IDEAS home Printed from https://ideas.repec.org/p/hal/journl/halshs-02418954.html
   My bibliography  Save this paper

Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach

Author

Listed:
  • Hong Li

    (NKU - Nankai University)

  • Yang Lu

    (AMSE - Aix-Marseille Sciences Economiques - EHESS - École des hautes études en sciences sociales - AMU - Aix Marseille Université - ECM - École Centrale de Marseille - CNRS - Centre National de la Recherche Scientifique)

Abstract

This paper proposes a spatial-temporal autoregressive model for the mortality surface, where mortality rates of each age depend on the historical values of itself (temporality) and the neighbouring ages (spatiality). The mortality dynamics is formulated as a large, first order vector autoregressive model which encompasses standard factor models such as the Lee and Carter (1992) model. Sparsity and smoothness constraints are then introduced, based on the idea that the nearer the two ages, the more important the dependence between mortalities at these ages. Our model has several novelties. First, it ensures that in the long-run, mortality rates at different ages do not diverge. Second, it provides a natural explanation of the so-called cohort effect without identifiability difficulties. Third, the model is easily extended to the multiple-population case in a coherent way. Finally, the model is associated with a closed form, non-parametric estimation method: the penalized least square, which ensures spatial smoothness of the age-dependent parameters. Using US and UK mortality data, we find that our model produces reasonable projected mortality profile in the long-run, as well as satisfying short-run out-of-sample forecast performance. KEYWORDS cohort effect, spatial co-integration, penalized least square.

Suggested Citation

  • Hong Li & Yang Lu, 2016. "Coherent Forecasting Of Mortality Rates: A Sparse Vector-Autoregression Approach," Post-Print halshs-02418954, HAL.
  • Handle: RePEc:hal:journl:halshs-02418954
    DOI: 10.1017/asb.2016.37
    Note: View the original document on HAL open archive server: https://shs.hal.science/halshs-02418954
    as

    Download full text from publisher

    File URL: https://shs.hal.science/halshs-02418954/document
    Download Restriction: no

