Air Temperature Forecasting Using Machine Learning Techniques: A Review
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hassani, Hossein & Silva, Emmanuel Sirimal & Gupta, Rangan & Das, Sonali, 2018.
"Predicting global temperature anomaly: A definitive investigation using an ensemble of twelve competing forecasting models,"
Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 121-139.
- Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Sonali Das, 2015. "Predicting Global Temperature Anomaly: A Definitive Investigation Using an Ensemble of Twelve Competing Forecasting Models," Working Papers 201561, University of Pretoria, Department of Economics.
- Alonso García, M.C. & Balenzategui, J.L., 2004. "Estimation of photovoltaic module yearly temperature and performance based on Nominal Operation Cell Temperature calculations," Renewable Energy, Elsevier, vol. 29(12), pages 1997-2010.
- Georgia Papacharalampous & Hristos Tyralis & Demetris Koutsoyiannis, 2018. "Univariate Time Series Forecasting of Temperature and Precipitation with a Focus on Machine Learning Algorithms: a Multiple-Case Study from Greece," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(15), pages 5207-5239, December.
- Ko, Chia-Nan & Lee, Cheng-Ming, 2013. "Short-term load forecasting using SVR (support vector regression)-based radial basis function neural network with dual extended Kalman filter," Energy, Elsevier, vol. 49(C), pages 413-422.
- Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.
- Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change, Part II. Dynamic Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(2), pages 135-160, February.
- Fildes, Robert & Kourentzes, Nikolaos, 2011. "Validation and forecasting accuracy in models of climate change," International Journal of Forecasting, Elsevier, vol. 27(4), pages 968-995, October.
- Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
- Pardo, Angel & Meneu, Vicente & Valor, Enric, 2002. "Temperature and seasonality influences on Spanish electricity load," Energy Economics, Elsevier, vol. 24(1), pages 55-70, January.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Chao Chen & Jamie Twycross & Jonathan M Garibaldi, 2017. "A new accuracy measure based on bounded relative error for time series forecasting," PLOS ONE, Public Library of Science, vol. 12(3), pages 1-23, March.
- Altan Dombaycı, Ömer & Gölcü, Mustafa, 2009. "Daily means ambient temperature prediction using artificial neural network method: A case study of Turkey," Renewable Energy, Elsevier, vol. 34(4), pages 1158-1161.
- Li, Song & Goel, Lalit & Wang, Peng, 2016. "An ensemble approach for short-term load forecasting by extreme learning machine," Applied Energy, Elsevier, vol. 170(C), pages 22-29.
- Tasadduq, Imran & Rehman, Shafiqur & Bubshait, Khaled, 2002. "Application of neural networks for the prediction of hourly mean surface temperatures in Saudi Arabia," Renewable Energy, Elsevier, vol. 25(4), pages 545-554.
- Peter A. Stott & J. A. Kettleborough, 2002. "Erratum: Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 417(6885), pages 205-205, May.
- Richard Tol, 2002. "Estimates of the Damage Costs of Climate Change. Part 1: Benchmark Estimates," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 21(1), pages 47-73, January.
- Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
- Peter A. Stott & J. A. Kettleborough, 2002. "Origins and estimates of uncertainty in predictions of twenty-first century temperature rise," Nature, Nature, vol. 416(6882), pages 723-726, April.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmed M. Elshewey & Mahmoud Y. Shams & Abdelghafar M. Elhady & Samaa M. Shohieb & Abdelaziz A. Abdelhamid & Abdelhameed Ibrahim & Zahraa Tarek, 2022. "A Novel WD-SARIMAX Model for Temperature Forecasting Using Daily Delhi Climate Dataset," Sustainability, MDPI, vol. 15(1), pages 1-15, December.
- Rana Muhammad Adnan & Sarita Gajbhiye Meshram & Reham R. Mostafa & Abu Reza Md. Towfiqul Islam & S. I. Abba & Francis Andorful & Zhihuan Chen, 2023. "Application of Advanced Optimized Soft Computing Models for Atmospheric Variable Forecasting," Mathematics, MDPI, vol. 11(5), pages 1-29, March.
- Elianne Mora & Jenny Cifuentes & Geovanny Marulanda, 2021. "Short-Term Forecasting of Wind Energy: A Comparison of Deep Learning Frameworks," Energies, MDPI, vol. 14(23), pages 1-26, November.
- Changjun Yin & Yunfei Liu & Dongwei Gui & Yi Liu & Wengai Lv, 2022. "A Study on Evaporation Calculations of Agricultural Reservoirs in Hyper-Arid Areas," Agriculture, MDPI, vol. 12(5), pages 1-16, April.
- Cristian Napole & Oscar Barambones & Mohamed Derbeli & José Antonio Cortajarena & Isidro Calvo & Patxi Alkorta & Pablo Fernandez Bustamante, 2021. "Double Fed Induction Generator Control Design Based on a Fuzzy Logic Controller for an Oscillating Water Column System," Energies, MDPI, vol. 14(12), pages 1-19, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
- Stasinopoulos, Georgios, 2009. "Economic impacts of climate change on cities: A survey of the existing literature," HWWI Policy Papers 1-18, Hamburg Institute of International Economics (HWWI).
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Brummelhuis, Raymond & Luo, Zhongmin, 2019. "Bank Net Interest Margin Forecasting and Capital Adequacy Stress Testing by Machine Learning Techniques," MPRA Paper 94779, University Library of Munich, Germany.
- Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
- Jianhua Huang & Kevin Robert Gurney, 2016. "Impact of climate change on U.S. building energy demand: sensitivity to spatiotemporal scales, balance point temperature, and population distribution," Climatic Change, Springer, vol. 137(1), pages 171-185, July.
- Paniagua-Tineo, A. & Salcedo-Sanz, S. & Casanova-Mateo, C. & Ortiz-García, E.G. & Cony, M.A. & Hernández-Martín, E., 2011. "Prediction of daily maximum temperature using a support vector regression algorithm," Renewable Energy, Elsevier, vol. 36(11), pages 3054-3060.
- Richard S.J. Tol, 2003. "The Marginal Costs Of Carbon Dioxide Emissions: An Assessment Of The Uncertainties," Working Papers FNU-19, Research unit Sustainability and Global Change, Hamburg University, revised Apr 2003.
- Reinhard Mechler & Stefan Hochrainer & Asbjørn Aaheim & Håkon Salen & Anita Wreford, 2010. "Modelling economic impacts and adaptation to extreme events: Insights from European case studies," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 15(7), pages 737-762, October.
- Luca Gerotto & Paolo Pellizzari, 2021. "A replication of Pindyck’s willingness to pay: on the efforts required to obtain results," SN Business & Economics, Springer, vol. 1(5), pages 1-25, May.
- Pindyck, Robert S., 2012.
"Uncertain outcomes and climate change policy,"
Journal of Environmental Economics and Management, Elsevier, vol. 63(3), pages 289-303.
- Robert S. Pindyck, 2009. "Uncertain Outcomes and Climate Change Policy," NBER Working Papers 15259, National Bureau of Economic Research, Inc.
- Robert S. Pindyck, 2009. "Uncertain Outcomes and Climate Change Policy," Working Papers 0907, Massachusetts Institute of Technology, Center for Energy and Environmental Policy Research.
- Roberto Roson & Martina Sartori, 2016.
"Estimation of Climate Change Damage Functions for 140 Regions in the GTAP 9 Database,"
Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 1(2), pages 78-115, December.
- Roberto Roson & Martina Sartori, 2016. "Estimation of climate change damage functions for 140 regions in the GTAP9 database," Working Papers 2016:06, Department of Economics, University of Venice "Ca' Foscari".
- Roson,Roberto & Sartori,Martina, 2016. "Estimation of climate change damage functions for 140 regions in the GTAP9 database," Policy Research Working Paper Series 7728, The World Bank.
- Martina Sartori & Roberto Roson, 2016. "Estimation of climate change damage functions for 140 regions in the GTAP9 database," EcoMod2016 9171, EcoMod.
- Roson, Roberto & Sartori, Martina, 2016. "Estimation of climate change damage functions for 140 regions in the GTAP9 database," Conference papers 332688, Purdue University, Center for Global Trade Analysis, Global Trade Analysis Project.
- Ng, Pin & Zhao, Xiaobing, 2011. "No matter how it is measured, income declines with global warming," Ecological Economics, Elsevier, vol. 70(5), pages 963-970, March.
- Philippopoulos, Kostas & Deligiorgi, Despina, 2012. "Application of artificial neural networks for the spatial estimation of wind speed in a coastal region with complex topography," Renewable Energy, Elsevier, vol. 38(1), pages 75-82.
- Santamaría-Bonfil, G. & Reyes-Ballesteros, A. & Gershenson, C., 2016. "Wind speed forecasting for wind farms: A method based on support vector regression," Renewable Energy, Elsevier, vol. 85(C), pages 790-809.
- Adrian Amelung, 2016. "Das "Paris-Agreement": Durchbruch der Top-Down-Klimaschutzverhandlungen im Kreise der Vereinten Nationen," Otto-Wolff-Institut Discussion Paper Series 03/2016, Otto-Wolff-Institut für Wirtschaftsordnung, Köln, Deutschland.
- Hallegatte, Stéphane & Ghil, Michael, 2008.
"Natural disasters impacting a macroeconomic model with endogenous dynamics,"
Ecological Economics, Elsevier, vol. 68(1-2), pages 582-592, December.
- Stéphane Hallegatte & Michael Ghil, 2008. "Natural disasters impacting a macroeconomic model with endogenous dynamics," Post-Print hal-00716677, HAL.
- Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007.
"AD-DICE: An Implementation of Adaptation in the DICE Mode,"
Working Papers
2007.51, Fondazione Eni Enrico Mattei.
- de Bruin, Kelly C. & Dellink, Rob B. & Tol, Richard S.J., 2007. "AD-DICE: An Implementation of Adaptation in the DICE Mode," Climate Change Modelling and Policy Working Papers 9548, Fondazione Eni Enrico Mattei (FEEM).
- Kelly C. de Bruin & Rob B. Dellink & Richard S.J. Tol, 2007. "AD-DICE: an implementation of adaptation in the DICE model," Working Papers FNU-126, Research unit Sustainability and Global Change, Hamburg University, revised Feb 2007.
- Zhang, Hong & Jin, Gui & Zhang, Zhengyu, 2021. "Coupling system of carbon emission and social economy: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
- Changxin Liu & Hailing Zhang & Zheng Wang, 2019. "Study on the Functional Improvement of Economic Damage Assessment for the Integrated Assessment Model," Sustainability, MDPI, vol. 11(5), pages 1-18, February.
More about this item
Keywords
air temperature forecasting; artificial intelligence; machine learning; neural networks; support vector machines;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:16:p:4215-:d:399146. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.