IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v181y2016ipap162-173.html
   My bibliography  Save this article

Demand forecasting with four-parameter exponential smoothing

Author

Listed:
  • Ferbar Tratar, Liljana
  • Mojškerc, Blaž
  • Toman, Aleš

Abstract

Exponential smoothing methods are powerful tools for denoising time series, predicting future demand and decreasing inventory costs. In this paper we develop a smoothing and forecasting method that is intuitive, easy to implement, computationally stable, and can satisfactorily handle both, additive and multiplicative seasonality, even when time series contain several zero entries and large noise component.

Suggested Citation

  • Ferbar Tratar, Liljana & Mojškerc, Blaž & Toman, Aleš, 2016. "Demand forecasting with four-parameter exponential smoothing," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 162-173.
  • Handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:162-173
    DOI: 10.1016/j.ijpe.2016.08.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527316301839
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2016.08.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter R. Winters, 1960. "Forecasting Sales by Exponentially Weighted Moving Averages," Management Science, INFORMS, vol. 6(3), pages 324-342, April.
    2. Gorr, Wilpen L. & Schneider, Matthew J., 2013. "Large-change forecast accuracy: Reanalysis of M3-Competition data using receiver operating characteristic analysis," International Journal of Forecasting, Elsevier, vol. 29(2), pages 274-281.
    3. Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002. "A state space framework for automatic forecasting using exponential smoothing methods," International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
    4. Taylor, James W., 2003. "Exponential smoothing with a damped multiplicative trend," International Journal of Forecasting, Elsevier, vol. 19(4), pages 715-725.
    5. E S Gardner & E McKenzie, 2011. "Why the damped trend works," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(6), pages 1177-1180, June.
    6. Wallström, Peter & Segerstedt, Anders, 2010. "Evaluation of forecasting error measurements and techniques for intermittent demand," International Journal of Production Economics, Elsevier, vol. 128(2), pages 625-636, December.
    7. Gene K. Groff, 1973. "Empirical Comparison of Models for Short Range Forecasting," Management Science, INFORMS, vol. 20(1), pages 22-31, September.
    8. Lawton, Richard, 1998. "How should additive Holt-Winters estimates be corrected?," International Journal of Forecasting, Elsevier, vol. 14(3), pages 393-403, September.
    9. Rasmussen, Rasmus, 2004. "On time series data and optimal parameters," Omega, Elsevier, vol. 32(2), pages 111-120, April.
    10. Ferbar Tratar, Liljana, 2015. "Forecasting method for noisy demand," International Journal of Production Economics, Elsevier, vol. 161(C), pages 64-73.
    11. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    12. Snyder, Ralph, 2002. "Forecasting sales of slow and fast moving inventories," European Journal of Operational Research, Elsevier, vol. 140(3), pages 684-699, August.
    13. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    14. Everette S. Gardner, Jr. & Ed. Mckenzie, 1985. "Forecasting Trends in Time Series," Management Science, INFORMS, vol. 31(10), pages 1237-1246, October.
    15. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    16. Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
    17. Billah, Baki & King, Maxwell L. & Snyder, Ralph D. & Koehler, Anne B., 2006. "Exponential smoothing model selection for forecasting," International Journal of Forecasting, Elsevier, vol. 22(2), pages 239-247.
    18. McKenzie, Eddie & Gardner Jr., Everette S., 2010. "Damped trend exponential smoothing: A modelling viewpoint," International Journal of Forecasting, Elsevier, vol. 26(4), pages 661-665, October.
    19. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    20. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    21. Strijbosch, Leo W.G. & Syntetos, Aris A. & Boylan, John E. & Janssen, Elleke, 2011. "On the interaction between forecasting and stock control: The case of non-stationary demand," International Journal of Production Economics, Elsevier, vol. 133(1), pages 470-480, September.
    22. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Uddin, Gazi Salah & Tang, Ou & Sahamkhadam, Maziar & Taghizadeh-Hesary, Farhad & Yahya, Muhammad & Cerin, Pontus & Rehme, Jakob, 2021. "Analysis of Forecasting Models in an Electricity Market under Volatility," ADBI Working Papers 1212, Asian Development Bank Institute.
