Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval
Author
Abstract
Suggested Citation
DOI: 10.1080/07474938.2013.807130
Download full text from publisher
As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.
Other versions of this item:
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
References listed on IDEAS
- Grammig, Joachim & Melvin, Michael & Schlag, Christian, 2005.
"Internationally cross-listed stock prices during overlapping trading hours: price discovery and exchange rate effects,"
Journal of Empirical Finance, Elsevier, vol. 12(1), pages 139-164, January.
- Joachim Grammig & Michael Melvin & Christian Schlag, 2005. "Internationally Cross-Listed Stock Prices During Overlapping Trading Hours: Price Discovery and Exchange Rate Effects," Working Paper Series: Finance and Accounting 78, Department of Finance, Goethe University Frankfurt am Main.
- Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
- Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
- John Geweke, 1999.
"Using simulation methods for bayesian econometric models: inference, development,and communication,"
Econometric Reviews, Taylor & Francis Journals, vol. 18(1), pages 1-73.
- John Geweke, 1998. "Using simulation methods for Bayesian econometric models: inference, development, and communication," Staff Report 249, Federal Reserve Bank of Minneapolis.
- Christian Gourieroux & Alain Monfort, 2006. "(Non) consistency of the Beta Kernel Estimator for Recovery Rate Distribution," Working Papers 2006-31, Center for Research in Economics and Statistics.
- Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009.
"A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,"
Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
- Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
- John Geweke, 1999. "Using Simulation Methods for Bayesian Econometric Models," Computing in Economics and Finance 1999 832, Society for Computational Economics.
- Ferreira José António & Zwinderman Aeilko H, 2006. "Approximate Power and Sample Size Calculations with the Benjamini-Hochberg Method," The International Journal of Biostatistics, De Gruyter, vol. 2(1), pages 1-38, September.
- Y. K. Tse & Xibin Zhang & Jun Yu, 2004. "Estimation of hyperbolic diffusion using the Markov chain Monte Carlo method," Quantitative Finance, Taylor & Francis Journals, vol. 4(2), pages 158-169.
- M.C. Jones & D.A. Henderson, 2007. "Miscellanea Kernel-Type Density Estimation on the Unit Interval," Biometrika, Biometrika Trust, vol. 94(4), pages 977-984.
- Gustafsson, J. & Hagmann, M. & Nielsen, J. P. & Scaillet, O., 2009.
"Local Transformation Kernel Density Estimation of Loss Distributions,"
Journal of Business & Economic Statistics, American Statistical Association, vol. 27(2), pages 161-175.
- J. Gustafsson & M. Hagmann & J.P. Nielsen & O. Scaillet, 2006. "Local Transformation Kernel Density Estimation of Loss Distributions," Swiss Finance Institute Research Paper Series 06-32, Swiss Finance Institute, revised Jun 2007.
- Chen, Song Xi, 1999. "Beta kernel estimators for density functions," Computational Statistics & Data Analysis, Elsevier, vol. 31(2), pages 131-145, August.
- Tse, Y.K. & Zhang, Bill & Yu, Jun, 2002.
"Estimation of Hyperbolic Diffusion using MCMC Method,"
Working Papers
182, Department of Economics, The University of Auckland.
- Y.K. Tse & Xibin Zhang & Jun Yu, 2002. "Estimation of Hyperbolic Diffusion Using MCMC Method," Monash Econometrics and Business Statistics Working Papers 18/02, Monash University, Department of Econometrics and Business Statistics.
- Renault, Olivier & Scaillet, Olivier, 2004.
"On the way to recovery: A nonparametric bias free estimation of recovery rate densities,"
Journal of Banking & Finance, Elsevier, vol. 28(12), pages 2915-2931, December.
- Olivier RENAULT & Olivier SCAILLET, 2003. "On the Way to Recovery: A Nonparametric Bias Free Estimation of Recovery Rate Densities," FAME Research Paper Series rp83, International Center for Financial Asset Management and Engineering.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zougab, Nabil & Adjabi, Smail & Kokonendji, Célestin C., 2014. "Bayesian estimation of adaptive bandwidth matrices in multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 28-38.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2015.
"Bayesian Approaches to Nonparametric Estimation of Densities on the Unit Interval,"
Econometric Reviews, Taylor & Francis Journals, vol. 34(3), pages 394-412, March.
- Song Li & Mervyn J. Silvapulle & Param Silvapulle & Xibin Zhang, 2012. "Bayesian Approaches to Non-parametric Estimation of Densities on the Unit Interval," Monash Econometrics and Business Statistics Working Papers 3/12, Monash University, Department of Econometrics and Business Statistics.
- Bedouhene Kahina & Zougab Nabil, 2020. "A Bayesian procedure for bandwidth selection in circular kernel density estimation," Monte Carlo Methods and Applications, De Gruyter, vol. 26(1), pages 69-82, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2011. "Bayesian estimation of bandwidths for a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 10/11, Monash University, Department of Econometrics and Business Statistics.
- Han Shang, 2014. "Bayesian bandwidth estimation for a semi-functional partial linear regression model with unknown error density," Computational Statistics, Springer, vol. 29(3), pages 829-848, June.
- Zhang, Xibin & King, Maxwell L. & Shang, Han Lin, 2014.
"A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density,"
Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 218-234.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "A sampling algorithm for bandwidth estimation in a nonparametric regression model with a flexible error density," Monash Econometrics and Business Statistics Working Papers 20/13, Monash University, Department of Econometrics and Business Statistics.
