IDEAS home Printed from https://ideas.repec.org/a/eee/jmvana/v189y2022ics0047259x21001688.html
   My bibliography  Save this article

On projection methods for functional time series forecasting

Author

Listed:
  • Elías, Antonio
  • Jiménez, Raúl
  • Shang, Han Lin

Abstract

Two nonparametric methods are presented for forecasting functional time series (FTS). The FTS we observe is a curve at a discrete-time point. We address both one-step-ahead forecasting and dynamic updating. Dynamic updating is a forward prediction of the unobserved segment of the most recent curve. Among the two proposed methods, the first one is a straightforward adaptation to FTS of the k-nearest neighbors methods for univariate time series forecasting. The second one is based on a selection of curves, termed the curve envelope, that aims to be representative in shape and magnitude of the most recent functional observation, either a whole curve or the observed part of a partially observed curve. In a similar fashion to k-nearest neighbors and other projection methods successfully used for time series forecasting, we “project” the k-nearest neighbors and the curves in the envelope for forecasting. In doing so, we keep track of the next period evolution of the curves. The methods are applied to simulated data, daily electricity demand, and NOx emissions and provide competitive results with and often superior to several benchmark predictions. The approach offers a model-free alternative to statistical methods based on FTS modeling to study the cyclic or seasonal behavior of many FTS.

