IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v194y2024ics0167947324000136.html
   My bibliography  Save this article

Goodness-of-fit test for point processes first-order intensity

Author

Listed:
  • Borrajo, M.I.
  • González-Manteiga, W.
  • Martínez-Miranda, M.D.

Abstract

Modelling the first-order intensity function is one of the main aims in point process theory. An appropriate model describes the first-order intensity as a nonparametric function of spatial covariates. A formal testing procedure is presented to assess the goodness-of-fit of this model, assuming an inhomogeneous Poisson point process. The test is based on a quadratic distance between two kernel intensity estimators. The asymptotic normality of the test statistic is proved and a bootstrap procedure to approximate its distribution is suggested. The proposal is illustrated with two applications to real data sets, and an extensive simulation study to evaluate its finite-sample performance.

Suggested Citation

  • Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2024. "Goodness-of-fit test for point processes first-order intensity," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
  • Handle: RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000136
    DOI: 10.1016/j.csda.2024.107929
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947324000136
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2024.107929?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guan, Yongtao & Loh, Ji Meng, 2007. "A Thinned Block Bootstrap Variance Estimation Procedure for Inhomogeneous Spatial Point Patterns," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1377-1386, December.
    2. Cao, R., 1993. "Bootstrapping the Mean Integrated Squared Error," Journal of Multivariate Analysis, Elsevier, vol. 45(1), pages 137-160, April.
    3. Rob Foxall & Adrian Baddeley, 2002. "Nonparametric measures of association between a spatial point process and a random set, with geological applications," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 51(2), pages 165-182, May.
    4. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "Rejoinder on: An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 442-447, September.
    5. Wenceslao González-Manteiga & Rosa Crujeiras, 2013. "An updated review of Goodness-of-Fit tests for regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 361-411, September.
    6. Hyndman, R.J. & Yao, Q., 1998. "Nonparametric Estimation and Symmetry Tests for Conditional Density Functions," Monash Econometrics and Business Statistics Working Papers 17/98, Monash University, Department of Econometrics and Business Statistics.
    7. Baddeley, Adrian & Hardegen, Andrew & Lawrence, Thomas & Milne, Robin K. & Nair, Gopalan & Rakshit, Suman, 2017. "On two-stage Monte Carlo tests of composite hypotheses," Computational Statistics & Data Analysis, Elsevier, vol. 114(C), pages 75-87.
    8. J. Chacón & T. Duong, 2010. "Multivariate plug-in bandwidth selection with unconstrained pilot bandwidth matrices," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 19(2), pages 375-398, August.
    9. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    10. P. J. Diggle & V. Gómez-Rubio & P. E. Brown & A. G. Chetwynd & S. Gooding, 2007. "Second-Order Analysis of Inhomogeneous Spatial Point Processes Using Case–Control Data," Biometrics, The International Biometric Society, vol. 63(2), pages 550-557, June.
    11. Peter Diggle, 1985. "A Kernel Method for Smoothing Point Process Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 34(2), pages 138-147, June.
    12. Guan, Yongtao, 2008. "On Consistent Nonparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Journal of the American Statistical Association, American Statistical Association, vol. 103(483), pages 1238-1247.
    13. Rasmus Plenge Waagepetersen, 2007. "An Estimating Function Approach to Inference for Inhomogeneous Neyman–Scott Processes," Biometrics, The International Biometric Society, vol. 63(1), pages 252-258, March.
    14. Yongtao Guan & Ye Shen, 2010. "A weighted estimating equation approach for inhomogeneous spatial point processes," Biometrika, Biometrika Trust, vol. 97(4), pages 867-880.