- Hirukawa, Masayuki, 2010. "Nonparametric multiplicative bias correction for kernel-type density estimation on the unit interval," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 473-495, February.
- Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2016.
"Bayesian Bandwidth Selection for a Nonparametric Regression Model with Mixed Types of Regressors,"
Econometrics, MDPI, vol. 4(2), pages 1-27, April.
- Xibin Zhang & Maxwell L. King & Han Lin Shang, 2013. "Bayesian bandwidth selection for a nonparametric regession model with mixed types of regressors," Monash Econometrics and Business Statistics Working Papers 13/13, Monash University, Department of Econometrics and Business Statistics.
- Shang, Han Lin, 2013. "Bayesian bandwidth estimation for a nonparametric functional regression model with unknown error density," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 185-198.
- Salvatore D. Tomarchio & Antonio Punzo, 2019. "Modelling the loss given default distribution via a family of zero‐and‐one inflated mixture models," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1247-1266, October.
- Gospodinov, Nikolay & Hirukawa, Masayuki, 2012. "Nonparametric estimation of scalar diffusion models of interest rates using asymmetric kernels," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 595-609.
- J. Baixauli & Susana Alvarez, 2012. "Implied Severity Density Estimation: An Extended Semiparametric Method to Compute Credit Value at Risk," Computational Economics, Springer;Society for Computational Economics, vol. 40(2), pages 115-129, August.
- Zhang, Xibin & King, Maxwell L., 2008.
"Box-Cox stochastic volatility models with heavy-tails and correlated errors,"
Journal of Empirical Finance, Elsevier, vol. 15(3), pages 549-566, June.
- Xibin Zhang & Maxwell L. King, 2004. "Box-Cox Stochastic Volatility Models with Heavy-Tails and Correlated Errors," Monash Econometrics and Business Statistics Working Papers 26/04, Monash University, Department of Econometrics and Business Statistics.
- Chen, Rongda & Zhou, Hanxian & Jin, Chenglu & Zheng, Wei, 2019. "Modeling of recovery rate for a given default by non-parametric method," Pacific-Basin Finance Journal, Elsevier, vol. 57(C).
- Xibin Zhang & Maxwell L. King, 2011. "Bayesian semiparametric GARCH models," Monash Econometrics and Business Statistics Working Papers 24/11, Monash University, Department of Econometrics and Business Statistics.
- Xibin Zhang & Maxwell L. King, 2013. "Gaussian kernel GARCH models," Monash Econometrics and Business Statistics Working Papers 19/13, Monash University, Department of Econometrics and Business Statistics.
- Han, Chulwoo & Jang, Youngmin, 2013. "Effects of debt collection practices on loss given default," Journal of Banking & Finance, Elsevier, vol. 37(1), pages 21-31.
- Zhang, Xibin & Brooks, Robert D. & King, Maxwell L., 2009.
"A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation,"
Journal of Econometrics, Elsevier, vol. 153(1), pages 21-32, November.
- Xibin Zhang & Robert D. Brooks & Maxwell L. King, 2007. "A Bayesian approach to bandwidth selection for multivariate kernel regression with an application to state-price density estimation," Monash Econometrics and Business Statistics Working Papers 11/07, Monash University, Department of Econometrics and Business Statistics.
- Calabrese, Raffaella & Zenga, Michele, 2010. "Bank loan recovery rates: Measuring and nonparametric density estimation," Journal of Banking & Finance, Elsevier, vol. 34(5), pages 903-911, May.
- Adnan Haider Bukhari & Safdar Ullah Khan, 2008.
"A Small Open Economy DSGE Model for Pakistan,"
The Pakistan Development Review, Pakistan Institute of Development Economics, vol. 47(4), pages 963-1008.
- Haider, Adnan & Khan, Safdar Ullah, 2008. "A Small Open Economy DSGE Model for Pakistan," MPRA Paper 12977, University Library of Munich, Germany, revised 17 Jan 2009.
- Thomas Sargent & Noah Williams & Tao Zha, 2006.
"Shocks and Government Beliefs: The Rise and Fall of American Inflation,"
American Economic Review, American Economic Association, vol. 96(4), pages 1193-1224, September.
- Thomas Sargent & Noah Williams & Tao Zha, 2004. "Shocks and Government Beliefs: The Rise and Fall of American Inflation," NBER Working Papers 10764, National Bureau of Economic Research, Inc.
- Thomas J. Sargent & Noah Williams & Tao Zha, 2004. "Shocks and government beliefs: the rise and fall of American inflation," FRB Atlanta Working Paper 2004-22, Federal Reserve Bank of Atlanta.
- Francesco Bianchi, 2013.
"Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics,"
The Review of Economic Studies, Review of Economic Studies Ltd, vol. 80(2), pages 463-490.
- Bianchi, Francesco, 2008. "Regime switches, Agents’ Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," MPRA Paper 24251, University Library of Munich, Germany, revised 19 Jan 2010.
- Francesco Bianchi, 2010. "Regime Switches, Agents' Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," Working Papers 10-39, Duke University, Department of Economics.
- Francesco Bianchi, 2009. "Regime Switches, Agents’ Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," 2009 Meeting Papers 198, Society for Economic Dynamics.
- Francesco Bianchi, 2012. "Regime Switches, Agents’ Beliefs, and Post-World War II U.S. Macroeconomic Dynamics," Working Papers 12-04, Duke University, Department of Economics.
More about this item
JEL classification:
- C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:emetrv:v:34:y:2015:i:3:p:394-412. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: http://www.tandfonline.com/LECR20 .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.