Suggested Citation

  • Elías, Antonio & Jiménez, Raúl & Shang, Han Lin, 2022. "On projection methods for functional time series forecasting," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001688
    DOI: 10.1016/j.jmva.2021.104890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0047259X21001688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jmva.2021.104890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Degui Li & Peter M. Robinson & Han Lin Shang, 2020. "Long-Range Dependent Curve Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 957-971, April.
    2. Zhang, Shu & Jank, Wolfgang & Shmueli, Galit, 2010. "Real-time forecasting of online auctions via functional K-nearest neighbors," International Journal of Forecasting, Elsevier, vol. 26(4), pages 666-683, October.
    3. Han Lin Shang, 2013. "Functional time series approach for forecasting very short-term electricity demand," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(1), pages 152-168, January.
    4. Sara López-Pintado & Ying Sun & Juan Lin & Marc Genton, 2014. "Simplicial band depth for multivariate functional data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 8(3), pages 321-338, September.
    5. Shang, Han Lin & Hyndman, Rob.J., 2011. "Nonparametric time series forecasting with dynamic updating," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 81(7), pages 1310-1324.
    6. Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
    7. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    8. Anestis Antoniadis & Efstathios Paparoditis & Theofanis Sapatinas, 2006. "A functional wavelet–kernel approach for time series prediction," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 68(5), pages 837-857, November.
    9. Gerda Claeskens & Mia Hubert & Leen Slaets & Kaveh Vakili, 2014. "Multivariate Functional Halfspace Depth," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 411-423, March.
    10. Zhang, Guoqiang & Eddy Patuwo, B. & Y. Hu, Michael, 1998. "Forecasting with artificial neural networks:: The state of the art," International Journal of Forecasting, Elsevier, vol. 14(1), pages 35-62, March.
    11. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    12. Kara, Lydia-Zaitri & Laksaci, Ali & Rachdi, Mustapha & Vieu, Philippe, 2017. "Data-driven kNN estimation in nonparametric functional data analysis," Journal of Multivariate Analysis, Elsevier, vol. 153(C), pages 176-188.
    13. David Kraus, 2015. "Components and completion of partially observed functional data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 777-801, September.
    14. López-Pintado, Sara & Romo, Juan, 2009. "On the Concept of Depth for Functional Data," Journal of the American Statistical Association, American Statistical Association, vol. 104(486), pages 718-734.
    15. Aneiros-Pérez, Germán & Vieu, Philippe, 2008. "Nonparametric time series prediction: A semi-functional partial linear modeling," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 834-857, May.
    16. Germán Aneiros‐Pérez & Ricardo Cao & Juan M. Vilar‐Fernández, 2011. "Functional methods for time series prediction: a nonparametric approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 30(4), pages 377-392, July.
    17. Kudraszow, Nadia L. & Vieu, Philippe, 2013. "Uniform consistency of kNN regressors for functional variables," Statistics & Probability Letters, Elsevier, vol. 83(8), pages 1863-1870.
    18. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    19. Yao, Fang & Muller, Hans-Georg & Wang, Jane-Ling, 2005. "Functional Data Analysis for Sparse Longitudinal Data," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 577-590, June.
    20. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    21. Jaromir Antoch & Lubos Prchal & Maria Rosaria De Rosa & Pascal Sarda, 2010. "Electricity consumption prediction with functional linear regression using spline estimators," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(12), pages 2027-2041.
    22. Antonio Cuevas & Manuel Febrero & Ricardo Fraiman, 2007. "Robust estimation and classification for functional data via projection-based depth notions," Computational Statistics, Springer, vol. 22(3), pages 481-496, September.
    23. Klepsch, J. & Klüppelberg, C., 2017. "An innovations algorithm for the prediction of functional linear processes," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 252-271.
    24. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    25. Hyndman, Rob J. & Booth, Heather, 2008. "Stochastic population forecasts using functional data models for mortality, fertility and migration," International Journal of Forecasting, Elsevier, vol. 24(3), pages 323-342.
    26. Ricardo Fraiman & Graciela Muniz, 2001. "Trimmed means for functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 10(2), pages 419-440, December.
    27. Cuesta-Albertos, J.A. & Nieto-Reyes, A., 2008. "The random Tukey depth," Computational Statistics & Data Analysis, Elsevier, vol. 52(11), pages 4979-4988, July.
    28. Aneiros, Germán & Cao, Ricardo & Fraiman, Ricardo & Genest, Christian & Vieu, Philippe, 2019. "Recent advances in functional data analysis and high-dimensional statistics," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 3-9.
    29. Han Lin Shang, 2019. "Visualizing rate of change: an application to age‐specific fertility rates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(1), pages 249-262, January.
    30. Cho, Haeran & Goude, Yannig & Brossat, Xavier & Yao, Qiwei, 2013. "Modeling and forecasting daily electricity load curves: a hybrid approach," LSE Research Online Documents on Economics 49634, London School of Economics and Political Science, LSE Library.
    31. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2017. "Multivariate and functional classification using depth and distance," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(3), pages 445-466, September.
    32. Alexander Aue & Diogo Dubart Norinho & Siegfried Hörmann, 2015. "On the Prediction of Stationary Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 378-392, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    2. Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
    3. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    4. Acal, C. & Aguilera, A.M. & Alonso, F.J. & Ruiz-Castro, J.E. & Roldán, J.B., 2024. "Different PCA approaches for vector functional time series with applications to resistive switching processes," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 288-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:cte:wsrepe:24606 is not listed on IDEAS
    2. Antonio Elías & Raúl Jiménez & J. E. Yukich, 2023. "Localization processes for functional data analysis," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 17(2), pages 485-517, June.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    5. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    6. Nagy, Stanislav & Ferraty, Frédéric, 2019. "Data depth for measurable noisy random functions," Journal of Multivariate Analysis, Elsevier, vol. 170(C), pages 95-114.
    7. Han Lin Shang & Yang Yang, 2021. "Forecasting Australian subnational age-specific mortality rates," Journal of Population Research, Springer, vol. 38(1), pages 1-24, March.
    8. Han Shang, 2014. "A survey of functional principal component analysis," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 98(2), pages 121-142, April.
    9. Dai, Wenlin & Genton, Marc G., 2019. "Directional outlyingness for multivariate functional data," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 50-65.
    10. Han Lin Shang & Yang Yang & Fearghal Kearney, 2019. "Intraday forecasts of a volatility index: functional time series methods with dynamic updating," Annals of Operations Research, Springer, vol. 282(1), pages 331-354, November.
    11. Shang, Han Lin, 2017. "Functional time series forecasting with dynamic updating: An application to intraday particulate matter concentration," Econometrics and Statistics, Elsevier, vol. 1(C), pages 184-200.
    12. Mia Hubert & Peter Rousseeuw & Pieter Segaert, 2015. "Multivariate functional outlier detection," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 24(2), pages 177-202, July.
    13. Zhuo Qu & Wenlin Dai & Marc G. Genton, 2021. "Robust functional multivariate analysis of variance with environmental applications," Environmetrics, John Wiley & Sons, Ltd., vol. 32(1), February.
    14. Serfling, Robert & Wijesuriya, Uditha, 2017. "Depth-based nonparametric description of functional data, with emphasis on use of spatial depth," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 24-45.
    15. Antonio Elías & Raúl Jiménez & Han Lin Shang, 2023. "Depth-based reconstruction method for incomplete functional data," Computational Statistics, Springer, vol. 38(3), pages 1507-1535, September.
    16. Carlo Sguera & Sara López-Pintado, 2021. "A notion of depth for sparse functional data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 630-649, September.
    17. Yuan Gao & Han Lin Shang, 2017. "Multivariate Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Risks, MDPI, vol. 5(2), pages 1-18, March.
    18. Kuhnt, Sonja & Rehage, André, 2016. "An angle-based multivariate functional pseudo-depth for shape outlier detection," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 325-340.
    19. Cleveland, Jason & Zhao, Weilong & Wu, Wei, 2018. "Robust template estimation for functional data with phase variability using band depth," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 10-26.
    20. Han Lin Shang & Rob J Hyndman, 2016. "Grouped functional time series forecasting: An application to age-specific mortality rates," Monash Econometrics and Business Statistics Working Papers 4/16, Monash University, Department of Econometrics and Business Statistics.
    21. Agostinelli, Claudio, 2018. "Local half-region depth for functional data," Journal of Multivariate Analysis, Elsevier, vol. 163(C), pages 67-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jmvana:v:189:y:2022:i:c:s0047259x21001688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.