    15. Hall, Peter, 1984. "Central limit theorem for integrated square error of multivariate nonparametric density estimators," Journal of Multivariate Analysis, Elsevier, vol. 14(1), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borrajo, M.I. & González-Manteiga, W. & Martínez-Miranda, M.D., 2020. "Bootstrapping kernel intensity estimation for inhomogeneous point processes with spatial covariates," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    2. Isabel Fuentes-Santos & Wenceslao González-Manteiga & Jorge Mateu, 2016. "Consistent Smooth Bootstrap Kernel Intensity Estimation for Inhomogeneous Spatial Poisson Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 416-435, June.
    3. Zhang, Tonglin & Mateu, Jorge, 2019. "Substationarity for spatial point processes," Journal of Multivariate Analysis, Elsevier, vol. 171(C), pages 22-36.
    4. Yu Ryan Yue & Ji Meng Loh, 2011. "Bayesian Semiparametric Intensity Estimation for Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 67(3), pages 937-946, September.
    5. Ute Hahn & Eva B. Vedel Jensen, 2016. "Hidden Second-order Stationary Spatial Point Processes," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 43(2), pages 455-475, June.
    6. Xu Guo & Wangli Xu & Lixing Zhu, 2015. "Model checking for parametric regressions with response missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 229-259, April.
    7. Bagkavos, Dimitrios & Patil, Prakash N. & Wood, Andrew T.A., 2023. "Nonparametric goodness-of-fit testing for a continuous multivariate parametric model," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    8. Stefan Sperlich, 2014. "On the choice of regularization parameters in specification testing: a critical discussion," Empirical Economics, Springer, vol. 47(2), pages 427-450, September.
    9. P. A. Henrys & P. E. Brown, 2009. "Inference for Clustered Inhomogeneous Spatial Point Processes," Biometrics, The International Biometric Society, vol. 65(2), pages 423-430, June.
    10. Zhihua Sun & Dongshan Luo & Xiaohua Zhou & Qingzhao Zhang, 2021. "Comparative studies on the adequacy check of parametric measurement error models with auxiliary variable," Statistical Papers, Springer, vol. 62(4), pages 1723-1751, August.
    11. Su, Liangjun, 2006. "A simple test for multivariate conditional symmetry," Economics Letters, Elsevier, vol. 93(3), pages 374-378, December.
    12. Pedro H. C. Sant'Anna & Xiaojun Song & Qi Xu, 2022. "Covariate distribution balance via propensity scores," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(6), pages 1093-1120, September.
    13. Adam D. Bull, 2015. "Semimartingale detection and goodness-of-fit tests," Papers 1506.00088, arXiv.org, revised Jun 2016.
    14. Dong, Hao & Taylor, Luke, 2022. "Nonparametric Significance Testing In Measurement Error Models," Econometric Theory, Cambridge University Press, vol. 38(3), pages 454-496, June.
    15. García-Portugués, Eduardo & Crujeiras, Rosa M. & González-Manteiga, Wenceslao, 2013. "Kernel density estimation for directional–linear data," Journal of Multivariate Analysis, Elsevier, vol. 121(C), pages 152-175.
    16. Xu Guo & Gao-Rong Li & Michael McAleer & Wing-Keung Wong, 2018. "Specification Testing of Production in a Stochastic Frontier Model," Sustainability, MDPI, vol. 10(9), pages 1-10, August.
    17. Ondřej Šedivý & Antti Penttinen, 2014. "Intensity estimation for inhomogeneous Gibbs point process with covariates-dependent chemical activity," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 68(3), pages 225-249, August.
    18. Marcon, Eric & Puech, Florence, 2017. "A typology of distance-based measures of spatial concentration," Regional Science and Urban Economics, Elsevier, vol. 62(C), pages 56-67.
    19. Enno Mammen & Jens Perch Nielsen & Michael Scholz & Stefan Sperlich, 2019. "Conditional Variance Forecasts for Long-Term Stock Returns," Risks, MDPI, vol. 7(4), pages 1-22, November.
    20. Liangjun Su & Sainan Jin, 2005. "A Bootstrap Test for Conditional Symmetry," Annals of Economics and Finance, Society for AEF, vol. 6(2), pages 251-261, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:194:y:2024:i:c:s0167947324000136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.