IDEAS home Printed from https://ideas.repec.org/a/kap/hcarem/v27y2024i4d10.1007_s10729-024-09690-7.html
   My bibliography  Save this article

Forecasting to support EMS tactical planning: what is important and what is not

Author

Listed:
  • Mostafa Rezaei

    (ESCP Business School)

  • Armann Ingolfsson

    (University of Alberta)

Abstract

Forecasting emergency medical service (EMS) call volumes is critical for resource allocation and planning. The development of many commercial and free software packages has made a variety of forecasting methods accessible. Practitioners, however, are left with little guidance on selecting the most appropriate method for their needs. Using 5 years of data from 3 cities in Alberta, we compute exponential smoothing and benchmark forecasts for 8-hour periods for each ambulance station catchment area and with a forecast horizon of two weeks—a spatio-temporal resolution appropriate for tactical planning. The methods that we consider differ on three spectra: the number and type of time-series components, whether forecasts are computed individually or jointly, and the way in which forecasts at a specific resolution are converted to forecasts at the resolution of interest. We find that it is important to include a weekly seasonal component when forecasting EMS demand. Multiplicative seasonality, however, shows no benefit over additive seasonality. Adding other time-series components (e.g., trend, ARMA errors, Box-Cox transformation) does not improve performance. Spatial resolutions of station catchment area and lower, and temporal resolution of 4–24 hours perform similarly. We adapt an existing hierarchical forecasting framework to a two-dimensional spatio-temporal hierarchy, but find that hierarchical reconciliation of forecasts does not improve performance at the forecast resolution of interest for tactical planning. Neither does jointly forecasting time series. We show that added complexity does not materially improve forecasting performance. The simple methods that we find perform well are easy to implement and interpret, making implementation in practice more likely. In a simulation study we alter the empirical weekly patterns and demonstrate how extreme differences between the weekly seasonality patterns of different regions cause hierarchically-reconciled bottom-up approaches to outperform top-down approaches.

Suggested Citation

  • Mostafa Rezaei & Armann Ingolfsson, 2024. "Forecasting to support EMS tactical planning: what is important and what is not," Health Care Management Science, Springer, vol. 27(4), pages 604-630, December.
  • Handle: RePEc:kap:hcarem:v:27:y:2024:i:4:d:10.1007_s10729-024-09690-7
    DOI: 10.1007/s10729-024-09690-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10729-024-09690-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10729-024-09690-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    4. Huddleston, Samuel H. & Porter, John H. & Brown, Donald E., 2015. "Improving forecasts for noisy geographic time series," Journal of Business Research, Elsevier, vol. 68(8), pages 1810-1818.
    5. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    6. Kvalseth, T.O. & Deems, J.M., 1979. "Statistical models of the demand for emergency medical services in an urban area," American Journal of Public Health, American Public Health Association, vol. 69(3), pages 250-255.
    7. J L Vile & J W Gillard & P R Harper & V A Knight, 2012. "Predicting ambulance demand using singular spectrum analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1556-1565, November.
    8. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    9. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    10. McConnel, Charles E. & Wilson, Rosemary W., 1998. "The demand for prehospital emergency services in an aging society," Social Science & Medicine, Elsevier, vol. 46(8), pages 1027-1031, April.
    11. Melanie Reuter-Oppermann & Pieter L. van den Berg & Julie L. Vile, 2017. "Logistics for Emergency Medical Service systems," Health Systems, Taylor & Francis Journals, vol. 6(3), pages 187-208, November.
    12. McLay, Laura A. & Boone, Edward L. & Brooks, J. Paul, 2012. "Analyzing the volume and nature of emergency medical calls during severe weather events using regression methodologies," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 55-66.
    13. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    14. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    15. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.
    16. Ricardo D. Kamenetzky & Larry J. Shuman & Harvey Wolfe, 1982. "Estimating Need and Demand for Prehospital Care," Operations Research, INFORMS, vol. 30(6), pages 1148-1167, December.
    17. Aldrich, C.A. & Hisserich, J.C. & Lave, L.B., 1971. "An analysis of the demand for emergency ambulance service in an urban area," American Journal of Public Health, American Public Health Association, vol. 61(6), pages 1156-1169.
    18. Rouba Ibrahim & Pierre L'Ecuyer, 2013. "Forecasting Call Center Arrivals: Fixed-Effects, Mixed-Effects, and Bivariate Models," Manufacturing & Service Operations Management, INFORMS, vol. 15(1), pages 72-85, May.
    19. Han Ye & James Luedtke & Haipeng Shen, 2019. "Call Center Arrivals: When to Jointly Forecast Multiple Streams?," Production and Operations Management, Production and Operations Management Society, vol. 28(1), pages 27-42, January.
    20. Green, Kesten C. & Armstrong, J. Scott, 2015. "Simple versus complex forecasting: The evidence," Journal of Business Research, Elsevier, vol. 68(8), pages 1678-1685.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    2. Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    3. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    4. Ana Caroline Pinheiro & Paulo Canas Rodrigues, 2024. "Hierarchical Time Series Forecasting of Fire Spots in Brazil: A Comprehensive Approach," Stats, MDPI, vol. 7(3), pages 1-24, June.
    5. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    6. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    7. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    8. Eckert, Florian & Hyndman, Rob J. & Panagiotelis, Anastasios, 2021. "Forecasting Swiss exports using Bayesian forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 291(2), pages 693-710.
    9. Kourentzes, Nikolaos & Athanasopoulos, George, 2019. "Cross-temporal coherent forecasts for Australian tourism," Annals of Tourism Research, Elsevier, vol. 75(C), pages 393-409.
    10. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    11. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    12. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    13. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    14. Jeroen Rombouts & Marie Ternes & Ines Wilms, 2024. "Cross-Temporal Forecast Reconciliation at Digital Platforms with Machine Learning," Papers 2402.09033, arXiv.org, revised May 2024.
    15. Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
    16. Svetunkov, Ivan & Chen, Huijing & Boylan, John E., 2023. "A new taxonomy for vector exponential smoothing and its application to seasonal time series," European Journal of Operational Research, Elsevier, vol. 304(3), pages 964-980.
    17. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    18. Fotios Petropoulos & Evangelos Spiliotis, 2021. "The Wisdom of the Data: Getting the Most Out of Univariate Time Series Forecasting," Forecasting, MDPI, vol. 3(3), pages 1-20, June.
    19. Zhang, Bohan & Kang, Yanfei & Panagiotelis, Anastasios & Li, Feng, 2023. "Optimal reconciliation with immutable forecasts," European Journal of Operational Research, Elsevier, vol. 308(2), pages 650-660.
    20. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:hcarem:v:27:y:2024:i:4:d:10.1007_s10729-024-09690-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.