Review on probabilistic forecasting of photovoltaic power production and electricity consumption
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2017.05.212
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tao Hong, 2014.
"Energy Forecasting: Past, Present, and Future,"
Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 32, pages 43-48, Winter.
- Tao Hong, 2013. "Energy forecasting: Past, present and future," HSC Research Reports HSC/13/15, Hugo Steinhaus Center, Wroclaw University of Technology.
- Zhang, Yao & Wang, Jianxue & Wang, Xifan, 2014. "Review on probabilistic forecasting of wind power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 255-270.
- Koenker, Roger W & Bassett, Gilbert, Jr, 1978. "Regression Quantiles," Econometrica, Econometric Society, vol. 46(1), pages 33-50, January.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Lazos, Dimitris & Sproul, Alistair B. & Kay, Merlinde, 2014. "Optimisation of energy management in commercial buildings with weather forecasting inputs: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 587-603.
- Mangalova, Ekaterina & Shesterneva, Olesya, 2016. "Sequence of nonparametric models for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1023-1028.
- Widén, Joakim & Wäckelgård, Ewa, 2010. "A high-resolution stochastic model of domestic activity patterns and electricity demand," Applied Energy, Elsevier, vol. 87(6), pages 1880-1892, June.
- Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
- Raza, Muhammad Qamar & Khosravi, Abbas, 2015. "A review on artificial intelligence based load demand forecasting techniques for smart grid and buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1352-1372.
- Gaillard, Pierre & Goude, Yannig & Nedellec, Raphaël, 2016. "Additive models and robust aggregation for GEFCom2014 probabilistic electric load and electricity price forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1038-1050.
- Chu, Yinghao & Li, Mengying & Pedro, Hugo T.C. & Coimbra, Carlos F.M., 2015. "Real-time prediction intervals for intra-hour DNI forecasts," Renewable Energy, Elsevier, vol. 83(C), pages 234-244.
- Roger Koenker & Kevin F. Hallock, 2001. "Quantile Regression," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 143-156, Fall.
- Takeda, Hisashi & Tamura, Yoshiyasu & Sato, Seisho, 2016. "Using the ensemble Kalman filter for electricity load forecasting and analysis," Energy, Elsevier, vol. 104(C), pages 184-198.
- Ziel, Florian & Liu, Bidong, 2016. "Lasso estimation for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1029-1037.
- Wang, Lunche & Kisi, Ozgur & Zounemat-Kermani, Mohammad & Salazar, Germán Ariel & Zhu, Zhongmin & Gong, Wei, 2016. "Solar radiation prediction using different techniques: model evaluation and comparison," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 384-397.
- Quan, Hao & Srinivasan, Dipti & Khosravi, Abbas, 2014. "Uncertainty handling using neural network-based prediction intervals for electrical load forecasting," Energy, Elsevier, vol. 73(C), pages 916-925.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Foucquier, Aurélie & Robert, Sylvain & Suard, Frédéric & Stéphan, Louis & Jay, Arnaud, 2013. "State of the art in building modelling and energy performances prediction: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 272-288.
- Ren, Ye & Suganthan, P.N. & Srikanth, N., 2015. "Ensemble methods for wind and solar power forecasting—A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 82-91.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Chu, Yinghao & Coimbra, Carlos F.M., 2017. "Short-term probabilistic forecasts for Direct Normal Irradiance," Renewable Energy, Elsevier, vol. 101(C), pages 526-536.
- Huang, Jing & Perry, Matthew, 2016. "A semi-empirical approach using gradient boosting and k-nearest neighbors regression for GEFCom2014 probabilistic solar power forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1081-1086.
- He, Yaoyao & Xu, Qifa & Wan, Jinhong & Yang, Shanlin, 2016. "Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function," Energy, Elsevier, vol. 114(C), pages 498-512.
- He, Yaoyao & Liu, Rui & Li, Haiyan & Wang, Shuo & Lu, Xiaofen, 2017. "Short-term power load probability density forecasting method using kernel-based support vector quantile regression and Copula theory," Applied Energy, Elsevier, vol. 185(P1), pages 254-266.