    File URL: https://libkey.io/10.1017/asb.2016.37?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Hunt, Andrew & Villegas, Andrés M., 2015. "Robustness and convergence in the Lee–Carter model with cohort effects," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 186-202.
    2. Kevin Dowd & Andrew Cairns & David Blake & Guy Coughlan & Marwa Khalaf-Allah, 2011. "A Gravity Model of Mortality Rates for Two Related Populations," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 334-356.
    3. Laurent Callot & Niels Haldrup & Malene Kallestrup-Lamb, 2016. "Deterministic and stochastic trends in the Lee–Carter mortality model," Applied Economics Letters, Taylor & Francis Journals, vol. 23(7), pages 486-493, May.
    4. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    5. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    6. Stéphane Loisel, 2010. "Understanding, Modeling and Managing Longevity Risk: Key Issues and Main Challenges," Post-Print hal-00517902, HAL.
    7. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    8. Dorina Lazar & Michel M. Denuit, 2009. "A multivariate time series approach to projected life tables," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(6), pages 806-823, November.
    9. Li, Han & O’Hare, Colin & Zhang, Xibin, 2015. "A semiparametric panel approach to mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 264-270.
    10. Racine, Jeff, 1997. "Feasible Cross-Validatory Model Selection for General Stationary Processes," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(2), pages 169-179, March-Apr.
    11. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    12. D. Kuang & B. Nielsen & J. P. Nielsen, 2008. "Identification of the age-period-cohort model and the extended chain-ladder model," Biometrika, Biometrika Trust, vol. 95(4), pages 979-986.
    13. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    14. Pace, R Kelley & Barry, Ronald & Clapp, John M. & Rodriquez, Mauricio, 1998. "Spatiotemporal Autoregressive Models of Neighborhood Effects," The Journal of Real Estate Finance and Economics, Springer, vol. 17(1), pages 15-33, July.
    15. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    16. Engle, Robert & Granger, Clive, 2015. "Co-integration and error correction: Representation, estimation, and testing," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 39(3), pages 106-135.
    17. Litterman, Robert B, 1986. "Forecasting with Bayesian Vector Autoregressions-Five Years of Experience," Journal of Business & Economic Statistics, American Statistical Association, vol. 4(1), pages 25-38, January.
    18. Séverine Gaille & Michael Sherris, 2011. "Modelling Mortality with Common Stochastic Long-Run Trends," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 36(4), pages 595-621, October.
    19. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    20. Rui Zhou & Yujiao Wang & Kai Kaufhold & Johnny Li & Ken Tan, 2014. "Modeling Period Effects in Multi-Population Mortality Models: Applications to Solvency II," North American Actuarial Journal, Taylor & Francis Journals, vol. 18(1), pages 150-167.
    21. Debon, A. & Montes, F. & Mateu, J. & Porcu, E. & Bevilacqua, M., 2008. "Modelling residuals dependence in dynamic life tables: A geostatistical approach," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 3128-3147, February.
    22. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    23. Yang, Sharon S. & Wang, Chou-Wen, 2013. "Pricing and securitization of multi-country longevity risk with mortality dependence," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 157-169.
    24. Litterman, Robert, 1986. "Forecasting with Bayesian vector autoregressions -- Five years of experience : Robert B. Litterman, Journal of Business and Economic Statistics 4 (1986) 25-38," International Journal of Forecasting, Elsevier, vol. 2(4), pages 497-498.
    25. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    26. Nan Li & Ronald Lee & Patrick Gerland, 2013. "Extending the Lee-Carter Method to Model the Rotation of Age Patterns of Mortality Decline for Long-Term Projections," Demography, Springer;Population Association of America (PAA), vol. 50(6), pages 2037-2051, December.
    27. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    28. Johnny Li & Mary Hardy, 2011. "Measuring Basis Risk in Longevity Hedges," North American Actuarial Journal, Taylor & Francis Journals, vol. 15(2), pages 177-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hong Li & Yang Lu & Pintao Lyu, 2021. "Coherent Mortality Forecasting for Less Developed Countries," Risks, MDPI, vol. 9(9), pages 1-21, August.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Paul Doukhan & Joseph Rynkiewicz & Yahia Salhi, 2021. "Optimal Neighborhood Selection for AR-ARCH Random Fields with Application to Mortality," Stats, MDPI, vol. 5(1), pages 1-26, December.
    4. Nhan Huynh & Mike Ludkovski, 2021. "Joint Models for Cause-of-Death Mortality in Multiple Populations," Papers 2111.06631, arXiv.org.
    5. Arnold, Séverine & Glushko, Viktoriya, 2021. "Cause-specific mortality rates: Common trends and differences," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 294-308.
    6. Cuixia Liu & Yanlin Shi, 2023. "Extensions of the Lee–Carter model to project the data‐driven rotation of age‐specific mortality decline and forecast coherent mortality rates," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 813-834, July.
    7. Thilini Dulanjali Kularatne & Jackie Li & Yanlin Shi, 2022. "Forecasting Mortality Rates with a Two-Step LASSO Based Vector Autoregressive Model," Risks, MDPI, vol. 10(11), pages 1-23, November.
    8. Jackie Li & Jia Liu & Adam Butt, 2024. "A systematic vector autoregressive framework for modeling and forecasting mortality," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(6), pages 2279-2297, September.
    9. Hong Li & Yanlin Shi, 2021. "Mortality Forecasting with an Age-Coherent Sparse VAR Model," Risks, MDPI, vol. 9(2), pages 1-19, February.
    10. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    11. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    12. Jose Garrido & Yuxiang Shang & Ran Xu, 2024. "LSTM-Based Coherent Mortality Forecasting for Developing Countries," Risks, MDPI, vol. 12(2), pages 1-24, February.
    13. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    14. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    15. Cupido, Kyran & Jevtić, Petar & Paez, Antonio, 2020. "Spatial patterns of mortality in the United States: A spatial filtering approach," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 28-38.
    16. Li, Hong & Shi, Yanlin, 2021. "Forecasting mortality with international linkages: A global vector-autoregression approach," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 59-75.
    17. Yanlin Shi, 2021. "Forecasting mortality rates with the adaptive spatial temporal autoregressive model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 528-546, April.
    18. Kyran Cupido & Petar Jevtić & Tim J. Boonen, 2024. "Space, mortality, and economic growth," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1321-1337, August.
    19. Yanlin Shi & Sixian Tang & Jackie Li, 2020. "A Two-Population Extension of the Exponential Smoothing State Space Model with a Smoothing Penalisation Scheme," Risks, MDPI, vol. 8(3), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    2. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    3. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    4. Jarner, Søren F. & Jallbjørn, Snorre, 2020. "Pitfalls and merits of cointegration-based mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 90(C), pages 80-93.
    5. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    6. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    7. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    8. Hunt, Andrew & Blake, David, 2018. "Identifiability, cointegration and the gravity model," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 360-368.
    9. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    10. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    11. Liu, Yanxin & Li, Johnny Siu-Hang, 2016. "It’s all in the hidden states: A longevity hedging strategy with an explicit measure of population basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 70(C), pages 301-319.
    12. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    13. Li, Jackie & Haberman, Steven, 2015. "On the effectiveness of natural hedging for insurance companies and pension plans," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 286-297.
    14. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    15. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    16. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    17. Tan, Chong It & Li, Jackie & Li, Johnny Siu-Hang & Balasooriya, Uditha, 2014. "Parametric mortality indexes: From index construction to hedging strategies," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 285-299.
    18. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    19. Rui Zhou & Guangyu Xing & Min Ji, 2019. "Changes of Relation in Multi-Population Mortality Dependence: An Application of Threshold VECM," Risks, MDPI, vol. 7(1), pages 1-18, February.
    20. Cairns, Andrew J.G., 2011. "Modelling and management of longevity risk: Approximations to survivor functions and dynamic hedging," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 438-453.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:halshs-02418954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.