IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i2p474-484.html
   My bibliography  Save this article

Combining forecasts: Performance and coherence

Author

Listed:
  • Thomson, Mary E.
  • Pollock, Andrew C.
  • Önkal, Dilek
  • Gönül, M. Sinan

Abstract

There is general agreement in many forecasting contexts that combining individual predictions leads to better final forecasts. However, the relative error reduction in a combined forecast depends upon the extent to which the component forecasts contain unique/independent information. Unfortunately, obtaining independent predictions is difficult in many situations, as these forecasts may be based on similar statistical models and/or overlapping information. The current study addresses this problem by incorporating a measure of coherence into an analytic evaluation framework so that the degree of independence between sets of forecasts can be identified easily. The framework also decomposes the performance and coherence measures in order to illustrate the underlying aspects that are responsible for error reduction. The framework is demonstrated using UK retail prices index inflation forecasts for the period 1998–2014, and implications for forecast users are discussed.

Suggested Citation

  • Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:474-484
    DOI: 10.1016/j.ijforecast.2018.10.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018301869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.10.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
    2. Leitner, Johannes & Leopold-Wildburger, Ulrike, 2011. "Experiments on forecasting behavior with several sources of information - A review of the literature," European Journal of Operational Research, Elsevier, vol. 213(3), pages 459-469, September.
    3. de Menezes, Lilian M. & W. Bunn, Derek & Taylor, James W., 2000. "Review of guidelines for the use of combined forecasts," European Journal of Operational Research, Elsevier, vol. 120(1), pages 190-204, January.
    4. Steven P. Schnaars, 1986. "An Evaluation of Rules for Selecting an Extrapolation Model on Yearly Sales Forecasts," Interfaces, INFORMS, vol. 16(6), pages 100-107, December.
    5. Budescu, David V. & Rantilla, Adrian K. & Yu, Hsiu-Ting & Karelitz, Tzur M., 2003. "The effects of asymmetry among advisors on the aggregation of their opinions," Organizational Behavior and Human Decision Processes, Elsevier, vol. 90(1), pages 178-194, January.
    6. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    7. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    8. Fifić, Mario & Gigerenzer, Gerd, 2014. "Are two interviewers better than one?," Journal of Business Research, Elsevier, vol. 67(8), pages 1771-1779.
    9. du Jardin, Philippe, 2016. "A two-stage classification technique for bankruptcy prediction," European Journal of Operational Research, Elsevier, vol. 254(1), pages 236-252.
    10. Pollock, Andrew C. & Macaulay, Alex & Thomson, Mary E. & Onkal, Dilek, 2005. "Performance evaluation of judgemental directional exchange rate predictions," International Journal of Forecasting, Elsevier, vol. 21(3), pages 473-489.
    11. Makridakis, Spyros & Hibon, Michele, 2000. "The M3-Competition: results, conclusions and implications," International Journal of Forecasting, Elsevier, vol. 16(4), pages 451-476.
    12. Pollock, Andrew C. & Wilkie, Mary E., 1996. "The quality of bank forecasts: The dollar-pound exchange rate, 1990-1993," European Journal of Operational Research, Elsevier, vol. 91(2), pages 306-314, June.
    13. Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
    14. Fischer, Ilan & Harvey, Nigel, 1999. "Combining forecasts: What information do judges need to outperform the simple average?," International Journal of Forecasting, Elsevier, vol. 15(3), pages 227-246, July.
    15. Goodwin, Paul, 2015. "Is a more liberal approach to conservatism needed in forecasting?," Journal of Business Research, Elsevier, vol. 68(8), pages 1753-1754.
    16. M. J. Lawrence & R. H. Edmundson & M. J. O'Connor, 1986. "The Accuracy of Combining Judgemental and Statistical Forecasts," Management Science, INFORMS, vol. 32(12), pages 1521-1532, December.
    17. Green, Kesten C. & Armstrong, J. Scott & Graefe, Andreas, 2015. "Golden rule of forecasting rearticulated: Forecast unto others as you would have them forecast unto you," Journal of Business Research, Elsevier, vol. 68(8), pages 1768-1771.
    18. Roy Batchelor & Pami Dua, 1995. "Forecaster Diversity and the Benefits of Combining Forecasts," Management Science, INFORMS, vol. 41(1), pages 68-75, January.
    19. Wilkie, Mary E. & Pollock, Andrew C., 1996. "An application of probability judgement accuracy measures to currency forecasting," International Journal of Forecasting, Elsevier, vol. 12(1), pages 25-40, March.
    20. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    21. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    22. Pollock, Andrew C. & Macaulay, Alex & Onkal-Atay, Dilek & Wilkie-Thomson, Mary E., 1999. "Evaluating predictive performance of judgemental extrapolations from simulated currency series," European Journal of Operational Research, Elsevier, vol. 114(2), pages 281-293, April.
    23. Mark W. Watson & James H. Stock, 2004. "Combination forecasts of output growth in a seven-country data set," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 23(6), pages 405-430.
