, 2007. "An Assessment of Alternative State Space Models for Count Time Series," Monash Econometrics and Business Statistics Working Papers 4/07, Monash University, Department of Econometrics and Business Statistics.
- Ralph Snyder & Adrian Beaumont & J. Keith Ord, 2012. "Intermittent demand forecasting for inventory control: A multi-series approach," Monash Econometrics and Business Statistics Working Papers 15/12, Monash University, Department of Econometrics and Business Statistics.
- Ralph D. Snyder & Adrian Beaumont, 2007. "A Comparison of Methods for Forecasting Demand for Slow Moving Car Parts," Monash Econometrics and Business Statistics Working Papers 15/07, Monash University, Department of Econometrics and Business Statistics.
- Rob J. Hyndman & Lydia Shenstone, 2005.
"Stochastic models underlying Croston's method for intermittent demand forecasting,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 24(6), pages 389-402.
- Rob J. Hyndman, 1993.
"Yule‐Walker Estimates For Continuous‐Time Autoregressive Models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 281-296, May.
Cited by:
- Kim Fecher & Lauren McCarthy & Daniel E. Porreca & Niam Yaraghi, 2021. "Assessing the Benefits of Integrating Health Information Exchange Services into the Medical Practices’ Workflow," Information Systems Frontiers, Springer, vol. 23(3), pages 599-605, June.
- Brockwell, P. J. & Hyndman, R. J., 1992.
"On continuous-time threshold autoregression,"
International Journal of Forecasting, Elsevier, vol. 8(2), pages 157-173, October.
Cited by:
- Harris, Keith J. & Blackwell, Paul G., 2013. "Flexible continuous-time modelling for heterogeneous animal movement," Ecological Modelling, Elsevier, vol. 255(C), pages 29-37.
- Jean-Pascal Guironnet, 2005.
"Analyse cliométrique des cycles de croissance de l’éducation en France (1815-2003) : Vers un modèle à seuil autorégressif,"
Working Papers
05-11, Association Française de Cliométrie (AFC).
- Jean-Pascal Guironnet, 2005. "Analyse cliométrique des cycles de croissance de l’éducation en France (1815-2003) : Vers un modèle à seuil autorégressif," Working Papers 05-05, LAMETA, Universtiy of Montpellier, revised Jan 2005.
- J-P.Guironnet, 2006. "Analyse cliométrique des cycles de croissance de l'éducation en France (1815-2003): vers un modèle à seuil autorégressif," Economies et Sociétés (Serie 'Histoire Economique Quantitative'), Association Française de Cliométrie (AFC), issue 34, pages 193-214, February.
- Lingohr, Daniel & Müller, Gernot, 2019. "Stochastic modeling of intraday photovoltaic power generation," Energy Economics, Elsevier, vol. 81(C), pages 175-186.
- Su, Fei & Chan, Kung-Sik, 2015. "Quasi-likelihood estimation of a threshold diffusion process," Journal of Econometrics, Elsevier, vol. 189(2), pages 473-484.
- Chan, K. S. & Stramer, O., 1998. "Weak consistency of the Euler method for numerically solving stochastic differential equations with discontinuous coefficients," Stochastic Processes and their Applications, Elsevier, vol. 76(1), pages 33-44, August.
- Siu, Tak Kuen, 2016. "A self-exciting threshold jump–diffusion model for option valuation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 168-193.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- Dingwen Zhang, 2024. "Determining the Number and Values of Thresholds for Multi-regime Threshold Ornstein–Uhlenbeck Processes," Journal of Theoretical Probability, Springer, vol. 37(4), pages 3581-3626, November.
- Jan G. De Gooijer & Rob J. Hyndman, 2005.
"25 Years of IIF Time Series Forecasting: A Selective Review,"
Monash Econometrics and Business Statistics Working Papers
12/05, Monash University, Department of Econometrics and Business Statistics.
- Jan G. de Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Tinbergen Institute Discussion Papers 05-068/4, Tinbergen Institute.
- P. Brockwell & O. Stramer, 1995. "On the approximation of continuous time threshold ARMA processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 47(1), pages 1-20, January.
Chapters
- Ingrida Steponavičė & Mojdeh Shirazi-Manesh & Rob J. Hyndman & Kate Smith-Miles & Laura Villanova, 2016.
"On Sampling Methods for Costly Multi-Objective Black-Box Optimization,"
Springer Optimization and Its Applications, in: Panos M. Pardalos & Anatoly Zhigljavsky & Julius Žilinskas (ed.), Advances in Stochastic and Deterministic Global Optimization, pages 273-296,
Springer.
Cited by:
- A. Candelieri & R. Perego & F. Archetti, 2018. "Bayesian optimization of pump operations in water distribution systems," Journal of Global Optimization, Springer, vol. 71(1), pages 213-235, May.