IDEAS home Printed from https://ideas.repec.org/a/eee/insuma/v111y2023icp193-213.html
   My bibliography  Save this article

Cause-of-death mortality forecasting using adaptive penalized tensor decompositions

Author

Listed:
  • Zhang, Xuanming
  • Huang, Fei
  • Hui, Francis K.C.
  • Haberman, Steven

Abstract

Cause-of-death mortality modeling and forecasting is an important topic in demography and actuarial science, as it can provide valuable insights into the risks and factors determining future mortality rates. In this paper, we propose a novel predictive approach for cause-of-death mortality forecasting, based on an adaptive penalized tensor decomposition (ADAPT). The new method jointly models the three dimensions (cause, age, and year) of the data, and uses adaptively weighted penalty matrices to overcome the computational burden of having to select a large number of tuning parameters when multiple factors are involved. ADAPT can be coupled with a variety of methods (e.g., linear extrapolation, and smoothing) for extrapolating the estimated year factors and hence for mortality forecasting. Based on an application to United States (US) male cause-of-death mortality data, we demonstrate that tensor decomposition methods such as ADAPT can offer strong out-of-sample predictive performance compared to several existing models, especially when it comes to mid- and long-term forecasting.

Suggested Citation

  • Zhang, Xuanming & Huang, Fei & Hui, Francis K.C. & Haberman, Steven, 2023. "Cause-of-death mortality forecasting using adaptive penalized tensor decompositions," Insurance: Mathematics and Economics, Elsevier, vol. 111(C), pages 193-213.
  • Handle: RePEc:eee:insuma:v:111:y:2023:i:c:p:193-213
    DOI: 10.1016/j.insmatheco.2023.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167668723000410
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.insmatheco.2023.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert Tibshirani & Michael Saunders & Saharon Rosset & Ji Zhu & Keith Knight, 2005. "Sparsity and smoothness via the fused lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 91-108, February.
    2. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    3. Séverine Arnold (-Gaille) & Michael Sherris, 2015. "Causes-of-Death Mortality: What Do We Know on Their Dependence?," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(2), pages 116-128, April.
    4. Francis K. C. Hui & Emi Tanaka & David I. Warton, 2018. "Order selection and sparsity in latent variable models via the ordered factor LASSO," Biometrics, The International Biometric Society, vol. 74(4), pages 1311-1319, December.
    5. McNown, Robert & Rogers, Andrei, 1992. "Forecasting cause-specific mortality using time series methods," International Journal of Forecasting, Elsevier, vol. 8(3), pages 413-432, November.
    6. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    7. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    8. Yumo Dong & Fei Huang & Honglin Yu & Steven Haberman, 2020. "Multi-population mortality forecasting using tensor decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2020(8), pages 754-775, September.
    9. Séverine Arnold (-Gaille) & Michael Sherris, 2013. "Forecasting Mortality Trends Allowing for Cause-of-Death Mortality Dependence," North American Actuarial Journal, Taylor & Francis Journals, vol. 17(4), pages 273-282.
    10. Séverine Gaille & Michael Sherris, 2011. "Modelling Mortality with Common Stochastic Long-Run Trends," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 595-621, October.
    11. Hong Li & Yang Lu, 2019. "Modeling cause-of-death mortality using hierarchical Archimedean copula," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2019(3), pages 247-272, March.
    12. Arnold-Gaille, Séverine & Sherris, Michael, 2016. "International Cause-Specific Mortality Rates: New Insights From A Cointegration Analysis," ASTIN Bulletin, Cambridge University Press, vol. 46(1), pages 9-38, January.
    13. Alai, Daniel H. & Arnold (-Gaille), Séverine & Sherris, Michael, 2015. "Modelling cause-of-death mortality and the impact of cause-elimination," Annals of Actuarial Science, Cambridge University Press, vol. 9(1), pages 167-186, March.
    14. Sithole, Terry Z. & Haberman, Steven & Verrall, Richard J., 2000. "An investigation into parametric models for mortality projections, with applications to immediate annuitants' and life office pensioners' data," Insurance: Mathematics and Economics, Elsevier, vol. 27(3), pages 285-312, December.
    15. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    16. Maria Russolillo & Giuseppe Giordano & Steven Haberman, 2011. "Extending the Lee–Carter model: a three-way decomposition," Scandinavian Actuarial Journal, Taylor & Francis Journals, vol. 2011(2), pages 96-117.
    17. Katja Hanewald, 2011. "Explaining Mortality Dynamics," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 290-314.
    18. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    19. He, Lingyu & Huang, Fei & Shi, Jianjie & Yang, Yanrong, 2021. "Mortality forecasting using factor models: Time-varying or time-invariant factor loadings?," Insurance: Mathematics and Economics, Elsevier, vol. 98(C), pages 14-34.
    20. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    21. Hui, Francis K.C. & Müller, Samuel & Welsh, A.H., 2020. "The LASSO on latent indices for regression modeling with ordinal categorical predictors," Computational Statistics & Data Analysis, Elsevier, vol. 149(C).
    22. Arnold, Séverine & Glushko, Viktoriya, 2021. "Cause-specific mortality rates: Common trends and differences," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 294-308.
    23. Pitacco, Ermanno & Denuit, Michel & Haberman, Steven & Olivieri, Annamaria, 2009. "Modelling Longevity Dynamics for Pensions and Annuity Business," OUP Catalogue, Oxford University Press, number 9780199547272.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    4. Li, Han & Li, Hong & Lu, Yang & Panagiotelis, Anastasios, 2019. "A forecast reconciliation approach to cause-of-death mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 122-133.
    5. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    8. Jonas Hirz & Uwe Schmock & Pavel V. Shevchenko, 2017. "Actuarial Applications and Estimation of Extended CreditRisk+," Risks, MDPI, vol. 5(2), pages 1-29, March.
    9. Dorota Toczydlowska & Gareth W. Peters & Man Chung Fung & Pavel V. Shevchenko, 2017. "Stochastic Period and Cohort Effect State-Space Mortality Models Incorporating Demographic Factors via Probabilistic Robust Principal Components," Risks, MDPI, vol. 5(3), pages 1-77, July.
    10. Flici, Farrid, 2016. "Projection des taux de mortalité par âges pour la population algérienne [Forecasting The Age Specific Mortality Rates For The Algerian Population]," MPRA Paper 98784, University Library of Munich, Germany, revised Dec 2016.
    11. Arnold, Séverine & Glushko, Viktoriya, 2021. "Cause-specific mortality rates: Common trends and differences," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 294-308.
    12. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    13. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    14. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    15. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.
    16. Nhan Huynh & Mike Ludkovski, 2021. "Joint Models for Cause-of-Death Mortality in Multiple Populations," Papers 2111.06631, arXiv.org.
    17. David Blake & Andrew Cairns & Guy Coughlan & Kevin Dowd & Richard MacMinn, 2013. "The New Life Market," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 501-558, September.
    18. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.
    19. Li, Hong & Lu, Yang, 2017. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," ASTIN Bulletin, Cambridge University Press, vol. 47(2), pages 563-600, May.
    20. Carlo Giovanni Camarda, 2019. "Smooth constrained mortality forecasting," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(38), pages 1091-1130.

    More about this item

    Keywords

    Adaptive weights; Causes of death; Generalized lasso penalty; Model selection; Tensor decomposition;
    All these keywords.

    JEL classification:

    • G22 - Financial Economics - - Financial Institutions and Services - - - Insurance; Insurance Companies; Actuarial Studies

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:insuma:v:111:y:2023:i:c:p:193-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505554 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.