    24. Thomson, Mary E. & Pollock, Andrew C. & Gönül, M. Sinan & Önkal, Dilek, 2013. "Effects of trend strength and direction on performance and consistency in judgmental exchange rate forecasting," International Journal of Forecasting, Elsevier, vol. 29(2), pages 337-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Żymełka, Piotr & Szega, Marcin, 2020. "Issues of an improving the accuracy of energy carriers production forecasting in a computer-aided system for monitoring the operation of a gas-fired cogeneration plant," Energy, Elsevier, vol. 209(C).
    2. Carlos Trucíos & James W. Taylor, 2023. "A comparison of methods for forecasting value at risk and expected shortfall of cryptocurrencies," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 989-1007, July.
    3. Szega, Marcin & Żymełka, Piotr & Janda, Tomasz, 2022. "Improving the accuracy of electricity and heat production forecasting in a supervision computer system of a selected gas-fired CHP plant operation," Energy, Elsevier, vol. 239(PE).
    4. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    5. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    6. Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
    7. Carlos Henrique Dias Cordeiro de Castro & Fernando Antonio Lucena Aiube, 2023. "Forecasting inflation time series using score‐driven dynamic models and combination methods: The case of Brazil," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(2), pages 369-401, March.
    8. Zhenni Ding & Huayou Chen & Ligang Zhou, 2023. "Using shapely values to define subgroups of forecasts for combining," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 905-923, July.
    9. Zhang, Gang & Yang, Dazhi & Galanis, George & Androulakis, Emmanouil, 2022. "Solar forecasting with hourly updated numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    10. Tae-Hwy Lee & Ekaterina Seregina, 2020. "Learning from Forecast Errors: A New Approach to Forecast Combination," Working Papers 202024, University of California at Riverside, Department of Economics.
    11. Lamichhane, Sabhyata & Mei, Bin & Siry, Jacek, 2023. "Forecasting pine sawtimber stumpage prices: A comparison between a time series hybrid model and an artificial neural network," Forest Policy and Economics, Elsevier, vol. 154(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. von der Gracht, Heiko A. & Hommel, Ulrich & Prokesch, Tobias & Wohlenberg, Holger, 2016. "Testing weighting approaches for forecasting in a Group Wisdom Support System environment," Journal of Business Research, Elsevier, vol. 69(10), pages 4081-4094.
    2. Perera, H. Niles & Hurley, Jason & Fahimnia, Behnam & Reisi, Mohsen, 2019. "The human factor in supply chain forecasting: A systematic review," European Journal of Operational Research, Elsevier, vol. 274(2), pages 574-600.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    6. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    7. Lawrence, Michael & Goodwin, Paul & O'Connor, Marcus & Onkal, Dilek, 2006. "Judgmental forecasting: A review of progress over the last 25 years," International Journal of Forecasting, Elsevier, vol. 22(3), pages 493-518.
    8. Kang, Yanfei & Cao, Wei & Petropoulos, Fotios & Li, Feng, 2022. "Forecast with forecasts: Diversity matters," European Journal of Operational Research, Elsevier, vol. 301(1), pages 180-190.
    9. Blanc, Sebastian M. & Setzer, Thomas, 2016. "When to choose the simple average in forecast combination," Journal of Business Research, Elsevier, vol. 69(10), pages 3951-3962.
    10. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    11. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Combination of long term and short term forecasts, with application to tourism demand forecasting," International Journal of Forecasting, Elsevier, vol. 27(3), pages 870-886, July.
    12. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    13. De Baets, Shari & Harvey, Nigel, 2020. "Using judgment to select and adjust forecasts from statistical models," European Journal of Operational Research, Elsevier, vol. 284(3), pages 882-895.
    14. Andrawis, Robert R. & Atiya, Amir F. & El-Shishiny, Hisham, 2011. "Forecast combinations of computational intelligence and linear models for the NN5 time series forecasting competition," International Journal of Forecasting, Elsevier, vol. 27(3), pages 672-688, July.
    15. Arvan, Meysam & Fahimnia, Behnam & Reisi, Mohsen & Siemsen, Enno, 2019. "Integrating human judgement into quantitative forecasting methods: A review," Omega, Elsevier, vol. 86(C), pages 237-252.
    16. Barrow, Devon K. & Crone, Sven F., 2016. "A comparison of AdaBoost algorithms for time series forecast combination," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1103-1119.
    17. Li, Li & Kang, Yanfei & Li, Feng, 2023. "Bayesian forecast combination using time-varying features," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1287-1302.
    18. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    19. Kourentzes, Nikolaos & Barrow, Devon & Petropoulos, Fotios, 2019. "Another look at forecast selection and combination: Evidence from forecast pooling," International Journal of Production Economics, Elsevier, vol. 209(C), pages 226-235.
    20. Nowotarski, Jakub & Liu, Bidong & Weron, Rafał & Hong, Tao, 2016. "Improving short term load forecast accuracy via combining sister forecasts," Energy, Elsevier, vol. 98(C), pages 40-49.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:2:p:474-484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.