IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i19p12271-d926885.html
   My bibliography  Save this article

Forecasting Malaria Morbidity to 2036 Based on Geo-Climatic Factors in the Democratic Republic of Congo

Author

Listed:
  • Eric Kalunda Panzi

    (Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa (ISTM/Kin), Kinshasa B.P. 774, Congo)

  • Ngianga II Kandala

    (School of Health and Care Professionals, Faculty of Science and Health, University of Portsmouth, Portsmouth PO1 2QG, UK)

  • Emery Luzolo Kafinga

    (Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa (ISTM/Kin), Kinshasa B.P. 774, Congo)

  • Bertin Mbenga Tampwo

    (Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa (ISTM/Kin), Kinshasa B.P. 774, Congo)

  • Ngianga-Bakwin Kandala

    (Département de la Santé Communautaire, Institut Supérieur des Techniques Médicales de Kinshasa (ISTM/Kin), Kinshasa B.P. 774, Congo
    Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentristy, Western University, London, ON N6G 2M1, Canada
    Division of Epidemiology and Biostatistics, School of Public Health, University of the Witwatersrand, Johannesburg 2193, South Africa
    Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK)

Abstract

Background: Malaria is a global burden in terms of morbidity and mortality. In the Democratic Republic of Congo, malaria prevalence is increasing due to strong climatic variations. Reductions in malaria morbidity and mortality, the fight against climate change, good health and well-being constitute key development aims as set by the United Nations Sustainable Development Goals (SDGs). This study aims to predict malaria morbidity to 2036 in relation to climate variations between 2001 and 2019, which may serve as a basis to develop an early warning system that integrates monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns. Methods: Meteorological data were collected at the Mettelsat and the database of the Epidemiological Surveillance Directorate including all malaria cases registered in the surveillance system based on positive blood test results, either by microscopy or by a rapid diagnostic test for malaria, was used to estimate malaria morbidity and mortality by province of the DRC from 2001 to 2019. Malaria prevalence and mortality rates by year and province using direct standardization and mean annual percentage change were calculated using DRC mid-year populations. Time series combining several predictive models were used to forecast malaria epidemic episodes to 2036. Finally, the impact of climatic factors on malaria morbidity was modeled using multivariate time series analysis. Results: The geographical distribution of malaria prevalence from 2001 and 2019 shows strong disparities between provinces with the highest of 7700 cases per 100,000 people at risk for South Kivu. In the northwest, malaria prevalence ranges from 4980 to 7700 cases per 100,000 people at risk. Malaria has been most deadly in Sankuru with a case-fatality rate of 0.526%, followed by Kasai (0.430%), Kwango (0.415%), Bas-Uélé, (0.366%) and Kwilu (0.346%), respectively. However, the stochastic trend model predicts an average annual increase of 6024.07 malaria cases per facility with exponential growth in epidemic waves over the next 200 months of the study. This represents an increase of 99.2%. There was overwhelming evidence of associations between geographic location (western, central and northeastern region of the country), total evaporation under shelter, maximum daily temperature at two meters altitude and malaria morbidity ( p < 0.0001). Conclusions: The stochastic trends in our time series observed in this study suggest an exponential increase in epidemic waves over the next 200 months of the study. The increase in new malaria cases is statistically related to population density, average number of rainy days, average wind speed, and unstable and intermediate epidemiological facies. Therefore, the results of this research should provide relevant information for the Congolese government to respond to malaria in real time by setting up a warning system integrating the monitoring of rainfall and temperature trends and early detection of anomalies in weather patterns.

Suggested Citation

  • Eric Kalunda Panzi & Ngianga II Kandala & Emery Luzolo Kafinga & Bertin Mbenga Tampwo & Ngianga-Bakwin Kandala, 2022. "Forecasting Malaria Morbidity to 2036 Based on Geo-Climatic Factors in the Democratic Republic of Congo," IJERPH, MDPI, vol. 19(19), pages 1-28, September.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12271-:d:926885
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/19/12271/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/19/12271/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abiodun M. Adeola & Joel O. Botai & Hannes Rautenbach & Omolola M. Adisa & Katlego P. Ncongwane & Christina M. Botai & Temitope C. Adebayo-Ojo, 2017. "Climatic Variables and Malaria Morbidity in Mutale Local Municipality, South Africa: A 19-Year Data Analysis," IJERPH, MDPI, vol. 14(11), pages 1-15, November.
    2. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. repec:prg:jnlcfu:v:2022:y:2022:i:1:id:572 is not listed on IDEAS
    2. Chang, Andrew C. & Hanson, Tyler J., 2016. "The accuracy of forecasts prepared for the Federal Open Market Committee," Journal of Economics and Business, Elsevier, vol. 83(C), pages 23-43.
    3. Ling Tang & Chengyuan Zhang & Tingfei Li & Ling Li, 2021. "A novel BEMD-based method for forecasting tourist volume with search engine data," Tourism Economics, , vol. 27(5), pages 1015-1038, August.
    4. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    5. Michael Vössing & Niklas Kühl & Matteo Lind & Gerhard Satzger, 2022. "Designing Transparency for Effective Human-AI Collaboration," Information Systems Frontiers, Springer, vol. 24(3), pages 877-895, June.
    6. Frank, Johannes, 2023. "Forecasting realized volatility in turbulent times using temporal fusion transformers," FAU Discussion Papers in Economics 03/2023, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    7. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    8. Jeon, Yunho & Seong, Sihyeon, 2022. "Robust recurrent network model for intermittent time-series forecasting," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1415-1425.
    9. Snyder, Ralph D. & Ord, J. Keith & Koehler, Anne B. & McLaren, Keith R. & Beaumont, Adrian N., 2017. "Forecasting compositional time series: A state space approach," International Journal of Forecasting, Elsevier, vol. 33(2), pages 502-512.
    10. Paulo Júlio & Pedro M. Esperança, 2012. "Evaluating the forecast quality of GDP components: An application to G7," GEE Papers 0047, Gabinete de Estratégia e Estudos, Ministério da Economia, revised Apr 2012.
    11. Rivera, Nilza & Guzmán, Juan Ignacio & Jara, José Joaquín & Lagos, Gustavo, 2021. "Evaluation of econometric models of secondary refined copper supply," Resources Policy, Elsevier, vol. 73(C).
    12. Cameron Roach & Rob Hyndman & Souhaib Ben Taieb, 2021. "Non‐linear mixed‐effects models for time series forecasting of smart meter demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1118-1130, September.
    13. Massimo Guidolin & Manuela Pedio, 2019. "Forecasting and Trading Monetary Policy Effects on the Riskless Yield Curve with Regime Switching Nelson†Siegel Models," Working Papers 639, IGIER (Innocenzo Gasparini Institute for Economic Research), Bocconi University.
    14. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    15. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    16. Nikitopoulos, Christina Sklibosios & Thomas, Alice Carole & Wang, Jianxin, 2023. "The economic impact of daily volatility persistence on energy markets," Journal of Commodity Markets, Elsevier, vol. 30(C).
    17. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    18. I. Yu. Zolotova & V. V. Dvorkin, 2017. "Short-term forecasting of prices for the Russian wholesale electricity market based on neural networks," Studies on Russian Economic Development, Springer, vol. 28(6), pages 608-615, November.
    19. Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
    20. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    21. Kim, Jong-Min & Kim, Dong H. & Jung, Hojin, 2021. "Applications of machine learning for corporate bond yield spread forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    22. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:19:p:12271-:d:926885. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.