- Dordonnat, V. & Pichavant, A. & Pierrot, A., 2016. "GEFCom2014 probabilistic electric load forecasting using time series and semi-parametric regression models," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1005-1011.
- Fumo, Nelson, 2014. "A review on the basics of building energy estimation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 53-60.
- Juban, Romain & Ohlsson, Henrik & Maasoumy, Mehdi & Poirier, Louis & Kolter, J. Zico, 2016. "A multiple quantile regression approach to the wind, solar, and price tracks of GEFCom2014," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1094-1102.
- Haben, Stephen & Giasemidis, Georgios, 2016. "A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1017-1022.
- Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
- Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
- Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
- Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
- Zhang, Wenjie & Quan, Hao & Srinivasan, Dipti, 2018. "Parallel and reliable probabilistic load forecasting via quantile regression forest and quantile determination," Energy, Elsevier, vol. 160(C), pages 810-819.
- Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
- Liu, Luyao & Zhao, Yi & Chang, Dongliang & Xie, Jiyang & Ma, Zhanyu & Sun, Qie & Yin, Hongyi & Wennersten, Ronald, 2018. "Prediction of short-term PV power output and uncertainty analysis," Applied Energy, Elsevier, vol. 228(C), pages 700-711.
- González Ordiano, Jorge Ángel & Gröll, Lutz & Mikut, Ralf & Hagenmeyer, Veit, 2020. "Probabilistic energy forecasting using the nearest neighbors quantile filter and quantile regression," International Journal of Forecasting, Elsevier, vol. 36(2), pages 310-323.
- Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
- Zhang, Shu & Wang, Yi & Zhang, Yutian & Wang, Dan & Zhang, Ning, 2020. "Load probability density forecasting by transforming and combining quantile forecasts," Applied Energy, Elsevier, vol. 277(C).
- Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
- Luis Mazorra-Aguiar & Philippe Lauret & Mathieu David & Albert Oliver & Gustavo Montero, 2021. "Comparison of Two Solar Probabilistic Forecasting Methodologies for Microgrids Energy Efficiency," Energies, MDPI, vol. 14(6), pages 1-26, March.
- Nie, Yuhao & Li, Xiatong & Paletta, Quentin & Aragon, Max & Scott, Andea & Brandt, Adam, 2024. "Open-source sky image datasets for solar forecasting with deep learning: A comprehensive survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- David, Mathieu & Luis, Mazorra Aguiar & Lauret, Philippe, 2018. "Comparison of intraday probabilistic forecasting of solar irradiance using only endogenous data," International Journal of Forecasting, Elsevier, vol. 34(3), pages 529-547.
- Erdener, Burcin Cakir & Feng, Cong & Doubleday, Kate & Florita, Anthony & Hodge, Bri-Mathias, 2022. "A review of behind-the-meter solar forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Nowotarski, Jakub & Weron, Rafał, 2018.
"Recent advances in electricity price forecasting: A review of probabilistic forecasting,"
Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
- Jakub Nowotarski & Rafal Weron, 2016. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," HSC Research Reports HSC/16/07, Hugo Steinhaus Center, Wroclaw University of Technology.
- Gensler, André & Sick, Bernhard & Vogt, Stephan, 2018. "A review of uncertainty representations and metaverification of uncertainty assessment techniques for renewable energies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 352-379.
- Lebotsa, Moshoko Emily & Sigauke, Caston & Bere, Alphonce & Fildes, Robert & Boylan, John E., 2018. "Short term electricity demand forecasting using partially linear additive quantile regression with an application to the unit commitment problem," Applied Energy, Elsevier, vol. 222(C), pages 104-118.
- Florian Ziel, 2020. "Load Nowcasting: Predicting Actuals with Limited Data," Energies, MDPI, vol. 13(6), pages 1-15, March.
More about this item
Keywords
Probabilistic forecasting; Electricity consumption; Photovoltaic; Solar radiation; Irradiance; Prediction interval;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p1:p:1484-1512. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.