IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0260931.html
   My bibliography  Save this article

Associations between COVID-19 mobility restrictions and economic, mental health, and suicide-related concerns in the US using cellular phone GPS and Google search volume data

Author

Listed:
  • Catherine Gimbrone
  • Caroline Rutherford
  • Sasikiran Kandula
  • Gonzalo Martínez-Alés
  • Jeffrey Shaman
  • Mark Olfson
  • Madelyn S Gould
  • Sen Pei
  • Marta Galanti
  • Katherine M Keyes

Abstract

During the COVID-19 pandemic, US populations have experienced elevated rates of financial and psychological distress that could lead to increases in suicide rates. Rapid ongoing mental health monitoring is critical for early intervention, especially in regions most affected by the pandemic, yet traditional surveillance data are available only after long lags. Novel information on real-time population isolation and concerns stemming from the pandemic’s social and economic impacts, via cellular mobility tracking and online search data, are potentially important interim surveillance resources. Using these measures, we employed transfer function model time-series analyses to estimate associations between daily mobility indicators (proportion of cellular devices completely at home and time spent at home) and Google Health Trends search volumes for terms pertaining to economic stress, mental health, and suicide during 2020 and 2021 both nationally and in New York City. During the first pandemic wave in early-spring 2020, over 50% of devices remained completely at home and searches for economic stressors exceeded 60,000 per 10 million. We found large concurrent associations across analyses between declining mobility and increasing searches for economic stressor terms (national proportion of devices at home: cross-correlation coefficient (CC) = 0.6 (p-value

Suggested Citation

  • Catherine Gimbrone & Caroline Rutherford & Sasikiran Kandula & Gonzalo Martínez-Alés & Jeffrey Shaman & Mark Olfson & Madelyn S Gould & Sen Pei & Marta Galanti & Katherine M Keyes, 2021. "Associations between COVID-19 mobility restrictions and economic, mental health, and suicide-related concerns in the US using cellular phone GPS and Google search volume data," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-18, December.
  • Handle: RePEc:plo:pone00:0260931
    DOI: 10.1371/journal.pone.0260931
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0260931
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0260931&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0260931?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Minha Lee & Jun Zhao & Qianqian Sun & Yixuan Pan & Weiyi Zhou & Chenfeng Xiong & Lei Zhang, 2020. "Human mobility trends during the early stage of the COVID-19 pandemic in the United States," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-15, November.
    2. Takanao Tanaka & Shohei Okamoto, 2021. "Increase in suicide following an initial decline during the COVID-19 pandemic in Japan," Nature Human Behaviour, Nature, vol. 5(2), pages 229-238, February.
    3. Emily A Halford & Alison M Lake & Madelyn S Gould, 2020. "Google searches for suicide and suicide risk factors in the early stages of the COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 15(7), pages 1-8, July.
    4. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anderes, Marc & Pichler, Stefan, 2023. "Mental health effects of social distancing in Switzerland," Economics & Human Biology, Elsevier, vol. 51(C).
    2. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    5. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    6. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    7. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    8. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    11. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
    12. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    13. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    14. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    15. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    16. Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Risks, MDPI, vol. 6(1), pages 1-20, March.
    17. Ruri Okubo & Ryusuke Matsumoto & Eishi Motomura & Motohiro Okada, 2024. "Uncertainties of Economic Policy and Government Management Stability Played Important Roles in Increasing Suicides in Japan from 2009 to 2023," IJERPH, MDPI, vol. 21(10), pages 1-18, October.
    18. Svitlana Galeshchuk, 2017. "Technological bias at the exchange rate market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 24(2-3), pages 80-86, April.
    19. Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
    20. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0260931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.