    2. Serin, Faruk & Alisan, Yigit & Kece, Adnan, 2021. "Hybrid time series forecasting methods for travel time prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    3. Demetriou, E. & Hadjistassou, C., 2021. "Can China decarbonize its electricity sector?," Energy Policy, Elsevier, vol. 148(PB).
    4. Tsionas, Mike G., 2022. "Random and Markov switching exponential smoothing models," Technological Forecasting and Social Change, Elsevier, vol. 174(C).
    5. Demetriou, E. & Mallouppas, G. & Hadjistassou, C., 2021. "Embracing carbon neutral electricity and transportation sectors in Cyprus," Energy, Elsevier, vol. 229(C).
    6. Dai, Hongyan & Xiao, Qin & Chen, Songlin & Zhou, Weihua, 2023. "Data-driven demand forecast for O2O operations: An adaptive hierarchical incremental approach," International Journal of Production Economics, Elsevier, vol. 259(C).
    7. Puchalsky, Weslly & Ribeiro, Gabriel Trierweiler & da Veiga, Claudimar Pereira & Freire, Roberto Zanetti & Santos Coelho, Leandro dos, 2018. "Agribusiness time series forecasting using Wavelet neural networks and metaheuristic optimization: An analysis of the soybean sack price and perishable products demand," International Journal of Production Economics, Elsevier, vol. 203(C), pages 174-189.
    8. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    9. Lifeng Wu & Xiaohui Gao & Yanli Xiao & Sifeng Liu & Yingjie Yang, 2017. "Using grey Holt–Winters model to predict the air quality index for cities in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 1003-1012, September.
    10. Xiaoxin Zhu & Guanghai Zhang & Baiqing Sun, 2019. "A comprehensive literature review of the demand forecasting methods of emergency resources from the perspective of artificial intelligence," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(1), pages 65-82, May.
    11. Sbrana, Giacomo & Silvestrini, Andrea, 2019. "Random switching exponential smoothing: A new estimation approach," International Journal of Production Economics, Elsevier, vol. 211(C), pages 211-220.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    4. E. Vercher & A. Corberán-Vallet & J. Segura & J. Bermúdez, 2012. "Initial conditions estimation for improving forecast accuracy in exponential smoothing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(2), pages 517-533, July.
    5. J D Bermúdez & J V Segura & E Vercher, 2006. "Improving demand forecasting accuracy using nonlinear programming software," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(1), pages 94-100, January.
    6. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    7. Li, Qinyun & Disney, Stephen M. & Gaalman, Gerard, 2014. "Avoiding the bullwhip effect using Damped Trend forecasting and the Order-Up-To replenishment policy," International Journal of Production Economics, Elsevier, vol. 149(C), pages 3-16.
    8. Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
    9. Nikolaos Kourentzes & Dong Li & Arne K. Strauss, 2019. "Unconstraining methods for revenue management systems under small demand," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 18(1), pages 27-41, February.
    10. Sbrana, Giacomo & Silvestrini, Andrea, 2022. "Random coefficient state-space model: Estimation and performance in M3–M4 competitions," International Journal of Forecasting, Elsevier, vol. 38(1), pages 352-366.
    11. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    12. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    13. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    14. Meira, Erick & Cyrino Oliveira, Fernando Luiz & Jeon, Jooyoung, 2021. "Treating and Pruning: New approaches to forecasting model selection and combination using prediction intervals," International Journal of Forecasting, Elsevier, vol. 37(2), pages 547-568.
    15. Fernández-Amador, Octavio & Francois, Joseph F. & Oberdabernig, Doris A. & Tomberger, Patrick, 2020. "The methane footprint of nations: Stylized facts from a global panel dataset," Ecological Economics, Elsevier, vol. 170(C).
    16. Villegas, Marco A. & Pedregal, Diego J., 2019. "Automatic selection of unobserved components models for supply chain forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 157-169.
    17. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.
    18. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    19. Kück, Mirko & Freitag, Michael, 2021. "Forecasting of customer demands for production planning by local k-nearest neighbor models," International Journal of Production Economics, Elsevier, vol. 231(C).
    20. Lingbing Feng & Yanlin Shi, 2018. "Forecasting mortality rates: multivariate or univariate models?," Journal of Population Research, Springer, vol. 35(3), pages 289-318, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:181:y:2016:i:pa:p:162-173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.