Swarm Intelligence Based Hybrid Neural Network Approach for Stock Price Forecasting
Author
Abstract
Suggested Citation
DOI: 10.1007/s10614-021-10176-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Song, Yu & Akagi, Fumio, 2016. "Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock marketAuthor-Name: Qiu, Mingyue," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 1-7.
- Jingtao Yao & Chew Lim Tan & Hean-Lee Poh, 1999. "Neural Networks For Technical Analysis: A Study On Klci," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 221-241.
- Lin, Chiun-Sin & Chiu, Sheng-Hsiung & Lin, Tzu-Yu, 2012. "Empirical mode decomposition–based least squares support vector regression for foreign exchange rate forecasting," Economic Modelling, Elsevier, vol. 29(6), pages 2583-2590.
- Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
- Menkhoff, Lukas, 1997. "Examining the Use of Technical Currency Analysis," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 2(4), pages 307-318, October.
- Ayodele Ariyo Adebiyi & Aderemi Oluyinka Adewumi & Charles Korede Ayo, 2014. "Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-7, March.
- Wang, Ju-Jie & Wang, Jian-Zhou & Zhang, Zhe-George & Guo, Shu-Po, 2012. "Stock index forecasting based on a hybrid model," Omega, Elsevier, vol. 40(6), pages 758-766.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Shugang Li & Ziyi Li & Yixin Tang & Wenjing Zhao & Xiaoqi Kang & Lingling Zheng & Zhaoxu Yu, 2024. "Pioneering Technology Mining Research for New Technology Strategic Planning," Sustainability, MDPI, vol. 16(15), pages 1-26, August.
- Na Fu & Liyan Geng & Junhai Ma & Xue Ding, 2023. "Price, Complexity, and Mathematical Model," Mathematics, MDPI, vol. 11(13), pages 1-30, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
- Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
- Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021.
"Market instability and technical trading at high frequency: Evidence from NASDAQ stocks,"
Economic Modelling, Elsevier, vol. 102(C).
- Erdemlioglu, Deniz & Petitjean, Mikael & Vargas, Nicolas, 2021. "Market Instability and Technical Trading at High Frequency: Evidence from NASDAQ Stocks," LIDAM Reprints LFIN 2021016, Université catholique de Louvain, Louvain Finance (LFIN).
- dos Santos Maciel, Leandro, 2023. "Brazilian stock-market efficiency before and after COVID-19: The roles of fractality and predictability," Global Finance Journal, Elsevier, vol. 58(C).
- Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
- Karol Pilot & Alicja Ganczarek-Gamrot & Krzysztof Kania, 2024. "Dealing with Anomalies in Day-Ahead Market Prediction Using Machine Learning Hybrid Model," Energies, MDPI, vol. 17(17), pages 1-20, September.
- Nghia Chu & Binh Dao & Nga Pham & Huy Nguyen & Hien Tran, 2022. "Predicting Mutual Funds' Performance using Deep Learning and Ensemble Techniques," Papers 2209.09649, arXiv.org, revised Jul 2023.
- Hakan Er & Adnan Hushmat, 2017. "The application of technical trading rules developed from spot market prices on futures market prices using CAPM," Eurasian Business Review, Springer;Eurasia Business and Economics Society, vol. 7(3), pages 313-353, December.
- Yang, Cheng-Hu & Wang, Hai-Tang & Ma, Xin & Talluri, Srinivas, 2023. "A data-driven newsvendor problem: A high-dimensional and mixed-frequency method," International Journal of Production Economics, Elsevier, vol. 266(C).
- Jin, Xiaoye, 2021. "What do we know about the popularity of technical analysis in foreign exchange markets? A skewness preference perspective," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 71(C).
- Álvarez-Díaz, Marcos & Hammoudeh, Shawkat & Gupta, Rangan, 2014. "Detecting predictable non-linear dynamics in Dow Jones Islamic Market and Dow Jones Industrial Average indices using nonparametric regressions," The North American Journal of Economics and Finance, Elsevier, vol. 29(C), pages 22-35.
- Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
- Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
- Ehsan Hoseinzade & Saman Haratizadeh & Arash Khoeini, 2019. "U-CNNpred: A Universal CNN-based Predictor for Stock Markets," Papers 1911.12540, arXiv.org.
- Lukas Menkhoff & Mark P. Taylor, 2007.
"The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis,"
Journal of Economic Literature, American Economic Association, vol. 45(4), pages 936-972, December.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals : Technical Analysis," The Warwick Economics Research Paper Series (TWERPS) 769, University of Warwick, Department of Economics.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Hannover Economic Papers (HEP) dp-352, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Menkhoff, Lukas & Taylor, Mark P., 2006. "The Obstinate Passion of Foreign Exchange Professionals: Technical Analysis," Economic Research Papers 269739, University of Warwick - Department of Economics.
- Li Xiangfei & Zhang Zaisheng & Huang Chao, 2014. "An EPC Forecasting Method for Stock Index Based on Integrating Empirical Mode Decomposition, SVM and Cuckoo Search Algorithm," Journal of Systems Science and Information, De Gruyter, vol. 2(6), pages 481-504, December.
- Christopher E.S. WARBURTON & Jared PEMBERTON, 2023. "Volatile Financial Conditions, Asset Prices, and Investment Decisions: Analysis of daily data of DJIA and S&P500, from January to April of 2022," Applied Econometrics and International Development, Euro-American Association of Economic Development, vol. 23(1), pages 101-124.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Kizilaslan, Recep & Freund, Steven & Iseri, Ali, 2016. "A data analytic approach to forecasting daily stock returns in an emerging marketAuthor-Name: Oztekin, Asil," European Journal of Operational Research, Elsevier, vol. 253(3), pages 697-710.
More about this item
Keywords
Discrete particle swarm optimization; Genetic algorithm; Hybrid neural network; Particle swarm optimization; Stock price time series; Swarm intelligence; Technical analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:compec:v:60:y:2022:i:3:d:10.1007_s10614-021-10176-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.