IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i3d10.1007_s00180-021-01172-6.html
   My bibliography  Save this article

Smallest covering regions and highest density regions for discrete distributions

Author

Listed:
  • Ben O’Neill

    (Australian National University)

Abstract

This paper examines the problem of computing a canonical smallest covering region for an arbitrary discrete probability distribution. This optimisation problem is similar to the classical 0–1 knapsack problem, but it involves optimisation over a set that may be countably infinite, raising a computational challenge that makes the problem non-trivial. To solve the problem we present theorems giving useful conditions for an optimising region and we develop an iterative one-at-a-time computational method to compute a canonical smallest covering region. We show how this can be programmed in pseudo-code and we examine the performance of our method. We compare this algorithm with other algorithms available in statistical computation packages to compute HDRs. We find that our method is the only one that accurately computes HDRs for arbitrary discrete distributions.

Suggested Citation

  • Ben O’Neill, 2022. "Smallest covering regions and highest density regions for discrete distributions," Computational Statistics, Springer, vol. 37(3), pages 1229-1254, July.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01172-6
    DOI: 10.1007/s00180-021-01172-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01172-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01172-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu Tian & Rui Wang & Tianxi Cai & Lee-Jen Wei, 2011. "The Highest Confidence Density Region and Its Usage for Joint Inferences about Constrained Parameters," Biometrics, The International Biometric Society, vol. 67(2), pages 604-610, June.
    2. Kim, Jae H. & Fraser, Iain & Hyndman, Rob J., 2011. "Improved interval estimation of long run response from a dynamic linear model: A highest density region approach," Computational Statistics & Data Analysis, Elsevier, vol. 55(8), pages 2477-2489, August.
    3. Jeffrey S. Racine & Qi Li & Karen X. Yan, 2020. "Kernel smoothed probability mass functions for ordered datatypes," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 32(3), pages 563-586, July.
    4. Jing Lei & James Robins & Larry Wasserman, 2013. "Distribution-Free Prediction Sets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 278-287, March.
    5. Silvano Martello & David Pisinger & Paolo Toth, 1999. "Dynamic Programming and Strong Bounds for the 0-1 Knapsack Problem," Management Science, INFORMS, vol. 45(3), pages 414-424, March.
    6. Martello, Silvano & Pisinger, David & Toth, Paolo, 2000. "New trends in exact algorithms for the 0-1 knapsack problem," European Journal of Operational Research, Elsevier, vol. 123(2), pages 325-332, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akinc, Umit, 2006. "Approximate and exact algorithms for the fixed-charge knapsack problem," European Journal of Operational Research, Elsevier, vol. 170(2), pages 363-375, April.
    2. Sbihi, Abdelkader, 2010. "A cooperative local search-based algorithm for the Multiple-Scenario Max-Min Knapsack Problem," European Journal of Operational Research, Elsevier, vol. 202(2), pages 339-346, April.
    3. Büther, Marcel & Briskorn, Dirk, 2007. "Reducing the 0-1 knapsack problem with a single continuous variable to the standard 0-1 knapsack problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 629, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    4. Mhand Hifi & Hedi Mhalla & Slim Sadfi, 2005. "Sensitivity of the Optimum to Perturbations of the Profit or Weight of an Item in the Binary Knapsack Problem," Journal of Combinatorial Optimization, Springer, vol. 10(3), pages 239-260, November.
    5. Toth, Paolo, 2000. "Optimization engineering techniques for the exact solution of NP-hard combinatorial optimization problems," European Journal of Operational Research, Elsevier, vol. 125(2), pages 222-238, September.
    6. Wishon, Christopher & Villalobos, J. Rene, 2016. "Robust efficiency measures for linear knapsack problem variants," European Journal of Operational Research, Elsevier, vol. 254(2), pages 398-409.
    7. Furini, Fabio & Ljubić, Ivana & Sinnl, Markus, 2017. "An effective dynamic programming algorithm for the minimum-cost maximal knapsack packing problem," European Journal of Operational Research, Elsevier, vol. 262(2), pages 438-448.
    8. Reilly, Charles H. & Sapkota, Nabin, 2015. "A family of composite discrete bivariate distributions with uniform marginals for simulating realistic and challenging optimization-problem instances," European Journal of Operational Research, Elsevier, vol. 241(3), pages 642-652.
    9. Charles H. Reilly, 2009. "Synthetic Optimization Problem Generation: Show Us the Correlations!," INFORMS Journal on Computing, INFORMS, vol. 21(3), pages 458-467, August.
    10. M Büther, 2010. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(11), pages 1582-1595, November.
    11. Leying Guan & Robert Tibshirani, 2022. "Prediction and outlier detection in classification problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 524-546, April.
    12. Lin, Feng-Tse, 2008. "Solving the knapsack problem with imprecise weight coefficients using genetic algorithms," European Journal of Operational Research, Elsevier, vol. 185(1), pages 133-145, February.
    13. Sune Lauth Gadegaard & Andreas Klose & Lars Relund Nielsen, 2018. "An improved cut-and-solve algorithm for the single-source capacitated facility location problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 1-27, March.
    14. Boyer, V. & Elkihel, M. & El Baz, D., 2009. "Heuristics for the 0-1 multidimensional knapsack problem," European Journal of Operational Research, Elsevier, vol. 199(3), pages 658-664, December.
    15. Mhand Hifi & Slim Sadfi & Abdelkader Sbihi, 2004. "An Exact Algorithm for the Multiple-choice Multidimensional Knapsack Problem," Post-Print halshs-03322716, HAL.
    16. Matteo Fischetti & Ivana Ljubić & Michele Monaci & Markus Sinnl, 2019. "Interdiction Games and Monotonicity, with Application to Knapsack Problems," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 390-410, April.
    17. M Hifi & M Michrafy, 2006. "A reactive local search-based algorithm for the disjunctively constrained knapsack problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(6), pages 718-726, June.
    18. David R. Bickel, 2024. "Bayesian and frequentist inference derived from the maximum entropy principle with applications to propagating uncertainty about statistical methods," Statistical Papers, Springer, vol. 65(8), pages 5389-5407, October.
    19. Genserik L. L. Reniers & Kenneth Sörensen, 2013. "An Approach for Optimal Allocation of Safety Resources: Using the Knapsack Problem to Take Aggregated Cost‐Efficient Preventive Measures," Risk Analysis, John Wiley & Sons, vol. 33(11), pages 2056-2067, November.
    20. Büther, Marcel, 2007. "Reducing the elastic generalized assignment problem to the standard generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 632, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:3:d:10.1007_s00180-021-01172-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.